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The paper presents a general approach to the construction of so-called bior-
thogonal vector-MRA and its related wavelets of L%(RY). The presented algo-
rithm is very close to the one in the classical case given by Cohen—Daubechies
(d = 1) and Long—Chen (d = 1). Roughly speaking, to get a biorthogonal
vector-MRA from a given couple {Ho(€); Fo(€)} of trigonometric polynomial
matrices satisfying =, Ho(¢ + vm)HE (€ + vr) = |, (modulo some other natural
mild conditions), it is needed only to check if both of the spectral radius of the
transition operators Py, and Py, restricted on some suitable invariant space Po,

arelessthan 1.  © 1997 Academic Press

1. INTRODUCTION

During the past decade, the wavelet analysis based on the multiresolution analysis
(MRA) with a single scaling function has undergone a flourishing development. There
are many choices of wavelets constructed by various MRA, each possessing various
combinations of desirable properties such as orthogonality, compact support, smooth-
ness, symmetry, or high accuracy. However, some of these properties are mutually
exclusive. For instance, there are no compactly supported orthogonal wavelets, other
than the Haar wavelet, which can be symmetric or antisymmetric (see [12]). By the
way, the accuracy and smoothness of the scaling function is tied to the number of
coefficients in the dilation equation (see [13]). Therefore to obtain the high accuracy
or smoothness wavelets implies enlarging the support size for the scaling function.
This reduces the locality of wavelet representation and increases the computational
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complexity of the wavelet transform. In order to improve the support size, or the
symmetry of the involved wavelets, recently the so-called vector MRA(m) began to
be introduced by many people. One advantage of the wavelets based on the vector
MRA(m) allows the simultaneous inclusion of desirable properties. The contribution
of Goodman and Lee [16], Hardin, Kesser, and Massopust [18], Geronimo, Hardin,
and Massopust [15], and Donovan, Geronimo, Hardin, and Massopust [14] were
among the first in this direction. The idea is to let a multiresolution analysis {Vj} ~..

of L%(R") be based on a vector function (1, @2, - . ., ¢m) € L3R, R™ satisfying that
{pi(x — K), ..., om(X — K)} consists in a Riesz basis of V,. Hence {29%p,(2x — K),
ooy 2%p(2x — K)} isaRiesz basis of V. Since V, C Vy, there are {d;;(K)}« € 1A(Z9),
i,j=1,..., m such that (in L3R sense)
() =203 Yy diKp2x -k, i=1...,m (1.1)
j=1 k
In terms of Fourier transform, (1.1) becomes
(27,(5) = Z Z di'j(k)eik(flz)(,’bJ'(g) , i = 1, Lo, M, (12)
=1 k
where the Fourier transform is defined by
fi¢) = f (e idx Of e L' N L2 (1.3)
R

Equation (1.2) can be rewritten in matrix form

AT EA VRS
@) = H<2><p<2> : (14

where H() = (h;(€)) isam x mrmatrix with h;;(€) = =i dij(Kle ™ ¢ in LA(T7). H(&)
is called the filter function matrix, and ¢ = (¢, . . . , vm)' iscaled the scaling function
vector (t denotes the transpose).

On the contrary, suppose that H(¢) is a 2rZ%-periodic function matrix such that

(A) N H(27¢) converges for al ¢ € R

(B) Forax € R", Q(¢) = E H(27¢9)x isin L3R, R™.

(C) S={piXx — K), ..., on(X — K}yezq iS a Riesz system in L3RY), where ¢ =
(p1, - - ., pm)" is the inverse Fourier transform of Q.

Then V, = spanS generates a vector MRA(m) with filter function matrix H(¢), and
scaling function vector ¢. If Sis an orthogonal system, the associated MRA(M) is
said to be orthogonal. If H and H are two filter matrix functions such that the corre-
sponding systems S and S are biorthogonal, then the two associated MRASs are said
to be biorthogonal. This leads to the further problems:
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(D) Find conditions for given matrix function H to be filter function matrix generat-
ing orthogonal MRA(m).

(E) Find conditions for given matrix function H and A to be filter function matrices
generating biorthogonal MRAS.

The previous method was introduced by Mallat [29] and Daubechies [12] for con-
structing orthogonal MRAs in the case d = m = 1. It has been generated by several
authors. For instance, in the case d = m = 1, problem (D) was studied by Cohen [4],
Cohen and Raugi [10], and Lawton [23]; problems (B) and (C) were studied by Herve
[20] and Villemoes[31]. Inthecased = 1, m = 1, problems (B) and (E) were studied
by Cohen and Daubechies [6] and Cohen, Dabechies, and Feauveau [7]; problems
(D) and (E) were studied by Long and Chen [26]. Inthecased = 1, m = 1, problems
(A), (B), and (C) were studied by Herve [21]; problems (A) and (D) were studied in
Donovan, Geronimo, Hardin, and Massopust [14], Chui and Lian [3], Lawton, Lee,
and Shen [24], and Strang and Strela [30]; Problem (E) was studied by Dahmen and
Micchelli [11]. The existence, uniqueness, regularity, and stability of ¢ as the solution
of Eqg. (1.4) were studied by Cohen, Daubechies, and Plonka [9], Heil and Colella
[19], Cohen, Dyn, and Levin [8], and Lawton, Lee, and Shen [24] in the case m =
1. Following the previous works, especially those of Cohen and Daubechies[5], Herve
[21], and Long and Chen [26], we want to study (A), (D), and (E) in the general case
d=1and m= 1, by using, first, the classical methods introduced by Cohen and
Daubechies[5] and Long and Chen [26] and, second, arguments of uniform integrabil-
ity which allow to simplify proofs; i.e., we want to find some conditions (necessary

or sufficient) imposed on H(¢) such that [T H(2 7€) converges and ¢(¢) can be defined
1

©

by [ H(27¢) such that {V;}~.. is an orthogonal MRA(m) with
1

Vo = span({pu(Xx — K), ..., ou(X = W}, Vj = 2Vo. (1.6)

We want also to study the wavelets generated by MRA(m), and the biorthogonal
versions of the results obtained in the orthogonal case. As a result, for the filter
function matrix H(&) general enough (more general than those in [21]) in place of the
filter function my(&), we obtain almost all of the results of Long and Cherl [26].

Section 2 will be devoted to the convergence of the infinite product [T H(27¢);
1

Section 3 will be devoted to the characterization of the orthonormality of {p,(x — k),

.y pm(X — K}« for some kind of H(&); Section 4 will discuss the wavelets generated
by MRA(m); Section 5 will be the biorthogonal versions; and Section 6 will be the
agorithms and two examples to illustrate the algorithms.

