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The paper presents a general approach to the construction of so-called bior-
thogonal vector-MRA and its related wavelets of L2(Rd). The presented algo-
rithm is very close to the one in the classical case given by Cohen–Daubechies
(d Å 1) and Long–Chen (d § 1). Roughly speaking, to get a biorthogonal
vector-MRA from a given couple {H0(j); H̃0(j)} of trigonometric polynomial

matrices satisfying (n H0(j / np)HH *0 (j / np) Å Im (modulo some other natural
mild conditions), it is needed only to check if both of the spectral radius of the
transition operators PH0

, and PHH 0
restricted on some suitable invariant space P0 ,

are less than 1. q 1997 Academic Press

1. INTRODUCTION

During the past decade, the wavelet analysis based on the multiresolution analysis
(MRA) with a single scaling function has undergone a flourishing development. There
are many choices of wavelets constructed by various MRA, each possessing various
combinations of desirable properties such as orthogonality, compact support, smooth-
ness, symmetry, or high accuracy. However, some of these properties are mutually
exclusive. For instance, there are no compactly supported orthogonal wavelets, other
than the Haar wavelet, which can be symmetric or antisymmetric (see [12]). By the
way, the accuracy and smoothness of the scaling function is tied to the number of
coefficients in the dilation equation (see [13]). Therefore to obtain the high accuracy
or smoothness wavelets implies enlarging the support size for the scaling function.
This reduces the locality of wavelet representation and increases the computational
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complexity of the wavelet transform. In order to improve the support size, or the
symmetry of the involved wavelets, recently the so-called vector MRA(m) began to
be introduced by many people. One advantage of the wavelets based on the vector
MRA(m) allows the simultaneous inclusion of desirable properties. The contribution
of Goodman and Lee [16], Hardin, Kessler, and Massopust [18], Geronimo, Hardin,
and Massopust [15], and Donovan, Geronimo, Hardin, and Massopust [14] were
among the first in this direction. The idea is to let a multiresolution analysis {Vj}

`
0`

of L2(Rd) be based on a vector function (w1 , w2 , . . . , wm) √ L2(Rd, Rm) satisfying that
{w1(x 0 k), . . . , wm(x 0 k)} consists in a Riesz basis of V0 . Hence {2d/2w1(2x 0 k),
. . . , 2d/2wm(2x 0 k)} is a Riesz basis of V1 . Since V0 , V1 , there are {di,j(k)}k √ l2(Zd),
i, j Å 1, . . . , m, such that (in L2(Rd) sense)

wi(x) Å 2d ∑
m

jÅ1

∑
k

di,j(k)wj(2x 0 k), i Å 1, . . . , m. (1.1)

In terms of Fourier transform, (1.1) becomes

wP i(j) Å ∑
m

jÅ1

∑
k

di,j(k)e0ik(j/2)wP jSj2D , i Å 1, . . . , m, (1.2)

where the Fourier transform is defined by

fO (j) Å *
Rd

f(x)e0ixrjdx ∀f √ L1 > L2. (1.3)

Equation (1.2) can be rewritten in matrix form

wP (j) Å HSj2DwP Sj2D , (1.4)

where H(j) Å (hi,j(j)) is a m 1 m-matrix with hi,j(j) Å (k di,j(k)e0ikrj in L2(Td). H(j)
is called the filter function matrix, and w Å (w1 , . . . , wm)t is called the scaling function
vector (t denotes the transpose).

On the contrary, suppose that H(j) is a 2pZd-periodic function matrix such that

(A) ∏
`

1
H(20jj) converges for all j √ Rd.

(B) For a x √ Rm, Q(j) Å ∏
`

1
H(20jj)x is in L2(Rd, Rm).

(C) S Å {w1(x 0 k), . . . , wm(x 0 k)}k√Zd is a Riesz system in L2(Rd), where w Å
(w1 , . . . , wm)t is the inverse Fourier transform of Q.

Then V0 Å spanS generates a vector MRA(m) with filter function matrix H(j), and
scaling function vector w. If S is an orthogonal system, the associated MRA(m) is
said to be orthogonal. If H and H̃ are two filter matrix functions such that the corre-
sponding systems S and S̃ are biorthogonal, then the two associated MRAs are said
to be biorthogonal. This leads to the further problems:
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319VECTOR MULTIRESOLUTION ANALYSIS

(D) Find conditions for given matrix function H to be filter function matrix generat-
ing orthogonal MRA(m).

(E) Find conditions for given matrix function H and H̃ to be filter function matrices
generating biorthogonal MRAs.

The previous method was introduced by Mallat [29] and Daubechies [12] for con-
structing orthogonal MRAs in the case d Å m Å 1. It has been generated by several
authors. For instance, in the case d Å m Å 1, problem (D) was studied by Cohen [4],
Cohen and Raugi [10], and Lawton [23]; problems (B) and (C) were studied by Hérve
[20] and Villemoes [31]. In the case d § 1, m Å 1, problems (B) and (E) were studied
by Cohen and Daubechies [6] and Cohen, Dabechies, and Feauveau [7]; problems
(D) and (E) were studied by Long and Chen [26]. In the case d Å 1, m § 1, problems
(A), (B), and (C) were studied by Hérve [21]; problems (A) and (D) were studied in
Donovan, Geronimo, Hardin, and Massopust [14], Chui and Lian [3], Lawton, Lee,
and Shen [24], and Strang and Strela [30]; Problem (E) was studied by Dahmen and
Micchelli [11]. The existence, uniqueness, regularity, and stability of w as the solution
of Eq. (1.4) were studied by Cohen, Daubechies, and Plonka [9], Heil and Colella
[19], Cohen, Dyn, and Levin [8], and Lawton, Lee, and Shen [24] in the case m §
1. Following the previous works, especially those of Cohen and Daubechies [5], Hérve
[21], and Long and Chen [26], we want to study (A), (D), and (E) in the general case
d § 1 and m § 1, by using, first, the classical methods introduced by Cohen and
Daubechies [5] and Long and Chen [26] and, second, arguments of uniform integrabil-
ity which allow to simplify proofs; i.e., we want to find some conditions (necessary

or sufficient) imposed on H(j) such that ∏
`

1
H(20jj) converges and wP (j) can be defined

by ∏
`

1
H(20jj) such that {Vj}

`
0` is an orthogonal MRA(m) with

V0 Å span({w1(x 0 k), . . . , wm(x 0 k)}k), Vj Å 2jV0 . (1.6)

We want also to study the wavelets generated by MRA(m), and the biorthogonal
versions of the results obtained in the orthogonal case. As a result, for the filter
function matrix H(j) general enough (more general than those in [21]) in place of the
filter function m0(j), we obtain almost all of the results of Long and Chen [26].

Section 2 will be devoted to the convergence of the infinite product ∏
`

1
H(20jj);

Section 3 will be devoted to the characterization of the orthonormality of {w1(x 0 k),
. . . , wm(x 0 k)}k for some kind of H(j); Section 4 will discuss the wavelets generated
by MRA(m); Section 5 will be the biorthogonal versions; and Section 6 will be the
algorithms and two examples to illustrate the algorithms.

2. CONVERGENCE OF ∏
`

1
H(20jj)

Denote Mm the set of all complex m 1 m-matrices, M/
m the set of all positive

definite matrices. A √ M/
m means that
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»Ax, x… Å x*Ax ú 0 ∀(column) vector x(x0). (2.1)

For A √ Mm , \A\ denotes the operator norm of A defined by

\A\ Å sup
ÉxÉÅ1

ÉAxÉ, (2.2)

with ÉxÉ the vector length of x. Denote ei the ith-coordinate (column) vector. Let H(j)
be m 1 m-matrix of continuous complex functions defined on Td, in symbols H √
C(Td, Mm). In this section, we want to study some necessary conditions and sufficient

conditions for the convergence of ∏
`

1
H(20jj).

THEOREM 2.1. Suppose that ∏
`

1
H(20jj) converges at j Å 0. Then there exists

nonsingular M Å (mi,j) √ Mm such that

H(0) Å M01SIs 0

0 DDM, (2.3)

where Is is the (s 1 s)-identity matrix, 0 £ s £ m, and D is a special Jordan type
matrix, i.e., D is of type

D Å

ls/1 ms/1

??? ???
??? mm01

lm

, mi Å 0, 1 for all i, (2.4)

with ÉliÉ õ 1 for all i.
Proof. As is well known, there is a nonsingular M √ M such that

H(0) Å M01SJ1

???
Jr

DM,

with

Ji Å

li 1
??? ???

