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Abstract—This paper investigates a new class of nonconvex
optimization, which provides a unified framework for linear
precoding in single/multiuser multiple-input multiple-output
channels with arbitrary input distributions. The new optimization
is called generalized quadratic matrix programming (GQMP).
Due to the nondeterministic polynomial time hardness of GQMP
problems, instead of seeking globally optimal solutions, we
propose an efficient algorithm that is guaranteed to converge to
a Karush-Kuhn-Tucker point. The idea behind this algorithm
is to construct explicit concave lower bounds for nonconvex
objective and constraint functions, and then solve a sequence of
concave maximization problems until convergence. In terms of
application, we consider a downlink underlay secure cognitive
radio network, where each node has multiple antennas. We design
linear precoders to maximize the average secrecy (sum) rate with
finite-alphabet inputs and statistical channel state information
at the transmitter. The precoding problems under secure multi-
cast/broadcast scenarios are GQMP problems, and thus, they can
be solved efficiently by our proposed algorithm. Several numerical
examples are provided to show the efficacy of our algorithm.

Index Terms—Generalized quadratic matrix programming,
non-convex optimization, MIMO, linear precoding, secrecy sum
rate maximization, arbitrary input distributions.
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I. INTRODUCTION

O PTIMIZATION has been widely used in communica-
tions and signal processing. In many situations, the de-

sign and analysis of communication networks, when converted
into mathematical forms, become certain types of optimization
problems. However, finding the optimal solution to a general
optimization problem is far from trivial. It is widely believed
that the “watershed” in optimization is between convex and
non-convex problems. Specifically, for any convex problem, the
ellipsoid algorithm [1] can be used to get a global optimum
with arbitrary precision, and its complexity is a polynomial
function with the problem size. In contrast, non-convex prob-
lems are generally nondeterministic polynomial time (NP)-hard,
which implies that there exists no polynomial time algorithm
that can solve general non-convex problems to global optimal-
ity unless the complexity classes P and NP are proven to be
equal.

Although it is challenging to handle non-convex opti-
mization, much progress has been made for certain types
of non-convex problems, such as difference-of-convex (DC)
programming, quadratic constrained quadratic programming
(QCQP) and signomial programming (SP), by means of
convex optimization approaches [2]–[9]. In [2], the authors
revisited a DC algorithm that can address DC problems, whose
objective and constraint functions are the difference of two
convex functions (not necessarily differentiable). When both
objective and constraints of a DC problem are differentiable,
the DC algorithm in [2] becomes another algorithm called
convex-concave procedure [3], [4]. The work in [6] introduced
the semidefinite relaxation (SDR) technique for non-convex
QCQP problems. The main idea of SDR is to lift QCQP
problems into the positive semidefinite matrix space, and then
relax the non-convex rank one constraint. This technique is very
powerful especially when the problem size is small. Moreover,
a feasible point pursuit successive convex approximation
was proposed in [7] for nonconvex QCQP problems. Finally,
references [8], [9] proposed two different numerical algorithms,
which are derived from the majorize-minimization (MM)
framework [10], for non-convex SP problems.

However, many non-convex problems in communications and
signal processing cannot be cast as DC, QCQP or SP prob-
lems. An important example is the linear precoder design for
mutual information maximization in single-user multiple-input
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multiple-output (MIMO) Gaussian channels with finite-alphabet
inputs [11]–[15]. It was revealed in [15] that the input-output
mutual information I(PHHHHP) is the composition of a con-
cave function I(W) and a quadratic matrix function W =
PHHHHP, where P is the precoding matrix. Such a com-
posite function is neither convex nor concave with respect to
P, and it cannot be expressed as a DC, quadratic, or signo-
mial function. For multiuser MIMO channels, including [16]–
[21], precoding problems under finite-alphabet inputs are even
more difficult, because they are generalizations of the single-
user case. To the best of our knowledge, there does not ex-
ist any specific class of non-convex optimization that can
capture the underlying structure of linear precoding for dif-
ferent communication channels and arbitrary channel input
distributions.

A. Contributions

The contributions of this paper are listed as follows:
First, we study a new class of non-convex optimization,

which provides a unified framework for linear precoding under
different MIMO channels and arbitrary input distributions.
The new optimization is a generalization of the quadratic
matrix programming [22], and we call it generalized quadratic
matrix programming (GQMP). A GQMP problem is defined
as maximizing a generalized quadratic matrix function subject
to generalized quadratic matrix inequality constraints, with
both objective and constraints being non-convex functions. In
this paper, we develop a numerical algorithm to solve GQMP
problems efficiently. The solution obtained by our proposed
GQMP algorithm reaches the Karsuh-Kuhn-Tucker (KKT)
point. The key idea of this algorithm is to construct a concave
lower bound for any generalized quadratic matrix function, and
then replace the non-convex objective and constraint functions
with the corresponding concave lower bounds. Subsequently,
we solve a sequence of concave maximization problems until
convergence. We further analyze the computational com-
plexity of the GQMP algorithm and discuss two non-smooth
generalizations of standard GQMP problems.

Second, we consider a downlink underlay secure cognitive ra-
dio (CR) network where a secondary-user transmitter (ST) com-
municates with I secondary-user receivers (SRs) in the presence
of J eavesdroppers (EDs) and subject to interference threshold
constraints at K primary-user receivers (PRs). Each node in
the network is equipped with multiple antennas. We address
the fundamental problem of maximizing the average secrecy
(sum) rate of secondary users through linear precoding under
the following assumptions: 1) The ST employs finite-alphabet
modulation schemes; 2) The ST only has the knowledge of statis-
tical channel state information (CSI) of each network node. The
linear precoding problems under both secure multicast and se-
cure broadcast scenarios are GQMP problems, thus they can be
solved efficiently by our proposed GQMP algorithm. Finally, we
present several numerical results to evaluate the performance of
the proposed precoding with different system parameters. These
results show that when considering finite-alphabet systems, our
proposed precoding significantly outperforms the conventional
Gaussian precoding design.