2. CONVERGENCE OF [] H(27§)
1

Denote M,, the set of all complex m X m-matrices, M, the set of all positive
definite matrices. A € M/, means that
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(AX, X) = X*Ax > 0 [O(column) vector x(+0). (2.1

For A € M,,, |A]| denotes the operator norm of A defined by

Al = Sup |AX], (2.2)

x|=1

with | x| the vector length of x. Denote g the ith-coordinate (column) vector. Let H(&)
be m X m-matrix of continuous complex functions defined on T, in symbols H €
C(T%, M,). In this section, we want to study some necessary conditions and sufficient

conditions for the convergence of [T H(27%¢).
1

THEOREM 2.1. Suppose that [] H(27'¢) converges at ¢ = 0. Then there exists
1

nonsingular M = (m;) € M,, such that

H(O —M‘lk 0 M 2.3
0) = Q D>, (233)

where | is the (s X g)-identity matrix, 0 < s < m, and D is a special Jordan type
matrix, i.e., D is of type

Asi1 Hs+1

D= S . w =0, 1foralli, (2.4)

with |\| < 1 for all i.
Proof. Asiswell known, there is a nonsingular M € M such that

J
m®:M1< . )M
J

with
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Ji
H“(O):M-l( >|v|, (2.5)
J

we see that H"(0) converges if and only if each J converges. But from

Since

AN AN+ e e [
r=| N S0 (26)
N

we see that when t; > 1, then |\;| < 1, otherwise n\!"* does not converge. When t;
= 1, we have J' = (\). From the convergence we have |\;| < 1, or \; = 1. This
completes the proof of the assertion of the theorem.

Now we want to show that the preceding necessary condition is almost sufficient.
We assume a natural and mild condition which is needed even in the case m = 1.

THEOREM 2.2. Let H(¢) € C(TY M,) such that for some ¢ > 0,

IHE) — HO)I < cl¢] (2.7)

Assume that (2.3) holds with s = 1. Then on any compact set in R?, {[] H(279)},
1

converges uniformly to a continuous function matrix I1..(€). Furthermore, for i > s,
MIL.($)M'g = 0.

Proof. Denote G(¢) = MH()M ™. Then {1 H(2 7€)}, converges if and only if
1

{ITIG(277¢)} , converges. So without loss of generality we can assume

ls
H(0) = < D) .

Consider the compact set D = [—N, N]°. It was shown by Cohen, Daubechies, and
Plonka [9] that

I = I ] H2E)ll =< csp(L + )" On € Z, 0¢ € D.

Hence, forany p, g € Z, withg > pandany £ € D

I HE I = |||;| H2727PE)l| < Csp(1 + 8)P.

p+1 1

Since H¥0) — diag{ls, O, we can assume that [H0)| < By < O(1) foray k € Z,..
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Denote the (i, k)-entry of [] H(27%€) by h{P(¢). We have
j=1

hR() = ([ HR e &)

i=1

We rewrite
O = ([] HE 98, (] HEO)'e)
and
3 WO 7O = (0, (r| H2 9) ).
Thus, we get
120 — 3 MOS0
= (] W21 ~ 7O ([] HE e
< "fl HE o) | |‘| HET) — HO)
= Gooll + O1A
where

A = ﬁ H(27¢) — HIP(0)

j=p+1

M HEO - ] HEIOHO)

j=p+1 i=p+1

+ ] HEIGHO — -+ + HE #IH(0) — HH(0)

1 HEIOHO - [] HE'OH O

j=p+1

Il
I b4-+
:I

H(27)(H(2 “¢) — H(O)H'(0).

Il
H P4'°

Since

Al < Z Cso(1 + 8)TPAHE2 0¢) — HO)II IH'(O)]

< T Co(l + 8T PR @ NG,

(2.10)

(2.12)

(2.12)

(2.13)

(2.14)
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we derive

q-p-1
IhRE©) — Y hPEOhTPO0)] < BuN*Clp Y (1 + 6)% 72270

| 1=0

q |
= BHNdECgD(l + (5)72 z <1 ;; 6) . (2.15)
l=p+1

Now we select a6 > O such that 1 + 6 < 2°. Then {=fL, ((1 + 6)/29)'}, is a Cauchy
sequence. When k < s, h{§P(0) = &,,. Then (2.15) reads

MO - 01 =B+ 97 3 (10,

€
I=p+1 2

This means that {h{$(¢)} is a Cauchy sequence and, hence, converges. When k > s,
let g tends to the infinity in (2.15) for given p large enough, we have that |h((¢)|
< O(Zpi1 (1 + 8)/29"), since limg...h{§P(0) = 0. This means that h(¢) = 0, for
k > sand al i. It isjust the assertion: MIL.(¢)M*g = O for al i > s. The proof of
the theorem is finished.

Remark. Hérve [21] obtained a similar result by assuming H ~ diag{1, \,, ...,
Am}, but here we cannot use |[H(0)| = 1 and ||[T H(27'¢)|| < O(1) used by Hérve [21].
1

Furthermore, the result implies that we can construct a more general class of wavelet
other than these with diagonal filter function matrix. The similar results were aso
found by Cohen, Daubechies, and Plonka [9] and Heil and Colella [19] with the
different proofs.

3. ORTHOGONAL MRA(m)

The H(§)'s considered in this section are a little less general than those in Section
2. Assume that H(¢) satisfies the conditions in Section 2 with M in (2.3) being a
unitary matrix, and sin (2.3) being 1. We want to show, in order to get an orthogonal
MRA(m), what kinds of conditions (necessary or sufficient) should be satisfied.

At first, we have an obvious necessary condition: for any filter function matrix
H(&) of orthogona MRA(m), we have

Y HE + vmH*E + vr) = I, ae g, (3.1)

veEEy

where E, = {all vertices of [0, 1]%. It follows from

Q) = > @€+ 2ra)p*(€ + 2ma) = |y, ae g, (3.2
aEZd
which is an eguivalent condition of the orthonormality of {¢:(X — K), ..., om(X —

K)}«. In fact, writing a = 26 + v, a, B € Z° v € Eq4, we get
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Im= > H(g + Wa)gb(g + Wa)gb*(% + Wa)H*(% + Wa)
= ’Z H<§ + I/7T> % @(g +vm + 277[3)927*(% + vm + 27rﬁ>H*<g + 1/7r> .

The fact that the orthonormality of {pi(X — K), ..., om(X — K)}« is equivalent to
(3.2) iswell known. To be complete, we state a more general proposition as follows.

ProposiTION 3.1.  Let {p} T C L3(RY). Then {py(x — K), ..., pom(X — K)}« has the
upper, lower Riesz bounds B, A, if and only if

Al < ¢ < Bl,, ae (3.3

Remark. The proposition is the natural and obvious extension of a well-known
result; see, for example, [17, 2, 26, 25]. Notice that when [¢;, @] € L™(T%, the
condition ®(&) = ([¢i, ¢)])i; = Im ae. £ is equivaent to a simple assertion det ®(£)
~ 1 ae. &, as shown by de Boor, DeVore, and Ron [2] and Long [25], where[ -, -]
is the bracket product defined by

[, dl(€) = 3 f(§ + 2me)g(¢ + 2ma). (3.7)

In what follows, the transition operators introduced and studied in wavelet theory
by many people, such as Conze and Raugi [10], Lawton [23], Villemoes [31], Cohen
and Daubechies [5], and Long and Chen [26], play a very important role. Now we
define it. Let H(¢) € C(TY M,,) satisfying (3.1). Assume that there exists a unitary
matrix M such that