??? 1
li

√ Mti , 1 £ i £ r £ m, ∑
r

1

ti Å m.
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321VECTOR MULTIRESOLUTION ANALYSIS

Since

Hn(0) Å M01SJn
1

???
Jn

r

DM, (2.5)

we see that Hn(0) converges if and only if each Jn
i converges. But from

Jn
i Å

ln
i nln

i / ??? ??? ∗
ln

i ??? ∗
??? :

ln
i

, (2.6)

we see that when ti ú 1, then ÉliÉ õ 1, otherwise nln01
i does not converge. When ti

Å 1, we have Jn
i Å (ln

i ). From the convergence we have ÉliÉ õ 1, or li Å 1. This
completes the proof of the assertion of the theorem.

Now we want to show that the preceding necessary condition is almost sufficient.
We assume a natural and mild condition which is needed even in the case m Å 1.

THEOREM 2.2. Let H(j) √ C(Td, Mm) such that for some e ú 0,

\H(j) 0 H(0)\ £ cÉjÉe. (2.7)

Assume that (2.3) holds with s § 1. Then on any compact set in Rd, {∏
n

1
H(20jj)}n

converges uniformly to a continuous function matrix P`(j). Furthermore, for i ú s,
MP`(j)M01ei Å 0.

Proof. Denote G(j) Å MH(j)M01. Then {∏
n

1
H(20jj)}n converges if and only if

{Pn
1G(20jj)}n converges. So without loss of generality we can assume

H(0) Å SIs

DD .

Consider the compact set D Å [0N, N]d. It was shown by Cohen, Daubechies, and
Plonka [9] that

\Pn(j)\ Å \∏
n

1

H(20jj)\ £ cd,D(1 / d)n ∀n √ Z/ ∀j √ D.

Hence, for any p, q √ Z/ with q ú p and any j √ D

\∏
q

p/1

H(20jj)\ Å \∏
q0p

1

H(20j20pj)\ £ cd,D(1 / d)q0p.

Since Hk(0) r diag{Is , 0m0s}, we can assume that \Hk(0)\ £ BH £ O(1) for any k √ Z/ .
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Denote the (i, k)-entry of ∏
n

jÅ1
H(20jj) by h(n)

i,k (j). We have

h(n)
i,k (j) Å »∏

n

jÅ1

H(20jj)ek , ei…. (2.10)

We rewrite

h(q)
i,k (j) Å » ∏

q

jÅp/1

H(20jj)ek , (∏
p

jÅ1

H(20jj))*ei… (2.11)

and

∑
l

h(p)
i,l (j)h(q0p)

l,k (0) Å »Hq0p(0)ek , (∏
p

jÅ1

H(20jj))*ei…. (2.12)

Thus, we get

Éh(q)
i,k (j) 0 ∑

l

h(p)
i,l (j)h(q0p)

l,k (0)É

Å É»( ∏
q

jÅp/1

H(20jj) 0 Hq0p(0))ek , (∏
p

jÅ1

H(20jj))*ei…É

£ \(∏
p

jÅ1

H(20jj))*\ \ ∏
q

jÅp/1

H(20jj) 0 Hq0p(0)\

£ cd,D(1 / d)p\D\, (2.13)

where

D Å ∏
q

jÅp/1

H(20jj) 0 Hq0p(0)

Å ∏
q

jÅp/1

H(20jj) 0 ∏
q01

jÅp/1

H(20jj)H(0)

/ ∏
q01

jÅp/1

H(20jj)H(0) 0 rrr / H(20(p/1)j)Hq0p01(0) 0 Hq0p(0)

Å ∑
q0p01

lÅ0

∏
q0l

jÅp/1

H(20jj)Hl(0) 0 ∏
q0l01

jÅp/1

H(20jj)Hl/1(0)

Å ∑
q0p01

lÅ0

∏
q0l01

jÅp/1

H(20jj)(H(20(q0l)j) 0 H(0))Hl(0).

Since

\D\ £ ∑
q0p01

lÅ0

cd,D(1 / d)q0p0l02\H(20(q0l)j) 0 H(0)\ \Hl(0)\

£ ∑
q0p01

lÅ0

cd,D(1 / d)q0p0l0220(q0l)eNdeBH , (2.14)
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we derive

Éh(q)
i,k (j) 0 ∑

l

h(p)
i,l (j)h(q0p)

l,k (0)É £ BHNdec2
d,D ∑

q0p01

lÅ0

(1 / d)q0l0220(q0l)e

Å BHNdec2
d,D(1 / d)02 ∑

q

lÅp/1
S1 / d

2e Dl

. (2.15)

Now we select a d ú 0 such that 1 / d õ 2e. Then {(q
lÅ0 ((1 / d)/2e)l}q is a Cauchy

sequence. When k £ s, h(q0p)
l,k (0) Å dl,k . Then (2.15) reads

Éh(q)
i,k (j) 0 h(p)

i,k (j)É £ BHNdec2
d,D(1 / d)02 ∑

q

lÅp/1
S1 / d

2e Dl

.

This means that {h(q)
i,k (j)}q is a Cauchy sequence and, hence, converges. When k ú s,

let q tends to the infinity in (2.15) for given p large enough, we have that Éh(`)
i,k (j)É

£ O((`
lÅp/1 ((1 / d)/2e)l), since limqr`h(q0p)

l,k (0) Å 0. This means that h(`)
i,k (j) Å 0, for

k ú s and all i. It is just the assertion: MP`(j)M01ei Å 0 for all i ú s. The proof of
the theorem is finished.

Remark. Hérve [21] obtained a similar result by assuming H Ç diag{1, l2 , . . . ,

lm}, but here we cannot use \H(0)\ Å 1 and \∏
n

1
H(20jj)\ £ O(1) used by Hérve [21].

Furthermore, the result implies that we can construct a more general class of wavelet
other than these with diagonal filter function matrix. The similar results were also
found by Cohen, Daubechies, and Plonka [9] and Heil and Colella [19] with the
different proofs.

3. ORTHOGONAL MRA(m)

The H(j)’s considered in this section are a little less general than those in Section
2. Assume that H(j) satisfies the conditions in Section 2 with M in (2.3) being a
unitary matrix, and s in (2.3) being 1. We want to show, in order to get an orthogonal
MRA(m), what kinds of conditions (necessary or sufficient) should be satisfied.

At first, we have an obvious necessary condition: for any filter function matrix
H(j) of orthogonal MRA(m), we have

∑
n√Ed

H(j / np)H*(j / np) Å Im , a.e. j, (3.1)

where Ed Å {all vertices of [0, 1]d}. It follows from

F(j) Å ∑
a√Zd

wP (j / 2pa)wP *(j / 2pa) Å Im , a.e. j, (3.2)

which is an equivalent condition of the orthonormality of {w1(x 0 k), . . . , wm(x 0
k)}k . In fact, writing a Å 2b / n, a, b √ Zd, n √ Ed , we get
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Im Å ∑
a

HSj2 / paDwP Sj2 / paDwP *Sj2 / paDH*Sj2 / paD
Å ∑

n

HSj2 / npD ∑
b

wP Sj2 / np / 2pbDwP *Sj2 / np / 2pbDH*Sj2 / npD .

The fact that the orthonormality of {w1(x 0 k), . . . , wm(x 0 k)}k is equivalent to
(3.2) is well known. To be complete, we state a more general proposition as follows.

PROPOSITION 3.1. Let {wi}
m
1 , L2(Rd). Then {w1(x 0 k), . . . , wm(x 0 k)}k has the

upper, lower Riesz bounds B, A, if and only if

AIm £ F(j) £ BIm , a.e. (3.3)

Remark. The proposition is the natural and obvious extension of a well-known
result; see, for example, [17, 2, 26, 25]. Notice that when [wP i , wP i] √ L`(Td), the
condition F(j) Å ([wP i , wP j])i,j É Im a.e. j is equivalent to a simple assertion det F(j)
É 1 a.e. j, as shown by de Boor, DeVore, and Ron [2] and Long [25], where [r, r]
is the bracket product defined by

[ f, g](j) Å ∑
a

f (j / 2pa)g
V
(j / 2pa). (3.7)

In what follows, the transition operators introduced and studied in wavelet theory
by many people, such as Conze and Raugi [10], Lawton [23], Villemoes [31], Cohen
and Daubechies [5], and Long and Chen [26], play a very important role. Now we
define it. Let H(j) √ C(Td, Mm) satisfying (3.1). Assume that there exists a unitary
matrix M such that

H(0) Å M01S1

DDM, (3.8)

with

D Å

l2 m2

??? ???
??? mm01

lm

, ÉliÉ õ 1, mi Å 0, 1 for all i.