B. Notations

The following notations are adopted throughout the paper:
Boldface lowercase letters, boldface uppercase letters, and cal-
ligraphic letters are used to denote vectors, matrices and sets,
respectively. The real and complex number fields are denoted
by R and C, respectively. The space of Hermitian n × n ma-
trices is denoted by Hn . The superscripts (·)T , (·)∗ and (·)H

stand for transpose, conjugate, and conjugate transpose opera-
tions, respectively. tr(·) is the trace of a matrix; [·]+ denotes
max(·, 0); dom(·) denotes the domain of a function; A(+ ) de-
notes the positive definite part of a Hermitian matrix A, i.e.,
A(+ ) =

∑
λi >0 λiuiuH

i , where λi is the i-th eigenvalue of A,
and ui is the corresponding eigenvector of A; A(−) denotes
the negative definite part of A, i.e., A(−) =

∑
λi <0 λiuiuH

i ;
‖ · ‖ denotes the Euclidean norm of a vector; Ex(·) represents
the statistical expectation with respect to x; I and 0 denote an
identity matrix and a zero matrix, respectively, with appropriate
dimensions; A � B represents A − B is positive semidefinite;
I(·) represents the mutual information; log(·) and ln(·) are used
for the base two logarithm and natural logarithm, respectively.

The rest of this paper is organized as follows. Section II in-
troduces and solves generalized quadratic matrix programming
problems. Section III sets up the network model and formulates
the precoding problems. Section IV solves the linear precod-
ing problems by generalized quadratic matrix programming.
Section IV presents several numerical results and Section V
draws the conclusion.

II. GENERALIZED QUADRATIC MATRIX PROGRAMMING

A real-valued function h(X) is said to be a composite
quadratic matrix function if h(X) can be expressed in the form

h(X) = g(XHAX), g ∈ G (1)

where X ∈ Cn×r , A ∈ Hn , g(W) : Hr → R, and G is the fam-
ily of differentiable convex functions satisfying either matrix
nondecreasing (MND) or matrix nonincreasing (MNI) condi-
tion. The definition of MND and MNI are given respectively as
[23, ch. 3.6.1]:

MND : if W1 � W2 , g(W1) ≥ g(W2) (2)

MNI : if W1 � W2 , g(W1) ≤ g(W2). (3)

A linear combination of composite quadratic matrix functions
is called a generalized quadratic matrix function

f(X) =
K∑

k=1

αkgk (XHAkX) (4)

where αk ∈ R, k = 1, 2, ...,K, Ak ∈ Hn , k = 1, 2, ...,K and
gk ∈ G, k = 1, 2, ...,K.

Programming problems dealing with generalized quadratic
matrix functions are called generalized quadratic matrix pro-
gramming (GQMP) problems. The standard form of a GQMP
problem considered in this paper is given by

maximize
X∈X

f0(X)

subject to fj (X) ≥ 0, j = 1, 2, ..., J
(5)
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where X ∈ Cn×r , X is a compact convex set, and fj (X), j =
0, 1, ..., J are generalized quadratic matrix functions

fj (X) =
Kj∑

k=1

αjkgjk (XHAjkX). (6)

Here we implicitly assume that the domain of problem (5) is an
open set containing X , i.e.,

X ⊂ domf0 ∩ domf1 ∩ ... ∩ domfJ . (7)

This assumption ensures 1) fj (X), j = 0, 1, ..., J are differen-
tiable at every X ∈ X ; 2) the domain

⋂
j domfj has no effect

on the optimal solution of problem (5).
Some major properties of the GQMP problem (5) are listed

as follows:
1) The GQMP problem can be expressed in the minimiza-

tion form, since this is equivalent to the maximization
of −f0(X), which is again a generalized quadratic matrix
function. Similarly, the constraints of (5) can be expressed
as fj (X) ≤ 0, j = 1, 2, ..., J .

2) The GQMP problem is a purely non-convex optimization
problem, because generalized quadratic matrix functions
fj (X), j = 0, 1, ..., J are non-concave with respect to X.
When J = 0, the simplified problem maximize

X∈X
f0(X) is

still a non-convex optimization problem.
3) When X = Cn×r , and gjk (W) = tr(W) − cjk for all

(j, k), the GQMP problem is reduced to a non-convex
quadratic matrix programming problem [22]

maximize
X∈Cn ×r

tr(XHÃ0X) − c̃0

subject to tr(XHÃjX) − c̃j ≥ 0, j = 1, 2, ..., J
(8)

where Ãj =
∑K j

k=1 αjkAjk , j = 0, 1, ..., J , and c̃j =
∑K j

k=1 αjk cjk , j = 0, 1, ..., J . Problem (8) can be solved
by the SDR technique, i.e., define Q = XXH and then
relax the non-convex constraint rank(Q) ≤ min{n, r}.

4) The GQMP problem belongs to the class of NP-hard prob-
lems, since the quadratic matrix programming problem in
(8) is NP-hard in general.

Before stating our main results, we introduce a few definitions
on the complex derivative and gradient. For a univariate function
f(x) : C → R, the definition of the complex derivative is given
in [24]:

∂f

∂x∗ � 1
2

(
∂f

∂�(x)
+ j

∂f

∂�(x)

)

(9)

where �(·) and �(·) are the real and image parts of a com-
plex variable, respectively. For a multivariate function f(X) :
Cn×r → R, the complex gradient matrix ∇X f(X) is defined as

∇X f(X) �
[

∂f

∂X∗
ij

]

(10)

where Xij denotes the (i, j)-th element of X.

A. Motivation

GQMP has a wide variety of applications in communi-
cations. In this subsection, we discuss some typical single/

multi-user MIMO Gaussian channels, for which linear pre-
coding with arbitrary input distributions can be formulated as
GQMP problems.

1) Single-User MIMO Gaussian Channels: The single-user
MIMO Gaussian channel is modeled as [15]

y = HPx + n (11)

where H ∈ Cn×r is the complex channel matrix, P ∈ Cr×r is
the linear precoder, n ∈ Cn×1 is the independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaussian
noise with zero-mean and unit-variance, and x ∈ Cr×1 is the
arbitrarily distributed channel input signal with zero-mean and
covariance Ex

[
xxH

]
= I.