1
H(0) = M‘1< )M, (3.8)
D
with
A2 p2
D= co . INl <1, =01 forali.
. m—1
Am
Define

Paf(€) = > MH(% + 1/7r>M_1’f <§ + VW)MH*(% + Vﬂ‘)M_l. (3.9

veEEy

Obviously, Py, is an operator mapping measurable 27Z%-periodic function matrices or
continuous 27 Z%-periodic function matrices to matrices of the same kinds. And when
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H(¢) is atrigonometric polynomial matrix, defining P to be a space of trigonometric
polynomial matrices of N-degree (N depends only on the degree of H and will be
specified in Section 6), then Py, maps P into P. This is the same situation as in the
classical case; see, for example, [21, 26]. Now the new feature is what is the right
definition of some special invariant subspaces C, and P,. Notice that G(¢) = MH(&)M™*
satisfies

Y G(¢ + vm)G* (¢ + vmr) = Y MH(§ + vm)H*(€ + vm)M ™ =1, (3.10)

and
G* (Vﬂ')e]_ = 60,,,61, v E Ed- (311)
Equation (3.11) follows from G*(0)e, = e, and

1=¢efe, = |G*0)e]* + Y |G*(vm)e|®> =1+ 0.

v+0

Now define

Co(T% M) = {f(¢) € C(TY, M,): (f(0))1. = O} (312
and

Po(TY M) = {f(¢) € P(TY M,): (f(0))11 = O}, (3.13)

where ((£));; denotes the (i, j)-entry of f(£). Then we have

ProposITION 3.2. Let H(¢) € C(TY M,,) be such that (3.11) holds, with G(¢) =
MH(£)M ™. Then both C, and P, are invariant subspaces of Py,.

Proof. We only prove that when f(¢) € C(T¢, M,,) satisfies (f(0)),, = 0; we aso
have (Tf(0)),., = O. This follows from

(Tf(0))1, = & > MH@m)M f(vm)MH* (v7)M e,

v

— etf(0)e, + 3 O*f(ym)0 = 0.

v#0

The proof is finished.

Some significant properties of the transition operators are formulated in the follow-
ing proposition, which in fact is the obvious extension of the previous case (see [26,
21]). Here we only state the proposition without proof.

ProposiTION 3.3.  Let H(¢) € C(TY M,,) be such that (2.7), (3.1), and (3.8) hold.
Then Py has two invariant matrices, i.e., |, and M®(&)M ™, where ®(¢) = =, (€ +
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©

2ra)@* (€ + 2ma) with ¢(€) = [T H(27'€)x, for any x. Moreover, for any measurable
1

2nZ%-periodic function matrices f(¢), g(¢) we have

PLE(E) = T MIL(E + 2ra)M (2 (¢ + 2ra))MITA(E + 2ma)M " (3.14)

aczt

and
de PRf(ENuEe = [  MIOM 2 OMITE(OM g, (315)
where

(&) = [T H@)xre€), n=1,2,.... (3.16)

i=1

Another crucia fact needed in what follows is the uniform integrability lemma by
Long and Chen [26].

LemmA 3.1. Let (X, u) be a o-finite (nonnegative) measure space, {f.}, C L%, f
€ LY. Assume that
lim f, = f, ae, I|m fd/,L = f fdu. (3.18)

Then {f .}, convergesto f in L%, and, hence, {f.}, is uniformly integrable.

Proof. Since
f fdu = f min(lim f,, f)du = f lim min(f,, f)du
X X - X
< hﬂf min(f,, f)du < mf min(f,, f)du < f fdu,
X X X
we derive

f min( f,, f)d,u—»f fdu.
X X

In the meanwhile,
f, + f = max(f,, f) + min(f,, f)

implies that [, max(f,, f)du — [, fdu. Therefore,
|f, — fll. = f max(f,, f) — min(f,, f)du — 0.
X

The proof of the lemma is finished.
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Now we are in the position to define ¢ and to characterize the orthonormality of
{oax = K), ...y om(X = K} )
Assume that H(¢) € C(T¢, M,,) and (2.7), (3.1), (3.8) hold. Then I1..(¢) = [T H(27%)
1

isasoin C(TY M,) and satisfies

MIL(EM* = <D o) : (3.19)
g
Define
@(&) = TL()M "e,. (3.20)
It is easy to see that
MIL(OITE(EM ™ = MP()@* (M. (3.21)

Our first fundamental result about the Lintegrability of ¢ and the orthonormality
of {pa(Xx — K), ..., om(X — K}« is as follows.

THeEOREM 3.1.  Assume that H(¢) € C(TY, M,,), and (2.7), (3.1), (3.8) hold. Then
¢ € L2 Furthermore, assume that

() = 3 P(€ + 2ma)p* (€ + 2ma) = (@i, P, (322)
iscontinuous a £ = 0. Then {pi(X — K), ..., om(X — K}« is orthonormal if and only
if

(&) = Cl,, ae & (3.23)

Proof. For IT,(£) defined in (3.16), we have (by making use of (3.15))

1\¢ . e id )
(z) fRd MIL(E)IT (M d§—<27r> de Pl

1 d
<E> de L0 = 1. (3.24)

Thus, fori =1, ..., m,

1\ o
<5> fRde‘*MHn(f)Hn(f)M ed¢ = 1.
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Fatou's lemma gives

1 d
(3) [Lemotoor@meds <1 i-1...,

That is to say

[, 15 mewrac= () [ 15 moora
(3.25)

This implies the L%integrability of ¢, since M is unitary.
When {pi(x — K), ..., pm(X — K)}« is orthonormal, then by Proposition 3.3, (&)

= |, ae & i.e, (3.23) holds. On the contrary, we have

[ Me@pm@em e = [ maom-ac
R T
- [ | Prwatom s

_ fRd ML) OMEEOM 'de,  (3.26)

and

[, 3 emp@pr@@m et - [ 5 emm@o@ omem e @21

Notice that both of M@(£)@* (£)()M™! and MIL,(&)P(2 "OIIE (M are in M;;

hence,
f = z EMBHEOP* OM e € Lt
and
(1, = {3 emmoeonmel, c .
Notice that

(MQ(O)M71)11 =1,

owing to the fact

Ma(©) = &, M@@2ra) = (0,0 ..., 0" Oa e Z¢— {0}.
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These can be seen from
M@(0) = MIL.(O)M ‘e, = e,
and for a # 0 (writinga = 23, 8 = 2y + v, v € Ey)
eEMp(2ra) = e MH(O)M"MH(vr)M*M@(87) = O.