Define

PH f (j) Å ∑
n√Ed

MHSj2 / npDM01f Sj2 / npDMH*Sj2 / npDM01. (3.9)

Obviously, PH is an operator mapping measurable 2pZd-periodic function matrices or
continuous 2pZd-periodic function matrices to matrices of the same kinds. And when
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H(j) is a trigonometric polynomial matrix, defining P to be a space of trigonometric
polynomial matrices of N-degree (N depends only on the degree of H and will be
specified in Section 6), then PH maps P into P. This is the same situation as in the
classical case; see, for example, [21, 26]. Now the new feature is what is the right
definition of some special invariant subspaces C0 and P0 . Notice that G(j)ÅMH(j)M01

satisfies

∑
n

G(j / np)G*(j / np) Å ∑
n

MH(j / np)H*(j / np)M01 Å Im (3.10)

and

G*(np)e1 Å d0,ne1 , n √ Ed . (3.11)

Equation (3.11) follows from G*(0)e1 Å e1 and

1 Å e*1 e1 Å ÉG*(0)e1É
2 / ∑

nx0

ÉG*(np)e1É
2 Å 1 / 0.

Now define

C0(T
d, Mm) Å { f(j) √ C(T d, Mm): ( f(0))1,1 Å 0} (3.12)

and

P0(T
d, Mm) Å { f(j) √ P(T d, Mm): ( f (0))1,1 Å 0}, (3.13)

where ( f(j))i,j denotes the (i, j)-entry of f(j). Then we have

PROPOSITION 3.2. Let H(j) √ C(T d, Mm) be such that (3.11) holds, with G(j) Å
MH(j)M01. Then both C0 and P0 are invariant subspaces of PH.

Proof. We only prove that when f(j) √ C(T d, Mm) satisfies ( f(0))1.1 Å 0; we also
have (Tf(0))1.1 Å 0. This follows from

(Tf(0))1,1 Å e*1 ∑
n

MH(np)M01f(np)MH*(np)M01e1

Å e*1 f(0)e1 / ∑
nx0

0*f(np)0 Å 0.

The proof is finished.

Some significant properties of the transition operators are formulated in the follow-
ing proposition, which in fact is the obvious extension of the previous case (see [26,
21]). Here we only state the proposition without proof.

PROPOSITION 3.3. Let H(j) √ C(T d, Mm) be such that (2.7), (3.1), and (3.8) hold.
Then PH has two invariant matrices, i.e., Im and MF(j)M01, where F(j) Å (a wP (j /
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2pa)wP *(j / 2pa) with wP (j) Å ∏
`

1
H(20jj)x, for any x. Moreover, for any measurable

2pZd-periodic function matrices f(j), g(j) we have

Pn
H f(j) Å ∑

a√Z d

MPn(j / 2pa)M01f(20n(j / 2pa))MP*n (j / 2pa)M01 (3.14)

and

*
T d

(Pn
H f(j))g(j)dj Å *

Rd
MPn(j)M01f(20nj)MP*n (j)M01g(j)dj, (3.15)

where

Pn(j) Å ∏
n

jÅ1

H(20jj)x2nT d(j), n Å 1, 2, . . . . (3.16)

Another crucial fact needed in what follows is the uniform integrability lemma by
Long and Chen [26].

LEMMA 3.1. Let (X, m) be a s-finite (nonnegative) measure space, {fn}n , L1
/ , f

√ L1
/ . Assume that

lim fn § f, a.e., lim
nr`

*
X

fndm Å *
X

fdm. (3.18)

Then {fn}n converges to f in L1, and, hence, {fn}n is uniformly integrable.

Proof. Since

*
X

fdm Å *
X

min(lim fn , f )dm Å *
X

lim min( fn , f )dm

£ lim *
X

min( fn , f )dm £ lim *
X

min( fn , f )dm £ *
X

fdm,

we derive

*
X

min( fn , f )dm r *
X

fdm.

In the meanwhile,

fn / f Å max( fn , f ) / min( fn , f )

implies that *
X

max( fn , f )dm r *
X

fdm. Therefore,

\ fn 0 f \1 Å *
X

max( fn , f ) 0 min( fn , f )dm r 0.

The proof of the lemma is finished.
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Now we are in the position to define wP and to characterize the orthonormality of
{w1(x 0 k), . . . , wm(x 0 k)}k .

Assume that H(j) √ C(T d, Mm) and (2.7), (3.1), (3.8) hold. Then P`(j) Å ∏
`

1
H(20jj)

is also in C(T d, Mm) and satisfies

MP`(j)M01 Å S∗
: 0
∗
D . (3.19)

Define

wP (j) Å P`(j)M01e1 . (3.20)

It is easy to see that

MP`(j)P*̀(j)M01 Å MwP (j)wP *(j)M01. (3.21)

Our first fundamental result about the L2-integrability of w and the orthonormality
of {w1(x 0 k), . . . , wm(x 0 k)}k is as follows.

THEOREM 3.1. Assume that H(j) √ C(Td, Mm), and (2.7), (3.1), (3.8) hold. Then
w √ L2. Furthermore, assume that

F(j) Å ∑
a

wP (j / 2pa)wP *(j / 2pa) Å ([wP i , wP j])i,j (3.22)

is continuous at j Å 0. Then {w1(x 0 k), . . . , wm(x 0 k)}k is orthonormal if and only
if

F(j) § CIm , a.e. j. (3.23)

Proof. For Pn(j) defined in (3.16), we have (by making use of (3.15))

S 1
2pD

d

*
Rd

MPn(j)P*n (j)M01dj Å S 1
2pD

d

*
Td

Pn
HImdj

Å S 1
2pD

d

*
Td

Imdj Å Im . (3.24)

Thus, for i Å 1, . . . , m,

S 1
2pD

d

*
Rd

e*i MPn(j)P*n (j)M01eidj Å 1.
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Fatou’s lemma gives

S 1
2pD

d

*
Rd

e*i MwP (j)wP *(j)M01eidj £ 1, i Å 1, . . . , m.

That is to say

*
Rd

É∑
j

mi,jwj(x)É2dx Å S 1
2pD

d

*
Rd

É∑
j

mi,jwP j(j)É2dj

£ 1, i Å 1, . . . , m. (3.25)

This implies the L2-integrability of w, since M is unitary.
When {w1(x 0 k), . . . , wm(x 0 k)}k is orthonormal, then by Proposition 3.3, F(j)

Å Im a.e. j; i.e., (3.23) holds. On the contrary, we have

*
Rd

MwP (j)wP *(j)(j)M01dj Å *
T d

MF(j)M01dj

Å *
T d

Pn
H(MF(j)M01)(j)dj

Å *
Rd

MPn(j)F(20nj)P*n (j)M01dj, (3.26)

and

*
Rd

∑
m

iÅ1

e*i MwP (j)wP *(j)(j)M01eidjÅ*
Rd

∑
m

iÅ1

e*i MPn(j)F(20nj)P*n (j)M01eidj. (3.27)

Notice that both of MwP (j)wP *(j)(j)M01 and MPn(j)F(20nj)P*n (j)M01 are in M/
m ;

hence,

f Å ∑
m

iÅ1

e*i MwP (j)wP *(j)(j)M01ei √ L1
/

and

{fn}n Å H∑
m

iÅ1

e*i MPn(j)F(20nj)P*n M01eiJn , L1
/ .

Notice that

(MF(0)M01)11 Å 1,

owing to the fact

MwP (0) Å e1 , MwP (2pa) Å (0, ∗, . . . , ∗)t ∀a √ Zd 0 {0}.
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These can be seen from

MwP (0) Å MP`(0)M01e1 Å e1

and for a x 0 (writing a Å 2jb, b Å 2g / n, n √ Ed)

e*1 MwP (2pa) Å e*1 MHj(0)M01MH(np)M01MwP (bp) Å 0.

Since F(j) is continuous at j Å 0, we have

lim
nr`

fn(j) Å ∑
m

iÅ1

e*i MP`(j)F(0)P*̀(j)M01ei

Å ∑
m

iÅ1

e*i MP`(j)P*̀(j)M01ei

Å ∑
m

iÅ1

e*i MwP (j)wP *(j)(j)M01ei Å f(j). (3.28)

By making use of Lemma 3.1, (3.27), together with (3.28) implies the uniform integ-
rability of {fn}n . Noticing that

∑
m

iÅ1

e*i MPn(j)F(20nj)P*n (j)M01ei§ C ∑
m

iÅ1

e*i MPn(j)P*n (j)M01eiÅ Cgn(j), (3.29)

we see that {gn}n is also uniformly integrable. This is a crucial fact, not only for this
theorem, but also for the whole paper. On the other hand, we have

S 1
2pD

d

*
Rd

MPn(j)P*n (j)M01eikrjdj Å S 1
2pD

d

*
Td

Pn
H(Im)eikrjdj

Å d0,kIm . (3.31)

Since {MPn(j)P*n (j)M01}n is a uniformly integrable matrix family (it follows from
the uniform integrability of {gn}, and the fact that the (i, j)-entry of AA* is dominated
by (AA*)1/2

i,i (AA*)1/2
j,j ), letting n r ` in (3.31), we get

S 1
2pD

d

*
Rd

MP`(j)P*̀(j)M01eikrjdj Å d0,kIm ,

which implies

S 1
2pD

d

*
Rd

MwP (j)wP *(j)M01eikrjdj Å d0,kIm . (3.32)