In Theorem 1 of [15], the authors presented three properties
of the input-output mutual information I(x;y) with arbitrarily
distributed x:

I(x;y) is a function of W = PHHHHP

∇W I(x;y) = Φ

I(x;y) is a concave function with respect to W

(12)

where Φ is known as the minimum mean square matrix, i.e.,

Φ = E
[
(x − E[x|y])(x − E[x|y])H]

. (13)

The first property shows that I(x;y) is a function of W, thus
it can be expressed as I(W). The second property guarantees
that I(W) is MND because Φ is a positive semidefinite ma-
trix [23, ch. 3.6.1]. The third property implies that −I(W) is a
differentiable convex function of W. Based on the definition in
(4), I(PHHHHP) is a generalized quadratic matrix function
of P. Furthermore, since the feasible precoders with maximum
transmit power γ form a convex set

{
P|tr(PHP) ≤ γ

}
, the fol-

lowing mutual information maximization problem is a GQMP
problem:

maximize
P

I(PHHHHP)

subject to tr(PHP) ≤ γ.
(14)

Example 1: If x is complex Gaussian distributed, the input-
output mutual information is given by

I(x;y) = log det(I + PHHHHP). (15)

Since I(W) = log det(I + W) is a concave and MND func-
tion with respect to W, (15) is a generalized quadratic matrix
function of P.

Example 2: If each element of x is uniformly distributed
from a Q-ary discrete constellation set, the input-output mutual
information is given by [15]

I(x;y) = r log Q − 1
Qr

Qr
∑

m=1

En

{

log
Qr
∑

k=1

e−dm , k

}

. (16)

where dm,k = ‖HP(xm − xk ) + n‖2 − ‖n‖2 . According to
(12), the mutual information expression in (16) is a general-
ized quadratic matrix function of P.
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2) MIMO Gaussian Broadcast Channels: The MIMO Gaus-
sian broadcast channel is modeled as [17]

yi = Hi

⎛

⎝
m∑

j=1

Pjxj

⎞

⎠ + ni , i = 1, 2, ...,m (17)

where Hi ∈ Cn×r is the complex channel matrix for the i-th
receiver, ni ∈ Cn×1 is the i.i.d. circularly symmetric complex
Gaussian noise with zero-mean and unit-variance; Pj ∈ Cr×r

and xj ∈ Cr×1 are the linear precoder and the channel in-
put signal for the j-th receiver, respectively. We assume that
{xj}1≤j≤m are independent, and xj ∈ Cr×1 is arbitrarily dis-
tributed with zero-mean and covariance Exj

[
xjxH

j

]
= I.

The weighted sum-rate maximization and power minimiza-
tion problems with linear precoding can be formulated respec-
tively as

maximize
P

m∑

i=1

μiRi(P)

subject to tr(PHP) ≤ γ.

(18)

minimize
P

tr(PHP)

subject to Ri(P) ≥ R̄i , ∀i.
(19)

where P =
[
P1 ,P2 , ...,Pm

]
, μi ≥ 0 with

∑
i μi = m,

Ri(P) = I(xi ;yi) represents the achievable rate for the i-th
receiver, γ is the maximum total transmit power, and R̄i is the
minimum rate requirement for the i-th receiver. Using the chain
rule for mutual information [25], Ri(P) can be expressed alter-
natively as

Ri(P) = I({xj}1≤j≤m ;yi

) − I({xj}j �=i ;yi |xi

)
. (20)

According to (12), Ri(P) is a generalized quadratic matrix
function because it is the difference of two composite quadratic
matrix functions. Thus problems (18) and (19) belong to the
class of GQMP problems.

3) MIMO Gaussian Interference Channels: The MIMO
Gaussian interference channel is modeled as [19]

yj = HjjPjxj +
m∑

i=1,i �=j

HijPixi + nj , j = 1, 2, ...,m

(21)

where Hij ∈ Cn×r is the complex channel matrix between the
i-th transmitter and the j-th receiver, ni ∈ Cn×1 is the i.i.d.
circularly symmetric complex Gaussian noise with zero-mean
and unit-variance; Pi ∈ Cr×r and xi ∈ Cr×1 are the linear pre-
coder and the channel input signal at the i-th transmitter, re-
spectively. We assume that {xi}1≤i≤m are independent, and
xi ∈ Cr×1 is arbitrarily distributed with zero-mean and covari-
ance Ex i

[
xixH

i

]
= I.

The weighted sum-rate maximization problem with linear
precoding can be formulated as

maximize
{P i }

m∑

j=1

μjRj ({Pi})

subject to tr(PH
i Pi) ≤ γi, i = 1, 2, ...,m.

(22)

where μj ≥ 0 with
∑

j μj = m, {Pi} denotes the collection of
all precoders {P1 ,P2 , ...,Pm}, Rj ({Pi}) = I(xj ;yj ) repre-
sents the achievable rate at the j-th transmitter, and γi is the
maximum transmit power for the i-th transmitter. Using the
chain rule for mutual information, Rj ({Pi}) can be expressed
alternatively as

Rj ({Pi}) = I({xi}1≤i≤m ;yj

) − I({xi}i �=j ;yj |xj

)
. (23)

The achievable rate Rj ({Pi}) is the difference of two
composite quadratic matrix functions with respect to P =
diag{P1 ,P2 , ...,Pm}, where diag{·} represents a block di-
agonal matrix. Therefore, Rj ({Pi}) is a generalized quadratic
matrix function of P, and problem (22) belongs to the class of
GQMP problems.

4) MIMO Gaussian Wiretap Channels: The MIMO Gaus-
sian wiretap channel is modeled as [16]

yr = HrPx + nr

ye = HePx + ne
(24)

where yr ∈ Cn×1 and ye ∈ Cn×1 are received signals at the in-
tended receiver and the eavesdropper, respectively; Hr ∈ Cn×r

and He ∈ Cn×r are complex channel matrices; P ∈ Cr×r is the
linear precoder at the transmitter; nr ∈ Cn×1 and ne ∈ Cn×1

are i.i.d. circularly symmetric complex Gaussian noises with
zero-means and covariances σ2I; and x ∈ Cr×1 is the arbitrarily
distributed channel input signal with zero-mean and covariance
Ex

[
xxH

]
= I.