Since ®(¢) is continuous a £ = 0, we have

m

> &MIL()P(OIT()M e

1

lim f(¢)
= 2 eMIL(HIE(OM e

m

2 &
= 2 EMB(OP*(EOM e = f(£). (3.28)

By making use of Lemma 3.1, (3.27), together with (3.28) implies the uniform integ-
rability of {f.},. Noticing that

Y EMIT()P2 OIE (M e = C J eMIL(ITF(EHM 'e = Cgu(€), (3.29)

i=1 i=1

we see that {g,.}, is aso uniformly integrable. This is a crucial fact, not only for this
theorem, but also for the whole paper. On the other hand, we have

1 d * —1,jk- _ i ¢ n ik-
(§> [, M @nsom e e - (27T> [, Pramesae
= ol (331)

Since { MIT(OIT (€)M}, is a uniformly integrable matrix family (it follows from
the uniform integrability of {g,}, and the fact that the (i, j)-entry of AA* is dominated
by (AA*)UA(AA*)Y?), letting n — o in (3.31), we get

d
<%> fRd MHw(g)Hi(g)M_lékgdg = 50,k|ma
which implies
1\° _
(%) f M@(€)@* (M dS = Soydm. (3.32)

This is just what we want: M®(EM ™ = |,,; i.e., ®(&) = I,,. The proof is finished.
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Remark. As in the classical case, Cohen’s condition can be introduced. But, in
the present case we can only show the sufficiency of Cohen’s condition for (3.23).
A set K C R is said to be 2rZ%congruent with T9, if |K| = (27)%, and for any ¢ €
T there is a € Z° such that ¢ + 2ra € K. H(¢) € C(T° M,,) is said to satisfy the
Cohen’s condition, if there is a compact K (not necessarily contains ¢ = 0 as an inner
point) which is 2rZ%congruent with T such that

HERIOH*(2) = Cll, 06 €K Oj=1,2,.... (3.33)
Now we want to show that the Cohen’s condition implies (3.23) for al &, where H(&)
€ C(T", M) satisfies (2.7), (3.1), (3.8), $(¢€) = TL(x (any x € R), () = ([,

@]1)i; is continuous at ¢ = 0, and ®(0) = Cil,,,. In fact, finding n € Z., large enough,
such that

1B(27)| = % e € € K.

Then we have

MO(M ™ = ,Z MH(% + Vﬂ)@(% + VTI'>H* <§ + mr)Ml

(oG

= M [T H2')22 ([T HROM™

> %cglm= Cl, 0¢ € K.

Hence for any n € T° by writingn = ¢ + 2ra (€ € K, a € ZM),
d(n) = P + 2ra) = Cl,.

This proves the assertion.

This result can be applied to some examples taken by Herve [21]:

cos? sin ¢

N [/

Example 3, H(¢) = , det H(¢) = % Coszg :

sin ¢ — = Cos &

NIk NI

1 1
4 4
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coszé —§isin§
2

Example 4, H(¢) = i L 41 ,detH(§)=%cos4g,
ésing Z_§COS€
cosz§ —1—5ism§ 0
2 16
Example 5, H(¢) = g—izsmf %—gzcosg —gising
1 1 . 1. .
6—40055 —6—45m§ élsmg

det H(¢) = 5- 2*9c056§ )

All of them satisfy the Cohen’s condition with K = [—x, «]. And, hence, C,l,, =
D(¢) = Cyl, for al €.

Asdone by Long and Chen [26], we can give some other characterizations of (3.32)
in terms of the eigenvalues and the eigenspaces of Py. Notice that H(&) is unchanged
when $(€) is replaced by a®(¢) for any a € C.

THEOREM 3.2. Let H(¢) € C(TY, M,) be such that (2.7), (3.1), (3.8) hold, and
(&) = TL(M e, (&) € C(T%, M,). Then (3.32) holds with ¢ replaced by ¢ for
some constant ¢, if and only if for the eigenvalue 1, the corresponding eigenspace K,
of P, (restricted on C(T%, M,,)) is of dimension 1.

Proof. Since I, and M®(£)M~* are both the invariant matrices of P, so the
condition K; is of dimension 1 implies that for positive c, we have M®(§)M™* =
C Ay, (&) = ¢ 2, therefore cp makes (3.32) hold. Conversely, assume that cyp

makes (3.32) true; then { MIT,(EIT% ()}, is uniformly integrable. Suppose that K; is
not of dimension 1, then P, has another eigen matrix G(¢) and a constant e such that

F(Q) = cn + G(E) € CT%, M) N Ky, F(Q) %0
Thus we get (by making use of (3.15))
[ For©d - [, errer @
- [ Mrom R oM oMt ods

- [ Ao

Notice that { A,(€)} is uniformly integrable (refer to the proof of Theorem 3.1) and
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lim Ay(&) = MIL()M'FOMIIE ()M F*(€) = 0, (3.34)

we have a contradiction. So K; must be of dimension 1. Equation (3.34) follows from
an elementary calculation: (ABC);; = 2y, aixb«C; = 0, wherea, = 0, ¢; = 0, k, |
= 2, b;; = 0. The proof is finished.

When H(¢) is a trigonometric polynomial, we can get a more precise characteriza-
tion.

THeoreM 3.3. Let H(&) be a trigonometric polynomial such that (2.7), (3.1), (3.8)
hold. Then (3.32) with ¢ replaced by cp for some constant c is true, if and only if 1
is a uni-eigenvalue of P, restricted on P.

Proof. When 1 is a uni-eigenvalue, then the corresponding eigenspace K; is of
dimension 1 (considering P, as an operator restricted on P). Notice that p(x) is of
compact support (see [21]), and in this case p(X) € L3R, so ®(&) is a trigonometric
polynomial matrix, so M®()M~* = cl,, and ¢ can be 1 by normalizing ¢.

Assume that (3.32) is true. Then { MIT,(6)IT (€)M}, is uniformly integrable. Sup-
pose that 1 is not a uni-eigenvalue. Then either K; was not of dimension 1, or there
was a subspace of P and a basis {Ay, ..., Aq, m > 1, of this subspace such that A;
= M®M*, and

PiAL=A, PlA A=A+ A, ....

Thefirst case cannot occur as shown in Theorem 3.2. Suppose the second case occurs;
then there were ¢ = 0 such that

B:€A1+A2€P0.

Then we would have PB = (e + n)A; + A, and hence,
[ Pre@ce = [+ mao) + Agnas

The l€ft side tends to zero owing to the uniform integrability of {MIT(SITX (M},
meanwhile the right side tends to «. The contradiction completes the proof of the theorem.

4. ORTHOGONAL WAVELETS GENERATED BY ORTHOGONAL MRA(m)

Let H(¢) € C(TY M,) be such that (2.7), (3.1), (3.8), (3.23) hold and ®(¢) is
continuous a ¢ = 0. Define @(&) by (3.20). Notice that ¢(0) + 0O, so {V;}~.. defined
in (1.6) isaMRA(mM) (see[2, 22, or 25]). And from Theorem 3.1, {V;} is an orthogonal
MRA(m). Assume that there are {H,(¢)}, 1 € Eq — {0}, in C(T%, M,;), such that

> Hu(& + vm)HA(E + vr) = 6,0lm Op, p' € E. 4.2

v
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That is to say the (m2® x m2%)-blocked matrix (H,(¢ + v7)),, € E4 satisfies the
equality

Im
(H.(¢ + vr))(H (€ + vm)O= < ) . (4.2
Im

By expanding (H,(¢ + vx)) and (H,({ + vm))* = (HX( + vm)), according to the
usua rule, we see that (H,({ + vm))* is the inverse of (H,(§ + vm)); i.e, we have

Im
(Hu(§ + vm))*(H(§ + vm)) = < > : (4.3
Im

That is to say, the duality of (4.1) holds, too:

> Hi (€ + vmH (€ + v'm) = 6,1 Ov, v € E. (4.9
Now define
J.(6) = H <§)¢(§> b€ Es— {0}, (45)
# “\2 2]’

Notice that $(£) can be written as io(€). We want to show that {,(X)} = {¥1,.(X),
cooy Um (X}, 1 € Eq — {0}, is the orthonormal wavelets we wanted.