This is just what we want: MF(j)M01 Å Im ; i.e., F(j) Å Im . The proof is finished.
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Remark. As in the classical case, Cohen’s condition can be introduced. But, in
the present case we can only show the sufficiency of Cohen’s condition for (3.23).
A set K , Rd is said to be 2pZd-congruent with Td, if ÉKÉ Å (2p)d, and for any j √
Td there is a √ Zd, such that j / 2pa √ K. H(j) √ C(Td, Mm) is said to satisfy the
Cohen’s condition, if there is a compact K (not necessarily contains j Å 0 as an inner
point) which is 2pZd-congruent with Td such that

H(20jj)H*(20jj) § C0Im ∀j √ K ∀j Å 1, 2, . . . . (3.33)

Now we want to show that the Cohen’s condition implies (3.23) for all j, where H(j)
√ C(Td, Mm) satisfies (2.7), (3.1), (3.8), fO (j) Å P`(j)x (any x √ Rd), F(j) Å ([fO i ,
fO j])i,j is continuous at j Å 0, and F(0) § C1Im . In fact, finding n √ Z/ large enough,
such that

ÉF(20nj)É § c1

2
Im , j √ K.

Then we have

MF(j)M01 Å ∑
n

MHSj2 / npDFSj2 / npDH*Sj2 / npDM01

§ MHSj2DFSj2DH*Sj2DM01

§ M ∏
n

1

H(20jj)F(20nj)(∏
n

1

H(20jj))*M01

§ C1

2
Cn

0Im Å CIm ∀j √ K.

Hence for any h √ Td, by writing h Å j / 2pa (j √ K, a √ Zm),

F(h) Å F(j / 2pa) § CIm .

This proves the assertion.

This result can be applied to some examples taken by Hérve [21]:

Example 3, H(j) Å
cos2 j

2
1
2

sin j

1
4

sin j
1
2
0 1

4
cos j

, det H(j) Å 1
2

cos2 j

2
,

6111$$0216 06-03-97 16:13:03 achaa AP: ACHA



331VECTOR MULTIRESOLUTION ANALYSIS

Example 4, H(j) Å
cos2 j

2
0 3

4
i sin j

i

8
sin j

1
4
0 1

8
cos j

, det H(j) Å 1
8

cos4 j

2
,

Example 5, H(j) Å

cos2 j

2
015

16
i sin j 0

5i

32 sin j
1
4
0 7

32 cos j 0 3
8

i sin j

1
64

cos j 0 1
64

sin j
1
8

i sin j

,

det H(j) Å 5r209cos6 j

2
.

All of them satisfy the Cohen’s condition with K Å [0p, p]. And, hence, C2Im §
F(j) § C1Im for all j.

As done by Long and Chen [26], we can give some other characterizations of (3.32)
in terms of the eigenvalues and the eigenspaces of PH . Notice that H(j) is unchanged
when wP (j) is replaced by awP (j) for any a √ C.

THEOREM 3.2. Let H(j) √ C(Td, Mm) be such that (2.7), (3.1), (3.8) hold, and
wP (j) Å P`(j)M01e1 , F(j) √ C(Td, Mm). Then (3.32) holds with wP replaced by cwP for
some constant c, if and only if for the eigenvalue 1, the corresponding eigenspace K1

of PH (restricted on C(Td, Mm)) is of dimension 1.

Proof. Since Im and MF(j)M01 are both the invariant matrices of PH , so the
condition K1 is of dimension 1 implies that for positive c, we have MF(j)M01 Å
c02Im , F(j) Å c02Im ; therefore cw makes (3.32) hold. Conversely, assume that cw

makes (3.32) true; then {MPn(j)P*n (j)}n is uniformly integrable. Suppose that K1 is
not of dimension 1, then PH has another eigen matrix G(j) and a constant e such that

F(j) Å eIm / G(j) √ C0(T
d, Mm) > K1 , F(j) x 0.

Thus we get (by making use of (3.15))

*
Td

F(j)F*(j)dj Å *
Td

(Pn
HF(j))F*(j)dj

Å *
Rd

MPn(j)M01F(20nj)MP*n (j)M01F*(j)dj

Å *
Rd

An(j)dj.

Notice that {An(j)} is uniformly integrable (refer to the proof of Theorem 3.1) and
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lim
nr`

An(j) Å MP`(j)M01F(0)MP*̀(j)M01F*(j) Å 0, (3.34)

we have a contradiction. So K1 must be of dimension 1. Equation (3.34) follows from
an elementary calculation: (ABC)i,j Å (k,l ai,kbk,lcl,j Å 0, where ai,k Å 0, cl,j Å 0, k, l
§ 2, b1,1 Å 0. The proof is finished.

When H(j) is a trigonometric polynomial, we can get a more precise characteriza-
tion.

THEOREM 3.3. Let H(j) be a trigonometric polynomial such that (2.7), (3.1), (3.8)
hold. Then (3.32) with wP replaced by cwP for some constant c is true, if and only if 1
is a uni-eigenvalue of PH restricted on P.

Proof. When 1 is a uni-eigenvalue, then the corresponding eigenspace K1 is of
dimension 1 (considering PH as an operator restricted on P). Notice that w(x) is of
compact support (see [21]), and in this case w(x) √ L2(Rd), so F(j) is a trigonometric
polynomial matrix, so MF(j)M01 Å cIm and c can be 1 by normalizing wP .

Assume that (3.32) is true. Then {MPn(j)P*n (j)M01}n is uniformly integrable. Sup-
pose that 1 is not a uni-eigenvalue. Then either K1 was not of dimension 1, or there
was a subspace of P and a basis {A1 , . . . , Am}, m ú 1, of this subspace such that A1

Å MFM01, and

PHA1 Å A1 , PHA2 Å A1 / A2 , . . . .

The first case cannot occur as shown in Theorem 3.2. Suppose the second case occurs;
then there were e x 0 such that

B Å eA1 / A2 √ P0 .

Then we would have Pn
HB Å (e / n)A1 / A2 , and hence,

*
Td

Pn
HB(j)dj Å *

Td
((e / n)A1(j) / A2(j))dj.

The left side tends to zero owing to the uniform integrability of {MPn(j)P*n (j)M01}n ;
meanwhile the right side tends to `. The contradiction completes the proof of the theorem.

4. ORTHOGONAL WAVELETS GENERATED BY ORTHOGONAL MRA(m)

Let H(j) √ C(Td, Mm) be such that (2.7), (3.1), (3.8), (3.23) hold and F(j) is
continuous at j Å 0. Define wP (j) by (3.20). Notice that wP (0) x 0, so {Vj}

`
0` defined

in (1.6) is a MRA(m) (see [2, 22, or 25]). And from Theorem 3.1, {Vj} is an orthogonal
MRA(m). Assume that there are {Hm(j)}, m √ Ed 0 {0}, in C(Td, Mm), such that

∑
n

Hm(j / np)H*m=(j / np) Å dm,m=Im ∀m, m* √ Ed . (4.1)
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That is to say the (m2d 1 m2d)-blocked matrix (Hm(j / np))m,n √ Ed satisfies the
equality

(Hm(j / np))(Hm(j / np)∗ Å SIm

???
Im

D . (4.2)

By expanding (Hm(j / np)) and (Hm(j / np))* Å (H*m (j / np)), according to the
usual rule, we see that (Hm(j / np))* is the inverse of (Hm(j / np)); i.e., we have

(Hm(j / np))*(Hm(j / np)) Å SIm

???
Im

D . (4.3)

That is to say, the duality of (4.1) holds, too:

∑
m

H*m (j / np)Hm(j / n*p) Å dn,n=Im ∀n, n* √ Ed . (4.4)

Now define

cO m(j) Å HmSj2DwP Sj2D , m √ Ed 0 {0}. (4.5)

Notice that wP (j) can be written as cO 0(j). We want to show that {cm(x)} Å {c1,m(x),
. . . , cm,m(x)}, m √ Ed 0 {0}, is the orthonormal wavelets we wanted.

LEMMA 4.1. Let wP (j) be the scaling function vector of an orthogonal MRA(m),
{Hm(j)} , C(Td, Mm), m √ Ed 0 {0}, k √ Zd, {CO m} is defined as in (4.5). Then {Cr,m(x
0 k)r,m,k is orthonormal if and only if H(j) Å (Hm(j / np))m,n satisfies (4.1).

Proof. The proof is almost the same as in the classical case. We have

*
Rd
cm(x)c*m=(x 0 k)dx Å S 1

2pD
d

*
Rd
cO m(j)cO *m=(j)eikrjdj

Å S 1
2pD

d

*
Td

∑
n

HmSj2 / npDH*m=Sj2 / npDeikrjdj.