The secrecy rate maximization problem with linear precoding
can be formulated as

maximize
P

I(x;yr) − I(x;ye)

subject to tr(PHP) ≤ γ.
(25)

where γ is the maximum transmit power. Since I(x;yr) −
I(x;ye) is a generalized quadratic matrix function of P, prob-
lem (25) belongs to the class of GQMP problems.

B. Algorithm Design

In this subsection, we design a numerical algorithm for
GQMP problems by investigating the underlying structure of
composite quadratic matrix functions g(XHAX). For every
g(XHAX), we provide the corresponding concave lower bound
l(X;X0) and convex upper bound u(X;X0), which depend on
an arbitrary matrix X0 ∈ Cn×r and satisfy the following three
conditions:

l(X;X0) ≤ g(XHAX) ≤ u(X;X0) for all X

g(XHAX) = l(X;X0) = u(X;X0) when X = X0 (26)

∇X g(XHAX) =∇X l(X;X0) =∇X u(X;X0) when X=X0 .

In other words, g(XHAX) lies between l(X;X0) and
u(X;X0), and it is tangent to both l(X;X0) and u(X;X0)
when X = X0 . The conditions in (26) are necessary for us to
design an ascent algorithm that converges to a KKT point of
problem (5).



JIN et al.: GENERALIZED QUADRATIC MATRIX PROGRAMMING: A UNIFIED FRAMEWORK FOR LINEAR PRECODING 4891

Algorithm 1: The GQMP algorithm.
1) Initialization: Given tolerance ε > 0, choose an initial

feasible point X0 , set n = 1, s0 = f0(X0). Let Xopt
n re-

presents the optimal solution of (31) at the n-th iteration.
2) Stopping criterion: if |sn − sn−1 | > ε go to the next

step,
otherwise STOP.

3) Concave approximation:
a) replace X0 in (31) with Xopt

n and solve problem (31)
to obtain Xopt

n+1 .
b) set sn+1 = f0(X

opt
n+1).

4) Set n := n + 1 and go to step 2).
5) Output: Xopt

n .

Theorem 1: The concave lower bound of g(XHAX) is

l(X;X0) = tr
(
L(X)HG

)
+ g(XH

0 AX0) − tr
(
XH

0 AX0G
)

(27)

where G ∈ Hr is the complex gradient of g(W) at W =
XH

0 AX0 , i.e., G = ∇W g(XH
0 AX0), and L(X) is given by

L(X) =

{
L1 , g(W) is MND

L2 , g(W) is MNI
(28)

with L1 = XHA(−)X + XHA(+ )X0 + XH
0 A(+ )X − XH

0 A(+ )

X0 , L2 = XHA(+ )X + XHA(−)X0 + XH
0 A(−)X − XH

0 A(−)

X0 .
Proof: See Appendix A. �
Theorem 2: The convex upper bound of g(XHAX) is

u(X;X0) =

{
g
(
U1(X)

)
, g(W) is MND

g
(
U2(X)

)
, g(W) is MNI

(29)

with

U1(X)=XHA(+ )X+XHA(−)X0 + XH
0 A(−)X − XH

0 A(−)X0

U2(X)=XHA(−)X+XHA(+ )X0 +XH
0 A(+ )X−XH

0 A(+ )X0 .

Proof: See Appendix A. �
Based on Theorems 1 and 2, a concave lower bound of fj (X)

in (6) is given by

f̄j (X;X0)=
∑

αj k >0

αjk ljk (X;X0) +
∑

αj k <0

αjkujk (X;X0) (30)

where ljk (X;X0) and ujk (X;X0) represent the lower and up-
per bounds of gjk (XHAjkX), respectively. By replacing each
of fj (X), j = 0, 1, ..., J with the corresponding concave lower
bound f̄j (X;X0), we obtain the following concave maximiza-
tion problem

maximize
X∈X

f̄0(X;X0)

subject to f̄j (X;X0) ≥ 0, j = 1, 2, ..., J.
(31)

Then the MM framework [10] can be exploited to find a KKT
point of problem (5) through solving a sequence of problems
(31) with different X0 . In the first iteration, we solve (31) at
initial X0 , and the optimal solution is denoted by Xopt

1 . Then

we replace f̄j (X;X0) in (31) with f̄j (X;Xopt
1 ), j = 0, 1, ..., J ,

and solve problem (31) again. At the n-th iteration, we solve
(31) by replacing f̄j (X;X0) with f̄j (X;Xopt

n−1), j = 0, 1, ..., J ,
where Xopt

n−1 is the optimal solution of (31) at the (n − 1)-
th iteration. The GQMP algorithm for solving problem (5) is
summarized in Algorithm 1.

The convergence of Algorithm 1 is presented by the following
proposition.

Proposition 1: Every limit point of the iterates {Xopt
n }

generated by Algorithm 1 satisfies the KKT conditions of
problem (5).

Proof: See Appendix B. �
Algorithm 1 is an iterative procedure between updating con-

cave lower bounds and solving concave maximization problems
(31). Since (31) is a convex optimization problem, it can be
solved efficiently by the interior-point method with Newton it-
erations. The total number of optimization variables in problem
(31) is nr, then the complexity order for solving (31) with
Newton iterations is about O((nr)3) [26]. Assuming that
Algorithm 1 updates the concave lower bounds T times, the
overall complexity is then given by O(T (nr)3).

C. Non-Smooth Generalization

The GQMP algorithm developed in the last subsection can be
used to handle non-smooth optimization problems. Herein, we
discuss two possible non-smooth generalizations.

1) GQMP With Min-Rate Utility: For a multiuser system,
we often adopt a utility function to measure the overall system
performance. Thus it is of interest to consider the following
GQMP problem with the min-rate utility:

R = maximize
X∈X

min
1≤j≤L

fj (X)

subject to fj (X) ≥ 0, j = L + 1, 2, ..., J
(32)

where R is the optimal value of problem (32), X ∈ Cn×r , X is a
compact convex set, and fj (X), j = 1, 2, ..., J are generalized
quadratic matrix functions

fj (X) =
Kj∑

k=1

αjkgjk (XHAjkX). (33)

Problem (32) is a non-smooth optimization problem, and our
first step is to replace the non-smooth point-wise minimum
operator with the log-sum-exp approximation via the following
inequality [27], [28]

0 ≤ min
1≤j≤L

aj − 1
β

ln
L∑

j=1

eβaj ≤ 1
|β| ln L, β < 0 (34)

which results in a smooth optimization problem

Rs(β) = maximize
X∈X

1
β

ln
L∑

j=1

eβfj (X)

subject to fj (X) ≥ 0, j = L + 1, 2, ..., J.