Lemma 4.1. Let ¢(&) be the scaling function vector of an orthogonal MRA(m),
{H,(6)} C C(T%, My), u € Eg — {0}, k € Z¢, {},} isdefined asin (4.5). Then { ¥, ,(x
— K)r .k is orthonormal if and only if H(§) = (H.(¢ + vn)),, satisfies (4.1).

Proof. The proof is aimost the same as in the classical case. We have
1\° - :
[t x — e = (2—) | MGG
R T i~

1\ _
= (_7r> de ; H#<§ + 1/7T>H:r<§ + 1/7r>e'k'5d§.

Thus the left side equals 6, /604l m if, and only if, =, H,(£/2 + vm)H* (&2 + vr) =
6,./1m- The proof is finished.

In order to show that such {r,,(X — K), ..., ¥m. (X — K}, u € Es — {0}, k € Z,
spans W, = V; © V,, indeed, we introduce the projection operators P;, Q;. For f €
L*(RY), define
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Pf(X) = (f, orjed®), | € Z (4.6)
r,k

and

ij (X) = z Z <f' lpr,ﬂ,J,k)l/jr,#,j,k(X)! J € Z (4-7)

p#0 rk

where j, k are the dilation and translation indices, respectively.

LEmmMA 4.2. We have

P.f = Pof + Qf Of € LA(RY). (4.8)

Proof. It is enough to prove

(P.f, @) = (Pof, @) + (Quf, @ [f, g € LARY); (4.9)
i.e,
I =Y (f, 2%(2 - —K)Xg, 2%p/(2 - —K))~
r.k
= > (f (- —KXG, #eu(- =K~ =11 (4.10)
We have

I = (i) 233 [ f@i@eds -y

() 33 [ e s

<27T> 22 f z fg + 2770‘)%#(5 + 2ra)

rop

X 3 g€ + 2nP) (€ + 2nB)dE

B
- (5) 2 [ 3 e+ 2radinte + 2nadinte + 20t + 20t
u YT ap

1\¢
= (Z) de z z f(¢ + 2mv + dra’)pk <g + vm + 27Ta'>

vy o'\p'

Xy m:<§ + V7T>m#<§ + U’?T)LZ)(% +vT+ 277[3’)@(5 + 2nv" + 4nB')dE
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a
<+
M
)
~
7Y
J’_
N
3
A
J’_
&
Q\
~
A
*
PO
I
J’_
N
3
+
N
3
R
SN——

1\¢ 1\¢
<Z> f[ozn]d B <E> % J;o,zw]d+2wu
_ <i)d f z fle + dra)p ( + zm> (g + 27r[3>g*(§ + 4nf)de,

and

1 2d

)
)
)

Il
P N RS

[

5 [ 15 )e sty

1
z
(i) > f > fe+ 47ra)cpr< " 27ra>e'k (- - )

3

[

> f ) > f(¢+ 47ra)cpr< + 27ra> <£ + 27rﬂ>g(§ + 4rB)d¢
C Jart

= <%> f z fi¢ + 4na)p ( + 2m) <§ + Zwﬁ>é(§ + 4rf)de.

This completes the proof of the lemma.
Combining the two lemmas, we get

THEOREM 4.1.  Let Ho(€) € C(IT%, M,,) be such that (2.7), (3.1), (3.8), (3.23) hold.
Assume {H,(€)}, © € Eq — {0}, satisfies (4.1). Then {¢,;} constructed as in (4.5)
is an orthonormal wavelet basis of L*(RY).

Proof. From Lemma4.1, we know that {4 ,;«} is orthonormal. Furthermore, for
f € LAR), we have

limPf=0, limPf=t

jo—oo =

Hence

f=lim@Pf-Pf)=35 5 (f, ¢t .ixX).

J=e p#0 1k

The proof of the theorem is finished.
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5. BIORTHOGONAL VERSIONS

Assume that we are given a couple {Ho(¢); Ho(€)} in C(T%, M, satisfying

> Ho(€ + vm)HE(E + vr) = I (5.1

with
HO—MflloM HO—MflloM 5.2
{0) = (0 D>, £0) = (0 5>, (5.2)

where M = (m;;) is a unitary matrix, and

N2 p2 N2 iz
D= c , D= o : (5.3)
Hm-1 T Lnfl
Am Am
IHo(€) = Ho(O)]| + [IHo(€) — Ho(Q)| < CI£I, € >0, (5.4)
MHS (V']T)M_le]_ = 50,,,61, MHS(VW)M_lel = 60'1,61. (55)

Notice that the condition (5.5) holds automatically when
d(vr) = cly, P(vm) = cly (5.6)
is assumed. This can be seen from MH3(0)M e, = e, and
eEMOO)M e, = &f 5 MHo(vm)M M (vm)M~*MHE (vm)M e,

= efMO(OM ‘e, + ¢ Y [HE(vm)M 'e].

v+0

The introduction of (5.5) is to guarantee the invariance of C,, P, under the action of
Py, and Py,. Assume as well that ®(¢), &(¢) are continuous and

P() = Cly, () = Cl,, foral €. (5.7)
Furthermore, assume that we have matrix-extensions

H(E) = (HE + v H(E) = (R + vy, (5.9)
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which satisfy

Im
(Hu(€ + vm))n(Hu(€ + vm)h, = < >
Im

= (Hu(€ + v (HAE + v,

more precisely,

Y HJ(E + vmHE(E + vr) = 6,lm,  p, ' € Eq, (5.10)

and

z H:(£ + VTI-)H,M(E + V’ﬂ-) = 61/,1/’|m1 Vv I/, E Ed- (5.11)
o

Finally, assume that

IHLO)2E)] + [H. )@@ < Clele for [¢] < L. (512

Define
?(€) = [1 Ho27OM ey, (€) = [] Ho(2 )M ey, (5.13)
P(6) = H#(g)@(g) PO = H}(%)@@) , weEE —{0. (519

Under the preceding conditions, we have € L? » € L? no longer (as shown in the
classical case). But if we take » € L? & € L? for granted, then we can get the
biorthogonal versions of Theorems 3.1, 3.2, 3.3 routinely. The biorthogonal version
of Theorem 4.1 should be read as{, ,,;x; ¥r,.;., constructed above as a biorthogonal
system of L%(R"), and we have (in L?-convergence sense)

f = z <f1 l/’r,y,j,k>l/~fr,%j,k = z <f1 &r,u,j,k>¢r,u,j,k' (515)

But {4 or {{,,;x} can fail to be a Riesz basis of L(RY). The main task of this
section isto generalize the results of Cohen and Daubechies[5] (it has been generalized
tothecased = 1, m = 1, by Long and Chen [26]) to MRA(M) (d = 1, m = 1),
which can give the L%integrability of (), the Riesz basis property of
{Weyuisd (r,033), and the uniform integrability of {TI(EITA ()} ({ Tn(EITA(E)} ),
by making use of the eigenvalue estimates of Py, (Py,) restricted on P, when H(€)
(Fo(€)) is a trigonometric polynomial.