Thus the left side equals dm,m=d0,kIm if, and only if, (n Hm(j/2 / np)H**m (j/2 / np) Å
dm,m=Im . The proof is finished.

In order to show that such {c1,m(x 0 k), . . . , cm,m(x 0 k)}, m √ Ed 0 {0}, k √ Zd,
spans W0 Å V1 @ V0 , indeed, we introduce the projection operators Pj , Qj . For f √
L2(Rd), define
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Pj f (x) Å ∑
r,k

» f, wr,j,k…wr,j,k(x), j √ Z, (4.6)

and

Qj f (x) Å ∑
mx0

∑
r,k

» f, cr,m,j,k…cr,m,j,k(x), j √ Z, (4.7)

where j, k are the dilation and translation indices, respectively.

LEMMA 4.2. We have

P1 f Å P0 f / Q0 f ∀f √ L2(Rd). (4.8)

Proof. It is enough to prove

»P1 f, g… Å »P0 f, g… / »Q0 f, g… ∀f, g √ L2(Rd); (4.9)

i.e.,

I Å ∑
r,k

» f, 2d/2wr(2 r0k)…»g, 2d/2wr(2 r0k)…0

Å ∑
r,m,k

» f, cr,m(r0k)…»g, cr,m(r0k)…0 Å II. (4.10)

We have

II Å S 1
2pD

2d

∑
r

∑
m

∑
k

*
Rd

fO (j)cO r,m(j)eikrjdj(rrr)0

Å S 1
2pD

2d

∑
r

∑
m

∑
k

*
Td

∑
a

fO (j / 2pa)cO r,m(j / 2pa)eikjdj(rrr)0

Å S 1
2pD

d

∑
r

∑
m

*
Td

∑
a

fO (j / 2pa)cO r,m(j / 2pa)

1 ∑
b

gO
U

(j / 2pb)cO r,m(j / 2pb)dj

Å S 1
2pD

d

∑
m

*
Td

∑
a,b

fO (j / 2pa)cO *m (j / 2pa)cO m(j / 2pb)gO
U

(j / 2pb)dj

Å S 1
2pD

d

*
Td

∑
n,n=

∑
a=,b=

fO (j / 2pn / 4pa*)wP *mSj2 / np / 2pa*D
1 ∑

m

m*mSj2 / npDmmSj2 / n*pDwP Sj2 / n*p / 2pb*DgO
U

(j / 2pn* / 4pb*)dj
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Å S 1
2pD

d

*
Td

∑
n

∑
a=,b=

fO (j / 2pn / 4pa*)wP *Sj2 / np / 2pa*D
1 wP Sj2 / np / 2pb*DgO

U

(c / 2pn* / 4pb*)dj

Å S 1
2pD

d

*
[0,2p]d

Å S 1
2pD

d

∑
n

*
[0,2p]d/2pn

Å S 1
2pD

d

*
2Td

∑
a,b

fO (j / 4pa)wP *Sj2 / 2paDwP Sj2 / 2pbDgP *(j / 4pb)dj,

and

I Å S 1
2pD

2d 1
2d ∑

r,k
*

Rd
fO (j)wP rSj2Deikrj/2dj(rrr)0

Å S 1
2pD

dS 1
4pD

d

∑
r,k

*
2Td

∑
a

fO (j / 4pa)wP rSj2 / 2paDeikrj/2dj(rrr)0

Å S 1
2pD

d

∑
r

*
2Td

∑
a,b

fO (j / 4pa)wP rSj2 / 2paDwP rSj2 / 2pbDgO
U

(j / 4pb)dj

Å S 1
2pD

d

*
2Td

∑
a,b

fO (j / 4pa)wP *Sj2 / 2paDwP Sj2 / 2pbDgO
U

(j / 4pb)dj.

This completes the proof of the lemma.

Combining the two lemmas, we get

THEOREM 4.1. Let H0(j) √ C(Pd, Mm) be such that (2.7), (3.1), (3.8), (3.23) hold.
Assume {Hm(j)}, m √ Ed 0 {0}, satisfies (4.1). Then {cr,m,j,k} constructed as in (4.5)
is an orthonormal wavelet basis of L2(Rd).

Proof. From Lemma 4.1, we know that {cr,m,j,k} is orthonormal. Furthermore, for
f √ L2(Rd), we have

lim
jr0`

Pj f Å 0, lim
jr`

Pj f Å f.

Hence

f Å lim
jr`

(Pj f 0 P0j f ) Å ∑
mx0

∑
r,j,k

» f, cr,m,j,k…cr,m,j,k(x).

The proof of the theorem is finished.
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5. BIORTHOGONAL VERSIONS

Assume that we are given a couple {H0(j); H̃0(j)} in C(Td, Mm) satisfying

∑
n

H0(j / np)HH *0 (j / np) Å Im (5.1)

with

H0(0) Å M01S1 0

0 DDM, HH 0(0) Å M01S1 0

0 DH DM, (5.2)

where M Å (mi,j) is a unitary matrix, and

D Å

l2 m2

??? ???
??? mm01

lm

, DH Å

lH 2 mI 2

??? ???
??? mI m01

lH m

, (5.3)

\H0(j) 0 H0(0)\ / \HH 0(j) 0 HH 0(0)\ £ CÉjÉe, e ú 0, (5.4)

MH*0 (np)M01e1 Å d0,ne1 , MHH *0 (np)M01e1 Å d0,ne1 . (5.5)

Notice that the condition (5.5) holds automatically when

F(np) § cIm , FH (np) § cIm (5.6)

is assumed. This can be seen from MH*0 (0)M01e1 Å e1 and

e*1 MF(0)M01e1 Å e*1 ∑
n

MH0(np)M01MF(np)M01MH*0 (np)M01e1

§ e*1 MF(0)M01e1 / c ∑
nx0

ÉH*0 (np)M01e1É.

The introduction of (5.5) is to guarantee the invariance of C0 , P0 under the action of
PH0

and PHH 0
. Assume as well that F(j), FH (j) are continuous and

F(j) § CIm , FH (j) § CIm , for all j. (5.7)

Furthermore, assume that we have matrix-extensions

H(j) Å (Hm(j / np))m,n , HH (j) Å (HH m(j / np))m,n , (5.9)
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which satisfy

(Hm(j / np))m,n(HH m(j / np))*m,n Å SIm

???
Im

D
Å (HH m(j / np))*m,n(Hm(j / np))m,n ;

more precisely,

∑
n

Hm(j / np)HH *m (j / np) Å dm,m=Im , m, m* √ Ed , (5.10)

and

∑
m

HH *m (j / np)Hm(j / n*p) Å dn,n=Im , n, n* √ Ed . (5.11)

Finally, assume that

ÉHm(j)wP (j)É / ÉHH m(j)wOI (j)É £ CÉjÉe for ÉjÉ £ 1. (5.12)

Define

wP (j) Å ∏
`

H0(2
0jj)M01e1 , wOI (j) Å ∏

`

HH 0(2
0jj)M01e1 , (5.13)

cO m(j) Å HmSj2DwP Sj2D , cHO m(j) Å HH mSj2DwOI Sj2D , m √ Ed 0 {0}. (5.14)

Under the preceding conditions, we have wP √ L2, wOI √ L2 no longer (as shown in the
classical case). But if we take wP √ L2, wOI √ L2 for granted, then we can get the
biorthogonal versions of Theorems 3.1, 3.2, 3.3 routinely. The biorthogonal version
of Theorem 4.1 should be read as {cr,m,j,k ; cH r,m,j,k}, constructed above as a biorthogonal
system of L2(Rd), and we have (in L2-convergence sense)

f Å ∑ » f, cr,m,j,k…cH r,m,j,k Å ∑ » f, cH r,m,j,k…cr,m,j,k . (5.15)

But {cr,m,j,k} or {cH r,m,j,k} can fail to be a Riesz basis of L2(Rd). The main task of this
section is to generalize the results of Cohen and Daubechies [5] (it has been generalized
to the case d § 1, m Å 1, by Long and Chen [26]) to MRA(m) (d § 1, m § 1),
which can give the L2-integrability of wP (wP

O

), the Riesz basis property of
{cr,m,j,k}({cH r,m,j,k}), and the uniform integrability of {Pn(j)P*n (j)}n ({PH n(j)PH *n (j)}n),
by making use of the eigenvalue estimates of PH0

(PHH 0
) restricted on P0 when H0(j)

(H̃0(j)) is a trigonometric polynomial.
At first, we want to show that the eigenvalue estimates we will use in what follows

is necessary in some sense.
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THEOREM 5.1. Let H0(j)(H̃0(j)) √ C(Td, Mm) be such that (5.2), (5.3), (5.4), (5.7)
hold, and F(FH ) √ L1. Then any eigenvalue l of PH0

(lH of PHH 0
), restricted on C(Td,

Mm), satisfies ÉlÉ £ 1, and any eigenvalue l of PH0
(lH of PHH 0

), restricted on C0(T
d,

Mm), satisfies ÉlÉ õ 1.