(35)
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Here Rs(β) is the optimal value of (35). The relationship be-
tween problems (32) and (35) is revealed as follows

|Rs(β) − R| <
1
|β| ln L. (36)

Then we can obtain a KKT point of (35) through solving a
sequence of maximization problems

maximize
X∈X

1
β

ln
L∑

j=1

eβ f̄j (X ;X0 )

subject to f̄j (X;X0) ≥ 0, j = L + 1, 2, ..., J

(37)

where f̄j (X;X0) is the concave lower bound of fj (X), j =
1, 2, ..., J . The objective function of problem (37) is concave
because − ln

∑
j exp(−fj ) is concave whenever fj is concave

for all j. Therefore, problem (37) is a smooth concave maxi-
mization problem, whose optimal value can be readily attained.
Subsequently, we invoke Algorithm 1 to solve (37) multiple
times with sufficiently large |β| until convergence, and a subop-
timal solution of problem (32) is obtained.

2) Secrecy Sum Rate Maximization: Consider the secrecy
sum rate maximization problem in multiuser multi-eavesdropper
networks, where each node is equipped with multiple antennas.
The secrecy sum rate in such networks has a very complicated
form:

I∑

i=1

min
1≤j≤J

[
Rij

]+
(38)

where
[
Rij

]+
represents the individual secrecy rate between the

i-th user and the j-th eavesdropper. Replacing each of Rij with
a generalized quadratic matrix function, we obtain the following
generalized GQMP problems:

maximize
X∈X

I∑

i=1

min
1≤j≤J

[
fij (X)

]+ (39)

whereX ∈ Cn×r ,X is a compact convex set, and fij (X),∀(i, j)
are generalized quadratic matrix functions

fij (X) =
Ki j∑

k=1

αijk gijk (XHAijkX). (40)

Problem (39) is extremely difficult to solve because of the
non-concavity of [·]+ . To see this, we first reformulate problem
(39) as

maximize
X∈X

I∑

i=1

[
min

1≤j≤J
fij (X)

]+
. (41)

Invoking Theorems 1 and 2, we can construct the concave
lower bound of fij (X), which is denoted by f̄ij (X;X0). More-
over, the point-wise minimum of concave functions is concave
[23], i.e., minj f̄ij (X;X0) is a concave function. However,∑

i [minj f̄ij (X;X0)]+ is neither concave nor quasi-concave,
due to the non-concavity of [·]+ . Therefore, Algorithm 1 cannot
be applied directly to solve problem (39). The following propo-
sition shows that a “naive” method can be used to solve problem

(39) via solving 2I − 1 GQMP problems:

Rm = maximize
X∈X

∑

i∈Sm

min
1≤j≤J

fij (X) (42)

where Rm is the optimal value of (42), and Sm represents the
m-th non-empty subset of {1, 2, ..., I}.

Proposition 2: Let R denote the optimal value of problem
(39), then we have

R = max
1≤m≤2I −1

Rm . (43)

Proof: See Appendix B. �
Although Proposition 2 provides a trackable way to solve

problem (39), the complexity of this approach grows exponen-
tially with respect to I . In the sequel, we design a more efficient
algorithm for problem (39).

Our first step is to reformulate problem (41) as

maximize
X∈X

I∑

i=1

max
λi ∈[0,1]

[
λi · min

1≤j≤J
fij (X)

]
. (44)

Problems (41) and (44) are equivalent because
[

min
1≤j≤J

fij (X)
]+

= max
λi ∈[0,1]

[
λi · min

1≤j≤J
fij (X)

]
. (45)

The optimal λi of problem (44) depends on X, and it has the
following semi-closed form expression:

λ∗
i (X) =

⎧
⎨

⎩

1, min
1≤j≤J

fij (X) ≥ 0

0, min
1≤j≤J

fij (X) < 0
, i = 1, 2, ..., I. (46)

By plugging λ∗
i (X) into (44), problem (39) is equivalent to the

following optimization problem

maximize
X∈X

F (X) =
I∑

i=1

[
λ∗

i (X) · min
1≤j≤J

fij (X)
]
. (47)

Note that for any X0 ∈ X , the following inequalities hold

F (X) =
I∑

i=1

max
λi ∈[0,1]

[
λi · min

1≤j≤J
fij (X)

]
(48)

≥
I∑

i=1

λ∗
i (X0) · min

1≤j≤J
fij (X) (49)

≥
I∑

i=1

λ∗
i (X0) · min

1≤j≤J
f̄ij (X;X0). (50)

where f̄ij (X;X0) is the concave lower bound of fij (X). Since
λ∗

i (X0) ≥ 0, equation (50) serves as the concave lower bound
of F (X). Therefore, by replacing F (X) with its concave lower
bound in (50), we obtain a concave maximization problem

maximize
X∈X

F̄ (X;X0) =
I∑

i=1

λ∗
i (X0) · min

1≤j≤J
f̄ij (X;X0). (51)

Using the log-sum-exp approximation in (34), we can solve
problem (51) efficiently through solving a smooth convex prob-
lem. Then we can obtain a suboptimal solution of problem (39)
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Algorithm 2: The Generalized GQMP algorithm.
1) Initialization: Given tolerance ε > 0, choose an initial

feasible point X0 , set n = 1, s0 = F (X0). Let Xopt
n re-

presents the optimal solution of (51) at the n-th iteration.
2) Stopping criterion: if |sn − sn−1 | > ε go to the next

step,
otherwise STOP.

3) Concave approximation:
a) replace X0 in (51) with Xopt

n and solve problem (51)
to obtain Xopt

n+1 .
b) set sn+1 = F (Xopt

n+1).
4) Set n := n + 1 and go to step 2).
5) Output: Xopt

n .

Fig. 1. System model of a downlink underlay secure cognitive radio network.

by solving a sequence of problems (51) with different X0 . The
details are summarized in Algorithm 2. The convergence of
Algorithm 2 for problem (39) is guaranteed by the following
proposition.