At first, we want to show that the eigenvalue estimates we will use in what follows
IS necessary in some sense.
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Theorem 5.1, Let Ho(€)(Flo(€)) € C(TC, M,,) be such that (5.2), (5.3), (5.4), (5.7)
hold, and ®(®) € L. Then any eigenvalue \ of P, (X of Py), restricted on C(T¢,
M., satisfies [\| < 1, and any eigenvalue \ of P, (A of Py,), restricted on Cy(T¢,
M,), satisfies |\| < 1.

Proof. Only prove the assertion for Py,. Assume that \ is an eigenvalue of Py,
restricted on C(T%, M,), and f(¢) € C(T%, M,,)(+0) satisfies P,,,f = \f. Then for n
€ Z,, we have

v [ rorod = [ enorod
- [ Mm@ oMM @

_ fRd Gu(E)de. (5.16)

Notice that, under the conditions (5.2), (5.3), (5.4), (5.7), { [ 1 Gn(£)dE} , is bounded.
So [\| =< 1, since de f(€)f*(€)d¢ + 0. Consider Py, as an operator acting on Co(T¢,

M.). The preceding argument shows that |\| < 1, since { G,(£)}, is uniformly integ-
rable and lim,.. G,(€) = 0, ae. £. The proof of the theorem is finished.

Remark. Inthe cased = m = 1, the result is due to Cohen and Daubechies [5].
But the proof is a little complicated and is not available in the case d > 1. Here the
proof is given by Long and Chen [26].

A natural question is that from { |\| < 1: N's all eigenvalues of Py, restricted on
Po}, what can we get, when Ho(€) is a trigonometric polynomia? As shown in [5],
from |[\| < 1 we can get enough decay of » and, hence, the L-integrability of ¢,
the L-convergence of { ».} , (the substitution of {I1,(£)}, when m = 1), and the Riesz
basis property of {1, with the help of (5.12). Now we want to establish the same
result in the case of MRA(M), d = 1, m = 1. The main idea is similar, but some
modifications should be done (some of them has been done in [25]).

In the case H(€) is a trigonometric polynomial, P, is a linear space of finite dimen-
sion. Define the norm in P, by

IAC s = 3 llagi( )l for ACE) = (&,;(€)) € Po. (5.17)
i
Denote the spectral radius of Py restricted on P, by p(P.). We have
lim{|PRI[Ensy = p(Pu) = max{|\|: N's all eigenvalues of P,}. (5.18)

So, when all eigenvalues \'s of Py satisfy |A| < 1, then thereisap < 1 such that
for n large enough, we have
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IPEAL: < [IPHleorll Al < p"IAL:  OA € Po. (5.19)

Now we are in the position to give another main result in the section as follows.

THeEOREM 5.2.  Let H(&) be a trigonometric polynomial such that (5.2), (5.3), (5.4),
and (5.5) hold. Assume that all eigenvalues \'s of P, restricted on P, are in the unit

circle. Then ¢ € L? and {I1(&IT%(€)}, is uniformly integrable, and thereisa 6 >
0 such that

> 19 + 2ma)|** < C, ae§, (5.20)

[P = cC@+ [¢)* O& (5.21)

Proof. For the sake of completeness, we give the proof in detail. Set

() = (1 —cos&)® + - -+ + (L = cos&)lm, & = (€1, ..., &) (522

Then 6(€) € P, (since (0) = 0), and

(&) = Cly for ¢ € {gs & < 77} .
For n large enough, we have

H fRd MIT, ()M 0(2 "€)MITA ()M de

*®

< O(D)IIPOll < O(1)p"0ll. < O(1)p". (5.23)

*

- || Procoree

Sinceon A, = {&: 2" < €| < 2"}, we have 6(27"¢) = cl,,. Therefore, we get

H f MIT, ()T (M 1d

=om 3 e [ MIOmEO e
<oy e [ MITEM o M M dee
<o s [ eMIO 92 O EOM e

< O(l)H [, Mriem- oz oM om-ag

< 0O@Q)p"  (5.24)
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Noticing as well that on 2"T¢, we have

P(6) = T (@(27"¢), max [$(§)| < O).

[l =ml2

Hence, we get

[ eme@pmmeds = [ emm@pe9p @ oM ed:
= o) fA e MIT,(O)ITE (M "eds = O(1)0"(5.25)

Therefore,

[ 1e@ras = [ 3 ee0e@eds

<o [ 5 eMp©p M ‘et
< O(Dp", (5.26)
which gives the L*integrability of ¢ immediately.
Now we deduce (5.20), (5.21) from (5.26). Up to now, we have seen that ¢ € L2,

and ¢(x) has a compact support 2. Select a Schwartz function ¢(x) satisfies e¢(X) | =
1. Thus, we have

1 d
20 - (5) [, otmetc — mn
and, hence (for some m large enough),

> < 7 (. d
12(9)] (f{ . f{ |n.>|5/2}>'“"(”" (€ — n)ldn

= Colnl™|¢|%l, + 0<1)< f{ |¢o(n)|2dn>

Inl>1¢l/2}
= Cl¢l™

Inequality (5.21) has thus been proved. For the proof of (5.20), we need the so-called

Plancherel, Polya, and Nikolski’s inequality: Let f € LP be such that supp f C Q

(some fixed compact set). Let h > 0, k = (ky, ..., k) € Z%, Qf = {x hk < x <
h(k + 1)}, % € Qk, 1 < p < . Then

LGOI IR 52

with C independent of f. Applying (5.27) to f(&) = ¢(&) (a vector function) and p =
2 — 6 (6 > 0 determined later), and setting A; = {27 < |£| < 277}, we get



VECTOR MULTIRESOLUTION ANALYSIS 341

5 10 + 20 = [ lo@ac=c e s [
2
<sC+C z <fA |<p(§)|2df> 2(06/2)

j=1 j

=C+C z p(276)/2j2(d6/2)j < C,
1

provided § > 0 being small enough such that p@® ?/22%2 < 1,

The uniform integrability of {T1,(&)IT#(£)}, under the conditions (5.2), (5.3), (5.4),
and (5.5) has been shown by Long and Mo [28]. It should be appreciated for the
kindness of Long and Mo [28] to permit us to sketch the proof here. Denote

_ 10 0 0
0 =m0 = (o o). w0 = (5 ° ).

r—1

AE) = NIV, ) = M(&)ID(E).

Then,

AREON*(€) = 0 = AREN* (), M(ONF(E) = APEONF*(©) + AP ENP* ().