Proof. Only prove the assertion for PH0
. Assume that l is an eigenvalue of PH0

restricted on C(Td, Mm), and f (j) √ C(Td, Mm)(x0) satisfies PH0
f Å lf. Then for n

√ Z/ , we have

ln *
Td

f (j)f*(j)dj Å *
Td

(Pn
H0

f(j))f*(j)dj

Å *
Rd

MPn(j)M01f (20nj)MP*n (j)M01f*(j)dj

Å *
Rd

Gn(j)dj. (5.16)

Notice that, under the conditions (5.2), (5.3), (5.4), (5.7), {*
Rd Gn(j)dj}n is bounded.

So ÉlÉ £ 1, since *
Td f(j)f*(j)dj x 0. Consider PH0

as an operator acting on C0(T
d,

Mm). The preceding argument shows that ÉlÉ õ 1, since {Gn(j)}n is uniformly integ-
rable and limnr` Gn(j) Å 0, a.e. j. The proof of the theorem is finished.

Remark. In the case d Å m Å 1, the result is due to Cohen and Daubechies [5].
But the proof is a little complicated and is not available in the case d ú 1. Here the
proof is given by Long and Chen [26].

A natural question is that from {ÉlÉ õ 1: l’s all eigenvalues of PH0
restricted on

P0}, what can we get, when H0(j) is a trigonometric polynomial? As shown in [5],
from ÉlÉ õ 1 we can get enough decay of wP and, hence, the L2-integrability of wP ,
the L2-convergence of {wP n}n (the substitution of {Pn(j)}n when m Å 1), and the Riesz
basis property of {cm,j,k} with the help of (5.12). Now we want to establish the same
result in the case of MRA(m), d § 1, m § 1. The main idea is similar, but some
modifications should be done (some of them has been done in [25]).

In the case H(j) is a trigonometric polynomial, P0 is a linear space of finite dimen-
sion. Define the norm in P0 by

\A(r)\˙ Å ∑
i,j

\ai,j(r)\` for A(j) Å (ai,j(j)) √ P0 . (5.17)

Denote the spectral radius of PH restricted on P0 by r(PH). We have

lim\Pn
H\1/n

(P0,P0) Å r(PH) Å max{ÉlÉ: l’s all eigenvalues of PH}. (5.18)

So, when all eigenvalues l’s of PH satisfy ÉlÉ õ 1, then there is a r õ 1 such that
for n large enough, we have
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\Pn
HA\˙ £ \Pn

H\(P0,P0)\A\˙ £ rn\A\˙ ∀A √ P0 . (5.19)

Now we are in the position to give another main result in the section as follows.

THEOREM 5.2. Let H(j) be a trigonometric polynomial such that (5.2), (5.3), (5.4),
and (5.5) hold. Assume that all eigenvalues l’s of PH restricted on P0 are in the unit

circle. Then wP √ L2 and {Pn(j)P*n (j)}n is uniformly integrable, and there is a d ú
0 such that

∑
a

ÉwP (j / 2pa)É20d £ C, a.e. j, (5.20)

ÉwP (j)É £ C(1 / ÉjÉ)0d ∀j. (5.21)

Proof. For the sake of completeness, we give the proof in detail. Set

u(j) Å ((1 0 cos j1)
2 / rrr / (1 0 cos jd)

2)Im , j Å (j1 , . . . , jd). (5.22)

Then u(j) √ P0 (since u(0) Å 0), and

u(j) § CId for j √ Hp2 £ ÉjÉ £ pJ .

For n large enough, we have

ZZ*
Rd

MPn(j)M01u(20nj)MP*n (j)M01djZZ
˙

Å ZZ*
Td

Pn
Hu(j)djZZ

˙

£ O(1)\Pn
Hu\˙ £ O(1)rn\u\˙ £ O(1)rn. (5.23)

Since on Dn Å {j: 2n01p £ ÉjÉ £ 2np}, we have u(20nj) § cIm . Therefore, we get

ZZ*
Dn

MPn(j)P*n (j)M01djZZ
˙

£ O(1) ∑
i

e*i *
Dn

MPn(j)P*n (j)M01djei

£ O(1) ∑
i

e*i *
Dn

MPn(j)M01u(20nj)MP*n (j)M01djei

£ O(1) ∑
i

*
Rd

e*i MPn(j)M01u(20nj)MP*n (j)M01djei

£ O(1)ZZ*
Rd

MPn(j)M01u(20nj)MP*n (j)M01djZZ
˙

£ O(1)rn. (5.24)
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Noticing as well that on 2nTd, we have

wP (j) Å Pn(j)wP (20nj), max
ÉjÉ£p/2

ÉwP (j)É £ O(1).

Hence, we get

*
Dn

e*i MwP (j)wP *(j)M01eidj Å *
Dn

e*i MPn(j)wP (20nj)wP *(20nj)P*n (j)M01eidj

£ O(1) *
Dn

e*i MPn(j)P*n (j)M01eidj £ O(1)rn.(5.25)

Therefore,

*
Dn

ÉwP (j)É2dj Å *
Dn

∑
i

e*i wP (j)wP *(j)eidj

£ O(1) *
Dn

∑
i

e*i MwP (j)wP *(j)M01eidj

£ O(1)rn, (5.26)

which gives the L2-integrability of wP immediately.
Now we deduce (5.20), (5.21) from (5.26). Up to now, we have seen that wP √ L2,

and w(x) has a compact support V. Select a Schwartz function e(x) satisfies e(x)ÉV Å
1. Thus, we have

wP (j) Å S 1
2pD

d

*
Rd
wP (h)eP (j 0 h)dh,

and, hence (for some m large enough),

ÉwP (j)É £ S*
{ÉhÉ£ÉjÉ/2}

/ *
{ÉhÉúÉjÉ/2}

DÉwP (h)\eP (j 0 h)Édh

£ CmÉhÉ
0m
ÉjÉd/2\wP \2 / O(1)S*

{ÉhÉúÉjÉ/2}

ÉwP (h)É2dhD1/2

£ CÉjÉ0d.

Inequality (5.21) has thus been proved. For the proof of (5.20), we need the so-called
Plancherel, Polya, and Nikolski’s inequality: Let f √ Lp be such that supp fO , V

(some fixed compact set). Let h ú 0, k Å (k1 , . . . , kd) √ Zd, Qh
k Å {x: hkj £ xj õ

h(kj / 1)}, xk √ Qh
k , 1 £ p £ `. Then

∑
k

Éf(xk)É
p £ C *

Rd
Éf(x)Épdx, (5.27)

with C independent of f. Applying (5.27) to f(j) Å wP (j) (a vector function) and p Å
2 0 d (d ú 0 determined later), and setting Dj Å {2jp £ ÉjÉ õ 2j/1p}, we get
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∑
a

ÉwP (j / 2pa)É20d £ C *
Rd

ÉwP (j)É20ddj Å C / C ∑
`

jÅ1
*
Dj

£ C / C ∑
`

jÅ1
S*

Dj

ÉwP (j)É2djD(20d)/2

2(dd/2)j

Å C / C ∑
`

1

r(20d)/2j2(dd/2)j £ C,

provided d ú 0 being small enough such that r(20d)/22dd/2 õ 1.

The uniform integrability of {Pn(j)P*n (j)}n under the conditions (5.2), (5.3), (5.4),
and (5.5) has been shown by Long and Mo [28]. It should be appreciated for the
kindness of Long and Mo [28] to permit us to sketch the proof here. Denote

hP n(j) Å MPn(j)M01, u(1)(j) Å S1 0

0 0D , u(2)(j) Å S0 0

0 Ir01
D ,

hP (1)
n (j) Å hP n(j)u(1)(j), hP (2)

n (j) Å hP n(j)u(2)(j).

Then,

hP (1)
n (j)hP (2)*n (j) Å 0 Å hP (2)

n (j)hP (1)*n (j), hP n(j)hP *n (j) Å hP (1)
n (j)hP (1)*n (j) / hP (2)

n (j)hP (2)*n (j).

So it is enough to prove the uniform integrability of {hP (i)
n (j)hP (i)*n (j)}n , i Å 1, 2. From

(5.23), we have

ZZ *
Rd
hP (2)

n (j)hP (2)*n (j)djZZ
˙

Å ZZ*
Rd
hP n(j)u(2)(20nj)u(2)*(20nj)hP *n (j)djZZ

˙

Å ZZ*
Rd
hP n(j)u(2)(20nj)hP *n (j)djZZ £ O(1)rn, (5.28)

which implies that {hP (2)
n (j)hP (2)*n (j)}n converges to zero in L1. Meanwhile, we have

*
Rd

MwP (j)wP *(j)M01dj Å *
Rd
hP n(j)MF(20nj)M01hP *n (j)dj Å *

Rd
Gn(j)dj,

and (by using (MF(0)M01)11 Å 1)

lim
nr`

Gn(j) Å MP`(j)M01(MF(0)M01)11MP*̀(j)M01

Å MP`(j)P*̀(j)M01 Å MwP (j)wP *(j)M01,

which implies that {Gn(j)}n converges to MwP (j)wP *(j)M01 in L1. Denote

u(3)(j) Å MF(j)M01 0 u(1)(j).
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Then u(3)(j) √ P0 , and, hence,

ZZ*
Rd
hP n(j)u(3)(20nj)hP *n (j)djZZ £ crn.