Proposition 3: Let Xopt
n represent the optimal solution of

problem (51) at the n-th iteration, then the sequence {F (Xopt
n )}

generated by Algorithm 2 converges.
Proof: See Appendix B. �

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink underlay secure CR network de-
picted in Fig. 1. A secondary-user transmitter (ST) is serving I
secondary-user receivers (SRs) in the presence of J eavesdrop-
pers (EDs) and K primary-user receivers (PRs). The channel
output at the i-th SR, the j-th ED and the k-th PR are, respec-
tively, given by

yi = His + nhi
, i = 1, 2, ..., I

zj = Gjs + ngj
, j = 1, 2, ..., J

wk = Fks + nfk
, k = 1, 2, ...,K (52)

where Hi ∈ CNR ×NT , Gj ∈ CNE ×NT and Fk ∈ CNP ×NT are
complex channel matrices from the ST to the i-th SR, the j-
th ED, and the k-th PR, respectively; s ∈ CNT ×1 is the channel
input at the ST; nhi

∈ CNR ×1 , ngj
∈ CNE ×1 and nfk

∈ CNP ×1

are i.i.d. circularly symmetric complex Gaussian noises with
zero-mean and unit-variance.

In this paper, we assume Kronecker correlation model, where
the channel matrices can be written as [29]

Hi = Φ
1
2
hi

H̃iΘ
1
2
hi

, i = 1, 2, ..., I

Gj = Φ
1
2
gj G̃jΘ

1
2
gj , j = 1, 2, ..., J

Fk = Φ
1
2
fk

F̃kΘ
1
2
fk

, k = 1, 2, ...,K. (53)

Here H̃i ∈ CNR ×NT , G̃j ∈ CNE ×NT and F̃k ∈ CNP ×NT are
random matrices with i.i.d. zero-mean unit-variance com-
plex Gaussian entries; Θhi

∈ CNT ×NT , Θgj
∈ CNT ×NT and

Θfk
∈ CNT ×NT are positive semidefinite transmit correlation

matrices of Hi , Gj and Fk , respectively. Φhi
∈ CNR ×NR ,

Φgj
∈ CNE ×NE and Φfk

∈ CNP ×NP are positive semidefinite
receive correlation matrices of Hi , Gj and Fk , respectively.
We further assume that the receive antennas at SRs, EDs and
PRs are uncorrelated, i.e., Φhi

, Φgj
and Φfk

are all identity
matrices. Then the correlation model in (53) becomes

Hi = H̃iΘ
1
2
hi

, i = 1, 2, ..., I

Gj = G̃jΘ
1
2
gj , j = 1, 2, ..., J

Fk = F̃kΘ
1
2
fk

, k = 1, 2, ...,K. (54)

Note that the above uncorrelated assumption are only used to
avoid cumbersome expressions in precoding design. As we will
see in Section IV, even when Φhi

, Φgj
and Φfk

are arbitrary
positive semidefinite matrices, precoding designs can also be
cast as GQMP problems.

In the sequel, we focus on two different transmission sce-
narios in the downlink underlay secure CR network: secure
multicast scenario and secure broadcast scenario.

A. Secure Multicast Scenario

In the secure multicast scenario, the ST sends a common mes-
sage to all SRs. Therefore, the channel input s can be represented
as

s = Px (55)

where P ∈ CNT ×NT is the precoding matrix at the ST, and
x ∈ CNT ×1 is the input data vector for SRs with zero-mean
and covariance Ex

[
xxH

]
= I. We further assume that the i-th

SR knows the instantaneous channel realization of Hi , the j-th
ED knows the instantaneous channel realization of Gj , and the
ST only has channel statistics of all nodes in the system, i.e.,
the transmit correlation matrices {Θhi

,Θgj
,Θfk

,∀(i, j, k)} as
well as the distributions of H̃i , G̃j and F̃k . Then the average
secrecy rate for the i-th SR can be expressed as

Ri = min
1≤j≤J

[I(xi ;yi |Hi) − I(xi ; zj |Gj )
]+

(56)

= min
1≤j≤J

[
EH i

I(xi ;yi |Hi = H̄i)

− EG j
I(xi ; zj |Gj = Ḡj )

]+
(57)
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where H̄i and Ḡj are given channel realizations of Hi and Gj ,
respectively. For notational simplicity, in the following, we omit
the given channel realization condition in mutual information
expressions. Based on (57), the following average secrecy rate
for multicast scenario is achievable [30]

RM C (P) = min
1≤i≤I
1≤j≤J

[
EH i

I(x;yi) − EG j
I(x; zj )

]+

=

[

min
1≤i≤I
1≤j≤J

[
EH i

I(x;yi) − EG j
I(x; zj )

]
]+

. (58)

We maximize RM C (P) under the power constraint at the ST
and the interference threshold constraints at PRs. The average
transmit power at the ST is constrained to γ0 :

Extr
(
PxxHPH)

= tr(PHP) ≤ γ0 (59)

and the average interference power at the k-th PR is limited by
NT · γk :

Ex,F k
tr

(
FkPxxHPHFH

k

)

= EF̃ k
tr

(
PH(Θ

1
2
fk

)H F̃H
k F̃kΘ

1
2
fk

P
)

= NT · tr(PHΘfk
P

) ≤ NT · γk , ∀k. (60)

The second equality in (60) holds because 1) the entries of F̃k

are i.i.d. complex Gaussian variables with zero-mean and unit-
variance; 2) F̃k and x are independent. Since both (59) and (60)
are quadratic matrix constraints, we can incorporate (59) into
(60) by defining Θf0 = I. Then the set of all feasible precoding
matrices is given by

PM C = {P|tr(PHΘfk
P

) ≤ γk , k = 0, 1, ...,K} (61)

and the linear precoding problem under secure multicast sce-
nario can be formulated as

maximize
P∈PM C

min
1≤i≤I
1≤j≤J

[
EH i

I(x;yi) − EG j
I(x; zj )

]
.