So it is enough to prove the uniform integrability of {A()A* (€)}n, | = 1, 2. From

(5.23), we have
= |[f e

(RECE
- ||[, oo omou| < ow s

which implies that {7H@(£)A?* (€)}, converges to zero in L. Meanwhile, we have

[ Me@orm e = [ ez om a@d - [ eios

and (by using (M®OQ)M~ Y, = 1)

lim Gy(¢) = MIL.(, )M Y(MP(0)M 1), MIT% ()M

MIL(OIE(EOM ™ = MR()@* (M,

which implies that { G(¢£)}, converges to M (£)@* ()Mt in L. Denote

09(€) = MO(EOM™ — 69(¢).
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Then 69(¢) € Py, and, hence,
[, e oo < o
Thus we get

fRd G(©)de fRd A©BO2 " (€)de — O,
im [ @@ "2 "9t @ = tim [ 660
- [ Mot om e,

and
'JJIJ A(§)ID(2")IV* (27 E)AE (€) = MB(E)P* ()M, (5.29)

which implies that {#(£)7P* (€}, converges to M@(£)@* (€)M in L. In a word,

{H:(E)ME (£} converges to Mp(£)@* (€)Mt in L. The proof of the theorem is finally
complete.

Now we deduce a theorem to get biorthogonal MRA(m) from Theorem 5.2.

THEOREM 5.3. Let Ho(€), Ho(€) be two trigonometric polynomials satisfying the
conditions (5.1), (5.2), (5.3), (5.4), and (5.5). Furthermore, assume that the eigenval-
ues, N's of Py, and X's of Py, restricted on Py, are all in the unit circle. Then { p(x);

J(X)} generates a biorthogonal MRA(m).
Proof. From the conditions imposed on Hy(€), ®(£), and

| Maom e = [ e oo - [ oo,

we see that {G(€)}. is uniformly integrable, so is {G.(€)}, is bounded in LY(RY).

Hence, {T1,(&)ITx (€)}  is uniformly integrable, hence by taking limit in the biorthogo-
nal version of (3.31),

d
(3) [ e eas = aua, (530

we get

FE) = > @€ + 2ma)p* (€ + 2ma) = |, ae. &, (5.31)

which is the biorthogonality of { o(x — K); »(x — k)}. Asfor the Riesz basis property
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of {pi(x = K), ..., em(x — K}, and of {@y(x — K), ..., Pu(x — K)}, we show that
F(¢) = I, together with a mild condition,

D) + P(€) < Cl,,, ae &, (5.32)

will be sufficient. In fact, (5.32), together with F(¢) = I, ae. imply that for any x
e CcY |x| =1,

1= |x]?=x*Y ¢p*(& + 2ma)x

=3 Y RO(E + 2ma)§(¢ + 2ra)x

ij «

= 3 3 Xe + 2ra)(T Tp(E + 2rl)

= (3| 3 xpe + 200) VAT | 3 KpE + 2r0) 9
= (0 3 P0ME + 2ral e T 54 € + 2

< CIX| (¢ DO

Hence ®(¢) = Cl,,. Analogously, ®(¢) = Cl,,. Together with (5.32), {p:(x — K), . . .,
em(X — K}« is a Riesz basis of the space it generates, { @1, ..., Pm(X — K)}« is dso.
But under the conditions assumed, (5.32) holds automatically, since ®(¢), ®(¢) are
trigonometric polynomials, too. Thus, {V;; V} is a biorthogonal MRA(m) of L%(R?),
under the conditions (5.1), (5.2), (5.3), (5.4), and (5.5). The proof is finished.

_ Finally we consider the Riesz basis property of {4 ,,,¢ and of {Prixd» when Ho(€),
Hy(&) are trigonometric polynomials.

Lemma 5.1.  Assume that the family {¢, .}, r =1,..., m u € Eq — {0}, satisfies
[P u(©)] < ClEIMA + €)%, ae g, (5.33)
and

S (9P < C, aef¢, (5.34)

where 6, 6,, 63 are positive constants. Then

> I, 0 < Clflp Of € LA(RY). (5.35)

1o K

The proof has been given by Cohen and Daubechies [5].

THEOREM 5.4.  Let Ho(€), Ho(€) be trigonometric polynomials such that (5.1), (5.2),
(5.3), (5.4), and (5.5) hold. Let the matrix-extensions (5.9) satisfy (5.10) and (5.12).
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Assume that all eigenvalues \'s of Py, and all \'s of Py, restricted on P, are in the
unit circle. Then {y .jx; ¥ ,;4} iS a biorthogonal wavelet (Riesz) basis of L(R).

Proof. The assertions follow from Theorem 5.2, Theorem 5.3, Lemma 5.1, and
the equalities

f= z <f1 lzfr,y,j,k>¢/r,u,j,k = z <f7 ¢r,p,j,k>"7/r,p,j,k Oof € LZ(Rd)-

Then the proof is finished.

6. ALGORITHMS AND EXAMPLES

For the construction of biorthogonal MRA(m) and biorthogonal wavelets, we sum-
marize an algorithm based on Theorem 5.4 as follows. Obviously we can obtai~n the
agorithm for constructing orthogonal MRA(m) and wavelets by letting Ho(€) = Hg().

1. Select a couple {Ho(€); Ho(€)} of trigonometric polynomial matrices, which
should satisfy (5.1), (5.2), (5.3), (5.4), and (5.5).

2. Find a matrix-extension {(H,(¢ + vn)); (H.(¢ + vr))}, which should satisfy
(5.10) and (5.12);

3. Consider the action of Py, Pa, on Py, where

PO = { f (5) (f (6))IJ = z bi,j(k)eiik'f},

keAy

d d
and Ay = 1 [-N;, NI, No=Ni, — N;_,and [7 [N, -, N;,] is the coefficient support
i=1 i=1

of the entries of Ho(&) and Hq(€); i.e., any entry of Ho(¢), Ho(€) is of type

Ny, Ng+
z st z hi’j(k)eiik'g.
kg=Ny _ kag=Ng,—

Then, check if al eigenvalues \'s of Py, and al eigenvalues \'s of Py, are in the
unit circle. If so, then {$; @} defined by (5.13) generates a biorthogonal MRA(m),
and {y,; ¥} defined by (5.14) generates a biorthogonal wavelet (Riesz) basis {{, ,;«;
P, Of LA(RY). If some of eigenvalues of Py, (When ®(0) = |, is assumed) is not
in the unit circle, then {pi(X — K), ..., pm(X — K}« is not a Riesz basis.

Step (3) of the algorithm is very easy to handle. So the construction is reduced to
steps (1) and (2), which are difficult, even in the classical casem = 1,d > 1.