Thus we get

*
Rd

Gn(j)dj 0 *
Rd
hP n(j)u(1)(20nj)hP *n (j)dj r 0,

lim
nr`

*
Rd
hP n(j)u(1)(20nj)u(1)*(20nj)hP *n (j)dj Å lim

nr`
*

Rd
Gn(j)dj

Å *
Rd

MwP (j)wP *(j)M01dj,

and

lim
nr`

hP n(j)u(1)(20nj)u(1)*(20nj)hP *n (j) Å MwP (j)wP *(j)M01, (5.29)

which implies that {hP (1)
n (j)hP (1)*n (j)}n converges to MwP (j)wP *(j)M01 in L1. In a word,

{hP n(j)hP *n (j)}n converges to MwP (j)wP *(j)M01 in L1. The proof of the theorem is finally
complete.

Now we deduce a theorem to get biorthogonal MRA(m) from Theorem 5.2.

THEOREM 5.3. Let H0(j), H̃0(j) be two trigonometric polynomials satisfying the
conditions (5.1), (5.2), (5.3), (5.4), and (5.5). Furthermore, assume that the eigenval-
ues, l’s of PH0

and lH ’s of PHH 0
, restricted on P0 , are all in the unit circle. Then {w(x);

wI (x)} generates a biorthogonal MRA(m).

Proof. From the conditions imposed on H0(j), F(j), and

*
Td

MF(j)M01dj Å *
Rd

MPn(j)F(20nj)P*n (j)M01dj Å *
Rd

Gn(j)dj,

we see that {Gn(j)}n is uniformly integrable, so is {G̃n(j)}n is bounded in L1(Rd).

Hence, {Pn(j)PH *n (j)}n is uniformly integrable, hence by taking limit in the biorthogo-
nal version of (3.31),

S 1
2pD

d

*
Rd
Pn(j)PH *n (j)erjdj Å d0,kIm , (5.30)

we get

F(j) Å ∑
a

wP (j / 2pa)wOI *(j / 2pa) Å Im , a.e. j, (5.31)

which is the biorthogonality of {w(x 0 k); wP (x 0 k)}. As for the Riesz basis property
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of {w1(x 0 k), . . . , wm(x 0 k)}, and of {wP 1(x 0 k), . . . , wP m(x 0 k)}, we show that
F(j) Å Im , together with a mild condition,

F(j) / FH (j) £ CIm , a.e. j, (5.32)

will be sufficient. In fact, (5.32), together with F(j) Å Im , a.e. imply that for any x
√ Cd, ÉxÉ Å 1,

1 Å ÉxÉ2 Å x* ∑
a

wP wOI *(j / 2pa)x

Å ∑
i,j

∑
a

x
V iwP i(j / 2pa)wOIU j(j / 2pa)xj

Å ∑
a

∑
i

xiwP i(j / 2pa)(∑
j

xjwI
O

j(j / 2pa))0

£ (∑
a

É ∑
i

x
V iwP i(j / 2pa)É2)1/2(∑

a

É ∑
j

x
V jwOI j(j / 2pa)É2)1/2

Å (x* ∑
a

wP wP *(j / 2pa)x)1/2(x* ∑
a

wOI wOI *(j / 2pa)x)1/2

£ CÉxÉ(x*F(j)x)1/2.

Hence F(j) § CIm . Analogously, FH (j) § CIm . Together with (5.32), {w1(x 0 k), . . . ,
wm(x 0 k)}k is a Riesz basis of the space it generates, {wI 1 , . . . , wI m(x 0 k)}k is also.
But under the conditions assumed, (5.32) holds automatically, since F(j), FH (j) are
trigonometric polynomials, too. Thus, {Vj ; Ṽj} is a biorthogonal MRA(m) of L2(Rd),
under the conditions (5.1), (5.2), (5.3), (5.4), and (5.5). The proof is finished.

Finally we consider the Riesz basis property of {cr,m,j,k} and of {cH r,m,j,k}, when H0(j),
H̃0(j) are trigonometric polynomials.

LEMMA 5.1. Assume that the family {cr,m}, r Å 1, . . . , m, m √ Ed 0 {0}, satisfies

ÉcO r,m(j)É £ CÉjÉd1(1 / ÉjÉ)0d10d2, a.e. j, (5.33)

and

∑
a

ÉcO r,m(j)É20d3 £ C, a.e. j, (5.34)

where d1 , d2 , d3 are positive constants. Then

∑
r,m,j,k

É»f, cr,m,j,k…É
2 £ C\f\2

2 ∀f √ L2(Rd). (5.35)

The proof has been given by Cohen and Daubechies [5].

THEOREM 5.4. Let H0(j), H̃0(j) be trigonometric polynomials such that (5.1), (5.2),
(5.3), (5.4), and (5.5) hold. Let the matrix-extensions (5.9) satisfy (5.10) and (5.12).
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Assume that all eigenvalues l’s of PH0
, and all lH ’s of PHH 0

restricted on P, are in the

unit circle. Then {cr,m,j,k ; cO r,m,j,k} is a biorthogonal wavelet (Riesz) basis of L2(Rd).

Proof. The assertions follow from Theorem 5.2, Theorem 5.3, Lemma 5.1, and
the equalities

f Å ∑ » f, cH r,m,j,k…cr,m,j,k Å ∑ » f, cr,m,j,k…rcH r,m,j,k ∀f √ L2(Rd).

Then the proof is finished.

6. ALGORITHMS AND EXAMPLES

For the construction of biorthogonal MRA(m) and biorthogonal wavelets, we sum-
marize an algorithm based on Theorem 5.4 as follows. Obviously we can obtain the
algorithm for constructing orthogonal MRA(m) and wavelets by letting H0(j) Å H̃0(j).

1. Select a couple {H0(j); H̃0(j)} of trigonometric polynomial matrices, which
should satisfy (5.1), (5.2), (5.3), (5.4), and (5.5).

2. Find a matrix-extension {(Hm(j / np)); (H̃m(j / np))}, which should satisfy
(5.10) and (5.12);

3. Consider the action of PH0
, PHH 0

on P0 , where

P0 Å { f (j): ( f (j))i,j Å ∑
k√DN

bi,j(k)e0ikrj},

and DN Å ∏
d

iÅ1
[0Ni , Ni], Ni Å Ni,/ 0 Ni,0 , and ∏

d

iÅ1
[Ni,0 , Ni,/] is the coefficient support

of the entries of H0(j) and H̃0(j); i.e., any entry of H0(j), H̃0(j) is of type

∑
N1,/

k1ÅN1,0

rrr ∑
Nd,/

kdÅNd,0

hi,j(k)e0ikrj.

Then, check if all eigenvalues l’s of PH0
, and all eigenvalues lH ’s of PHH 0

are in the

unit circle. If so, then {wP ; wI
O

} defined by (5.13) generates a biorthogonal MRA(m),
and {cm ; cH m} defined by (5.14) generates a biorthogonal wavelet (Riesz) basis {cr,m,j,k ;
cH r,m,j,k} of L2(Rd). If some of eigenvalues of PH0

(when F(0) § Im is assumed) is not

in the unit circle, then {w1(x 0 k), . . . , wm(x 0 k)}k is not a Riesz basis.

Step (3) of the algorithm is very easy to handle. So the construction is reduced to
steps (1) and (2), which are difficult, even in the classical case m Å 1, d ú 1.

In order to calculate the eigen values of PH , we need to know the matrix representa-
tion of operator PH . Without loss of generality, let M Å Im , then for F(j) √ P(Td,
Mm),
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PHF(j) Å ∑
n√Ed

HSj2 / npDFSj2 / npDH*Sj2 / npD .

Let

H(j) Å ∑
k√D1

Dke
0ikj, where D1 Å ∏

d

iÅ1

[N0i , N/i ],

and

F(j) Å ∑
k√DN

Cke
0ikj.

Then

PHF(j) Å ∑
n√Ed

S ∑
k√D1

Dke
0ik(j/2/np)DS ∑

k√DN

Cke
0ik(j/2/np)DS ∑

k√D1

Dke
0ik(j/2/np)D

Å rrr

Å ∑
m√DN

2dS ∑
k√DN,2m0k√DN

∑
n√D1,n0k√D1

DnC2m0kD*n0kDe0imj

Å ∑
m√DN

Ame0imj.