(62)

Here we remove the nonnegative operator [·]+ in RM C (P) with-
out loss of optimality because 1) the maximum average secrecy
rate obtained by problem (62) is nonnegative since we can al-
ways achieve a zero objective value with P = 0; 2) when the
maximum average secrecy rate is positive, [·]+ has no effect on
the optimal precoders.

B. Secure Broadcast Scenario

In the secure broadcast scenario, the ST sends a private mes-
sage to each SR. Therefore, the channel input s can be repre-
sented as

s =
I∑

i=1

Pixi = Px (63)

where Pi ∈ CNT ×NT is the precoding matrix for the i-th SR,
xi ∈ CNT ×1 is the input data vector for the i-th SR with zero-
mean and covariance Ex i

[
xixH

i

]
= I, P =

[
P1 ,P2 , ...,PI

]

and x =
[
xH

1 ,xH
2 , ...,xH

I

]H
. We further assume that the i-th

SR knows the instantaneous channel realization of Hi , the j-th

ED knows the instantaneous channel realization of Gj , and the
ST only has channel statistics of all nodes in the system. In
addition, the i-th SR treats signals of other SRs as interference,
and the j-th ED can at best decode the signal of the i-th SR
while treating signals of other SRs as interference. Under these
assumptions, the average secrecy rate for the i-th SR can be
expressed as

Ri = min
1≤j≤J

[
EH i

I(xi ;yi) − EG j
I(xi ; zj )

]+
. (64)

Based on (64), the following average secrecy sum rate for broad-
cast scenario is achievable

RB C (P) =
I∑

i=1

min
1≤j≤J

[
EH i

I(xi ;yi) − EG j
I(xi ; zj )

]+
. (65)

The average secrecy sum rate maximization in secure broadcast
scenario with power and interference threshold constraints can
then be formulated as

maximize
P∈PB C

RB C (P) (66)

where the feasible set PB C can be obtained from (59) and (60)
with Θf0 = I:

PB C = {P|tr(PHΘfk
P

) ≤ γk , k = 0, 1, ...,K}. (67)

IV. PRECODING DESIGN BY GENERALIZED QUADRATIC

MATRIX PROGRAMMING

A. Secure Multicast Scenario

In this subsection, we solve problem (62) under finite-
alphabet inputs by GQMP. Instead of Gaussian inputs, we as-
sume that the input data vector x is uniformly distributed from
XNT =

{
x|xk ∈ X ,∀k

}
, where xk is the k-th element of x,

and X is a Q-ary discrete constellation set. Then the average
constellation-constrained mutual information EH i

I(x;yi) and
EG j

I(x; zj ) can be expressed as [15]

EH i
I(x;yi) = log M − 1

M

M∑

m=1

EH i , n h i

{

log
M∑

n=1

e−hi
m , n

}

(68)

EG j
I(x; zj ) = log M − 1

M

M∑

m=1

EG j , n g j

{

log
M∑

n=1

e−g j
m , n

}

(69)

where M is equal to QNT ; hi
m,n = ‖HiP(xm − xn ) +

nhi
‖2 − ‖nhi

‖2 and gj
m,n = ‖GjP(xm − xn ) + ngj

‖2 −
‖ngj

‖2 , with xm and xn representing input realizations from
XNT .

The average constellation-constrained mutual information is
difficult to compute directly because both EH i

I(x;yi) and
EG j

I(x; zj ) in (68) and (69) have no closed form expressions.
Moreover, the gradients of EH i

I(x;yi) and EG j
I(x; zj ) also

have no closed form expressions. Although we can use Monte
Carlo method and numerical integral to estimate EH i

I(x;yi)
and EG j

I(x; zj ) as well as their gradients, the computational
complexity is prohibitively high especially when the dimensions
of Hi and Gj are large.
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This difficulty can be mitigated by introducing an accurate
approximation of the average mutual information in doubly
correlated fading channels [31]. The average secrecy rate with
finite-alphabet inputs can then be approximated as

[

min
1≤i≤I
1≤j≤J

[
g(PHΘgj

P;NE ) − g(PHΘhi
P;NR )

]
]+

(70)

where g(W;N) with N ≥ 1 is given below

g(W;N) =
1
M

M∑

m=1

log
M∑

n=1

(

1 +
1
2
eH

mnWemn

)−N

. (71)

The approximation in (70) is very accurate for arbitrary correla-
tion matrices and precoders, and the computational complexity
of (70) is several orders of magnitude lower than that of the
original average secrecy rate [31].

Using (70) as an alterative to replace the average secrecy rate,
problem (62) can be approximated as

maximize
P∈PM C

min
1≤i≤I
1≤j≤J

g(PHΘgj
P;NE ) − g(PHΘhi

P;NR ).
(72)

The following proposition indicates that (72) is a GQMP
problem with the min-rate utility.

Proposition 4: g(W;N) is a convex and MNI function of
W.

Proof: See Appendix B. �
Based on Proposition 4, g(PHΘgj

P;NE ) − g(PHΘhi
P;

NR ) is a generalized quadratic matrix function of P for all
(i, j). Therefore, (72) is a special case of problem (32) and we
can solve it efficiently by Algorithm 1.

B. Secure Broadcast Scenario

In this subsection, we solve problem (66) under finite-
alphabet inputs by GQMP. Instead of Gaussian inputs, we as-
sume that the input data vector x is uniformly distributed from
XNT I =

{
x|xk ∈ X ,∀k

}
, where xk is the k-th element of

x, and X is a Q-ary equiprobable discrete constellation set.
Then the average constellation-constrained mutual information
EH i

I(xi ;yi) and EG j
I(xi ; zj ) can be expressed as

EH i
I(xi ;yi) =

1
M

M∑

m=1

EH i , n h i

{
log(aii

m )
}

(73)

EG j
I(xi ; zj ) =

1
M

M∑

m=1

EG j , n g j

{
log(bij

m )
}

(74)

with

aii
m =

∑M
n=1 e−‖H i PIi (xm −xn )+nh i

‖2 +‖nh i
‖2

∑M
n=1 e−‖H i P(xm −xn )+nh i

‖2 +‖nh i
‖2 (75)

bij
m =

∑M
n=1 e−‖G j PIi (xm −xn )+ng j

‖2 +‖ng j
‖2

∑M
n=1 e−‖G j P(xm −xn )+ng j

‖2 +‖ng j
‖2 (76)

where M is equal to QNT I ; Ii is a block diagonal matrix formed
by replacing the i-th NT × NT block diagonal entry of the
NT I × NT I identity matrix I with 0; xm and xn are input
realizations from XNT I .