In order to calculate the eigen values of Py, we need to know the matrix representa-
tion of operator P,,. Without loss of generdlity, let M = I,,, then for F(¢) € P(TY,

Mo,
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PuF() = > H<§ + I/7T>F<§ + V’]T)H*(% + wr) .

vEEy
Let
: d
HE) = 3 D™, where Ay = [ [N, N7,
keA i=1
and
F) = Y Ce™.
keAy
Then
PyF (&) = z < z Dkeik(£/2+mr)>< Z Ckeik(5/2+zm))< z Dkeik(£/2+mr)>
vEEy \keA; keAn ke,

g 2d< > > DnCZm_kD:_k>e‘mf

meAy ke An,2m—keAy neA,N—keA,
= z Anﬁfi”f.
meAy

Therefore Py is the mapping: {C}ica, = {Amtmea,, With

An = 2 Z z DnCom-kDi—«
keAn,2m—keAy neEAN—kEA;
=2 z z D.CD}_2m+i-

leAn2m—I€EAN NEAN—2m+IEA;

With respect to the basis {€ "}, of P(TY, M,), we can write
Py ~ (Pm,I)ANXANa

where Py, is the mapping: C, — Znca,n-2miica, 2D, CD* . Sincen € A, and n
—-2m+ 1 € A;imply 2m — | € Ay, we can be sure P,y = 0 when 2m — | & A\.
Now assume 2m — | € Ay. With respect to the basis { E;;} 1<ij<m Of Muyxm, Where E;;
is of, except for the (i, j)th-entry being 1, O-entries, we can write

F)m,l -~ (Pir’,rju)mzxm2 y
with

Pm" =2 z dn,il,jld—n—2m+l,i2,j2a

neA,n—2m+leA,

=0 —1m+iz j=(j1—1m+ j,,
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and d,; ; being the (i, j,)th-entry of D,, 7 = 1, 2. Let B, € M,z such that B, = 0
when k € A, and whenk € A, by;; = 27 Zca, Gyjyj,0nkinj,- Then we obtain

Pm,l = 2demq .

Now we take two examplesto illustrate the algorithms. The first one is the orthogo-
nal case and the second one is the biorthogonal case.

ExampPLE 1. Take a, b, c € R — {0} such that
22 + b + & = 3.

Consider the function matrix

1, 1.-ig/2
5+ 38 0

Ho(g) = (2 > .
a—ae'? p 4 ce ¢

Obviously

1 0 0 0
HO(O)Z(O b+c>’ HO(W):<2a b—c>'

Since (b + ¢)? < 2(b* + ¢ < 1, we deduce that one eigenvalue of H(0) is 1, the

modulus of another one is less than 1. It is easy to show that H(&) satisfies (2.7) with

e = 1. By Theorem 2.2, [1 (27') converges on any compact subset. It is also easy to
1

verify that

H(OH* () + H(E + mH*(§ + 7) = L.

Now we calculate the eigenvalues of P, by the above deduced result. In this time,

2B, O 0
PH = 281 ZBO 2871 y

0 0 2B;
where
3 0 0 0
0 %(b + C) 0 0
Bo =
0 0 %(b + 0 0

2a° ab—c) ab—-c) b*+c?

Hence 2B, eigenvalues are A, = 1, \, = 2(b* + ¢, and \; = \, = b + ¢. From 2&?
+b*+ =% anda=+ 0, wederive [\| < 1(i = 2, 3, 4). By the same reason, we
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can deduce that the 2B, and 2B_; eigenvalues are all less than 1. Following our
algorithm for orthogonal case, we get MRA(2).
Now we construct the associated wavelets. Sdlectp € R i =1, 2, ..., 6 such that

V2a b ¢
‘/Epl P2 Ps
\/§p4 Ps  Ps

is unitary, then

such that

(Ho(g) Ho(¢ + W))
Hi(§) Hi§ + 7)

is unitary. It can be verified as follows. Let Hy(¢) = A, + A, then

Hi()HF (&) = (A + Ae ) (A + As€ef)
= (AAF + AAS) + AAfe ™ + AASES.

Hence
Hy(OHT () + Hu(€ + mHI (€ + 7) = AAT + AAL.
From

AAE + A *_< p + P2 + PL+ 3 p1p4+pzp5+p1p4+p3pe>
/71 2172 —

PiPs + P2Ps + PiPs + PaPs Pi + 3+ P + P
we know AJAf + AA3 = |,. By now we have shown:
Hi(OHT(E) + Hi(§ + MHI( + 7) = 1,.
By similar calculation, we can also show:
Ho(OHT (§) + Ho(§ + mHI(§ + 7) = 0.
Finally to create the orthogonal wavelet is just to follow the algorithm routinely.

Since the calculation is very complicated, now we just give a simple example to
illustrate the algorithm for biorthogonal case.
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ExampLE 2. Let{V}, {\7]-} be two MRA of L*R) with filter functions my(¢), fMe(€)
(in C(II)) satisfying =Z,_o My(§ + vm)My(§ + vw) = 1. Define m(§) =
e my(€ + m), M) = e “My(¢ + ). Denote P(€) = (Po€), P1(€)), (&)
(o), @1(€))', with ¢i(€) = m(&/2)@i(€/2), T = 0, 1, o(€) = [1 My(27€) and similarly
for @i(€). Notice that !

<mo(s) mo(£+7r)> < e M) >:| 0. (6.2)

my€) mu¢ + 7)) \mo(€ + ™) my(E + )

Notice that { po(x — k), p1(x — K)}« generates V,. Similarly for V;, (see, for example,
[26]). Consider {V;, V}}, with V, = V,, V, = 2V, and similarly for V. Now we do
some calculations. Since ¢o(&) = Mo(&/2)Po(E/2), P1(§) = Mu(E/2)Po(£/2), similarly
for @, we have

-y Y wo-(2 Y e
Since
1) = (o) = HeO. Hew) = () o) = P
00 10
we see that
Hi (vm)e, = 60,80 = H(vm), v =0, 1. (6.3
And from (6.1) we have
Y Ho(¢ + vm)HE(E + vm) = 1, D& (6.4)
Notice that in this case, we have always
d(0) = I, = $(0), (6.5)

which follows from the calculations

> 1@o2re)|? =1 =3 [9s21a)|? 3 Po(2ma)pa(2rer) = O.

a

Assume that both my(€), (&) are trigometric polynomials, and

M) = 1+ O(l¢]). (6.6)

Equations (6.2), (6.3), (6.4), (6.5), (6.6) show that {Hq(¢); Ho(€)} satisfies the step
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(1) in the preceding algorithm, so we can get a biorthogonal MRA(2) by making use
of the eigenvalue estimate of P, and Py, indicated in step (3).

What are the related wavelets? Or, equivalently, what are the possible {H,(€);
H.(£)} ? The following simple setting of H,(¢) and Hy(¢),

0 Ay . (0 a®)
Hl@‘(o b(o)’ Hl@‘(o 6(5))’ (6.7

will do, where a(¢), b(¢), a(¢), b(¢) are in C(IT) and satisfy
Y a¢ + vmaE +vr) =1=3 b€ + va)b(E + vr) O, (6.8)

S a€ + vm)b(€ + vr) = 0= b(¢ + vn)dE + vr) DE. (6.9)

In fact, with such setting of (H,(¢ + v7)),, and (I:|,,(§ + v7)),.., (5.10) and (5.12)
hold, provided my(¢), My(¢) = O(l¢]). When a(§) = 272 = &(¢), b(¢) = 27%€* =
b(¢), we have

W0 = 270(5) i - 2% ,(5)

Po(¥) = 2%%p1(2%),  Pa(x) = 2¥%py(2x - 1).

This gives the trivial basis {2%)(2x — K)} of V. © V, = V, @ V, = W,, which is
nothing but the classical one.
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