Therefore PH is the mapping: {Cl}l√DN
° {Am}m√DN

, with

Am Å 2d ∑
k√DN,2m0k√DN

∑
n√D1,n0k√D1

DnC2m0kD*n0k

Å 2d ∑
l√DN,2m0l√DN

∑
n√D1,n02m/l√D1

DnClD*n02m/l .

With respect to the basis {e0ilj}l√DN
of P(Td, Mm), we can write

PH Ç (Pm,l)DN1DN
,

where Pm,l is the mapping: Cl ° (n√D1,n02m/l√D1
2dDnClD*n02m/l . Since n √ D1 and n

0 2m / l √ D1 imply 2m 0 l √ DN , we can be sure Pm,l Å 0 when 2m 0 l √/ DN .
Now assume 2m 0 l √ DN . With respect to the basis {Ei,j}1£i,j£m of Mm1m , where Ei,j

is of, except for the (i, j)th-entry being 1, 0-entries, we can write

Pm,l Ç (Pm,l
i,j )m21m2 ,

with

Pm,l
i,j Å 2d ∑

n√D1,n02m/l√D1

dn,i1,j1dU n02m/l,i2,j2 ,

i Å (i1 0 1)m / i2 , j Å ( j1 0 1)m / j2 ,
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and dn,it,jt being the (it , jt)th-entry of Dn , t Å 1, 2. Let Bk √ Mm2 such that Bk Å 0

when k √/ D, and when k √ D, bk,i,j Å 20d (n√D1
dn,i1,j1dU n0k,i2,j2 . Then we obtain

Pm,l Å 2dB2m0l .

Now we take two examples to illustrate the algorithms. The first one is the orthogo-
nal case and the second one is the biorthogonal case.

EXAMPLE 1. Take a, b, c √ R 0 {0} such that

2a2 / b2 / c2 Å 1
2.

Consider the function matrix

H0(j) Å S 1
2 /

1
2e
0ij/2 0

a 0 ae0ij/2 b / ce0ij/2
D .

Obviously

H0(0) Å S1 0

0 b / cD , H0(p) Å S 0 0

2a b 0 cD .

Since (b / c)2 £ 2(b2 / c2) õ 1, we deduce that one eigenvalue of H(0) is 1, the
modulus of another one is less than 1. It is easy to show that H(j) satisfies (2.7) with
e Å 1. By Theorem 2.2, ∏

1
(20j) converges on any compact subset. It is also easy to

verify that

H(j)H*(j) / H(j / p)H*(j / p) Å I2 .

Now we calculate the eigenvalues of PH by the above deduced result. In this time,

PH Å S2B01 0 0
2B1 2B0 2B01

0 0 2B1

D ,

where

B0 Å

1
2 0 0 0

0 1
2(b / c) 0 0

0 0 1
2(b / c) 0

2a2 a(b 0 c) a(b 0 c) b2 / c2

.

Hence 2B0 eigenvalues are l1 Å 1, l2 Å 2(b2 / c2), and l3 Å l4 Å b / c. From 2a2

/ b2 / c2 Å 1
2, and a x 0, we derive ÉliÉ õ 1 (i Å 2, 3, 4). By the same reason, we
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can deduce that the 2B1 and 2B01 eigenvalues are all less than 1. Following our
algorithm for orthogonal case, we get MRA(2).

Now we construct the associated wavelets. Select pi √ R, i Å 1, 2, . . . , 6 such that

S
√
2a b c√
2p1 p2 p3√
2p4 p5 p6

D
is unitary, then

H1(j) Å Sp1 p2

p4 P5
D / S0p1 p3

0p4 P6
De0ij,

such that

SH0(j) H0(j / p)

H1(j) H1(j / p)D
is unitary. It can be verified as follows. Let H1(j) Å A1 / A2e

0ij, then

H1(j)H*1 (j) Å (A1 / A2e
0ij)(A*1 / A*2 eij)

Å (A1A*1 / A2A*2 ) / A2A*1 e0ij / A1A*2 eij.

Hence

H1(j)H*1 (j) / H1(j / p)H*1 (j / p) Å A1A*1 / A2A*2 .

From

A1A*1 / A2A*2 Å S p2
1 / p2

2 / P2
1 / p2

3 p1p4 / p2p5 / p1p4 / p3p6

p1p4 / p2p5 / p1p4 / p3p6 p2
4 / p2

5 / p2
4 / p2

6
D ,

we know A1A*1 / A2A*2 Å I2 . By now we have shown:

H1(j)H*1 (j) / H1(j / p)H*1 (j / p) Å I2 .

By similar calculation, we can also show:

H0(j)H*1 (j) / H0(j / p)H*1 (j / p) Å 0.

Finally to create the orthogonal wavelet is just to follow the algorithm routinely.
Since the calculation is very complicated, now we just give a simple example to

illustrate the algorithm for biorthogonal case.
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EXAMPLE 2. Let {Vj}, {Ṽj} be two MRA of L2(R) with filter functions m0(j), m̃0(j)
(in C(P)) satisfying (nÅ0 m0(j / np)mI 0(j / np) Å 1. Define m1(j) Å
e0ijmI 0(j / p), m̃1(j) Å e0ijm0(j / p). Denote wP (j) Å (wP 0(j), wP 1(j))t, wI

O

(j) Å
(wI

O 0(j), wI
O 1(j))t, with wP i(j) Å mi(j/2)wP i(j/2), i Å 0, 1, wP 0(j) Å ∏

`

1
m0(2

0jj) and similarly

for wI
O

i(j). Notice that

Sm0(j) m0(j / p)

m1(j) m1(j / p)D S mI 0(j) mI 1(j)

mI 0(j / p) mI 1(j / p)D Å I2 ∀j. (6.1)

Notice that {w0(x 0 k), w1(x 0 k)}k generates V1 . Similarly for Ṽ1 (see, for example,
[26]). Consider {Vj , Ṽj}, with V0 Å V1 , Vj Å 2jV0 , and similarly for Ṽj . Now we do
some calculations. Since wP 0(j) Å m0(j/2)wP 0(j/2), wP 1(j) Å m1(j/2)wP 0(j/2), similarly
for wI , we have

H0(j) Å Sm0(j) 0

m1(j) 0D , HH 0(j) Å SmI 0(0) 0

mI 1(0) 0D . (6.2)

Since

H0(0) Å S1 0

0 0D Å HH 0(0), H0(p) Å S 0 0

01 0D Å HH 0(p),

we see that

H*0 (np)e1 Å d0,ne1 Å HH *0 (np), n Å 0, 1. (6.3)

And from (6.1) we have

∑
n

H0(j / np)HH *0 (j / np) Å I2 ∀j. (6.4)

Notice that in this case, we have always

F(0) Å I2 Å FH (0), (6.5)

which follows from the calculations

∑
a

ÉwP 0(2pa)É2 Å 1 Å ∑
a

ÉwP 1(2pa)É2, ∑
a

wP 0(2pa)wP 1(2pa) Å 0.

Assume that both m0(j), m̃0(j) are trigometric polynomials, and

Ém0(j)É Å 1 / O(ÉjÉe). (6.6)

Equations (6.2), (6.3), (6.4), (6.5), (6.6) show that {H0(j); H̃0(j)} satisfies the step
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(1) in the preceding algorithm, so we can get a biorthogonal MRA(2) by making use
of the eigenvalue estimate of PH0

and PHH 0
, indicated in step (3).

What are the related wavelets? Or, equivalently, what are the possible {H1(j);
H̃1(j)}? The following simple setting of H1(j) and H̃1(j),

H1(j) Å S0 a(j)

0 b(j)D , HH 1(j) Å S0 aI (j)

0 bH (j)D , (6.7)

will do, where a(j), b(j), ã(j), bH (j) are in C(P) and satisfy

∑
n

a(j / np)a
H
U (j / np) Å 1 Å ∑

n

b(j / np)bHU (j / np) ∀j, (6.8)

∑
n

a(j / np)bHU (j / np) Å 0 Å ∑
n

b(j / np)a
H
U (j / np) ∀j. (6.9)

In fact, with such setting of (Hn(j / np))m,n and (H̃n(j / np))m,n , (5.10) and (5.12)
hold, provided m1(j), m̃1(j) Å O(ÉjÉe). When a(j) Å 201/2 Å ã(j), b(j) Å 201/2eij Å
bH (j), we have

cO 0(j) Å 201/2wP 1Sj2D , cO 1(j) Å 201/2e0i(j/2)wP 1Sj2D ,

c0(x) Å 21/2w1(2x), c1(x) Å 21/2w1(2x 0 1).

This gives the trivial basis {21/2c(2x 0 k)}k of V1 @ V0 Å V2 @ V1 Å W1 , which is
nothing but the classical one.
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