Similarly, by adopting the accurate approximation in [31],
the average secrecy sum rate with finite-alphabet inputs can be
approximated respectively as

I∑

i=1

min
1≤j≤J

[IA (xi ;yi) − IA (xi ; zj )
]+

(77)

where IA (xi ;yi) and IA (xi ; zj ) are accurate approximations
of EH i

I(xi ;yi) and EG j
I(xi ; zj ) respectively:

IA (xi ;yi) = gi(PHΘhi
P;NR ) − g(PHΘhi

P;NR ) (78)

IA (xi ; zj ) = gi(PHΘgj
P;NE ) − g(PHΘgj

P;NE ) (79)

with

gi(W;N)=
1
M

M∑

m=1

log
M∑

n=1

(
1 +

1
2
eH

mnIH
i WIiemn

)−N

(80)

g(W;N) =
1
M

M∑

m=1

log
M∑

n=1

(
1 +

1
2
eH

mnWemn

)−N

. (81)

Using (77) as an alternative, problem (66) can be approximated
as

maximize
P∈PB C

I∑

i=1

min
1≤j≤J

[IA (xi ;yi) − IA (xi ; zj )
]+ (82)

According to Proposition 4, gi(W;N) and g(W;N) are con-
vex and MNI functions of W. Therefore, problem (82) is a
special case of problem (39), and we can solve it efficiently by
Algorithm 2.

C. Discussions

In this subsection, we show that precoding problems under
the doubly correlated model (53) are GQMP problems. For
convenience, we restrict our attention to the secure multicast
scenario, and it is straightforward to extend our results to the
secure broadcast scenario.

Our first step is to replace the average secrecy rate RM C (P)
by the following accurate approximation:

min
1≤i≤I
1≤j≤J

[
ḡ
(
PHΘgj

P;λ(Φgj
)
) − ḡ

(
PHΘhi

P;λ(Φhi
)
)]+

(83)

where λ(·) represents the eigenvalues of a positive semidefinite
matrix; ḡ(W; r) is given below [31]

ḡ(W; r) =
1
M

M∑

m=1

log
M∑

n=1

∏

q

(
1 +

rq

2
eH

mnWemn

)−1
(84)

with rq ≥ 0 being the q-th element of r. When the receive
correlation matrix is an identity matrix I, λ(I) is the vector with
all entries one, and ḡ(W;λ(I)) is reduced to g(W;N) in (71).
Although ḡ(W; r) looks more complicated than g(W;N), the
convexity and MNI property of ḡ(W; r) can be proved in the
same manner as in Proposition 4. This leads to the following
proposition.

Proposition 5: ḡ(W; r) is a convex and MNI function of W.
Proof: The proof is omitted for brevity. �
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The second step is to determine the interference threshold
constraints at PRs. When Φfk

�= I, the average interference
power at the k-th PR is given by

Ex,F k
tr

(
FkPxxHPHFH

k

)

= EF̃ k
tr

(
PH(Θ

1
2
fk

)H F̃H
k Φfk

F̃kΘ
1
2
fk

P
)

= tr(Φfk
) · tr(PHΘfk

P
)
. (85)

Since tr(Φfk
) > 0 and Θfk

� 0, the average interference
power is a convex function of P.

According to Proposition 5, the approximated average secrecy
rate is a generalized quadratic matrix function with the min-rate
utility. In addition, the feasible set with power and interference
threshold constraints is convex. Therefore, the precoding prob-
lem under secure multicast scenario is a GQMP problem, and it
can be solved efficiently by Algorithm 1.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to show that
the GQMP algorithm for precoding design is numerically ro-
bust and computationally effective under various situations. For
illustration purpose, we adopt the exponential correlation model

[
R(ρ)

]
ij

= ρ|i−j |, ρ ∈ [0, 1) (86)

where ρ is the correlation coefficient between different antennas.

A. Example 1: Point-to-Point MIMO Gaussian Channel

In this example, we compare our proposed precoding with
the globally optimal precoding algorithm [15] in a point-to-
point MIMO setting. Specifically, we solve problem (14) with
finite-alphabet inputs by the GQMP and the globally optimal
precoding algorithms. The channel matrix H is given by

H =
[

2 1
1 1

]

(87)

which was also used in [15]. The input signal is drawn from
QPSK constellation. Since we assume unit noise power, the
signal-to-noise ratio (SNR) is defined as SNR = γ, where γ is
the total transmit power at the transmitter.

Fig. 2 depicts comparison results with the globally optimal
precoding algorithm [15] and the waterfilling algorithm. As
shown in Fig. 2, our proposed precoding can achieve the per-
formance of the globally optimal precoding algorithm in whole
SNR regimes. In addition, the waterfilling algorithm, which is
optimal for Gaussian inputs, is quite suboptimal for practical
MIMO systems under finite-alphabet inputs, especially in the
medium and high SNR regimes.

B. Example 2: MIMO Gaussian Wiretap Channel

In this example, we compare our proposed precoding with
the gradient descent algorithm [16] in a MIMO wiretap chan-
nel. Specifically, we solve problem (25) with finite-alphabet
inputs by the GQMP and the gradient descent algorithms. The
channel matrices at the receiver and the eavesdropper are given

Fig. 2. Mutual information as a function of the SNR.

Fig. 3. Comparison between the proposed precoding and the gradient descent
algorithms with finite-alphabet inputs.

respectively as

Hr =
[
0.0991 − 0.8676i 1.0814 + 1.1281i

]
, (88)

He =
[

0.3880 + 1.2024i −0.9825 + 0.5914i

0.4709 − 0.3073i 0.6815 − 0.2125i

]

(89)

which was also used in [16]. The input signal is drawn from
QPSK constellation, and the SNR is defined as SNR = γ

σ 2 ,
where σ2 is the noise power at the receiver and the eavesdropper.
In addition, the initial point for both algorithms is set as

P0 =
[

0.0312 − 0.1762i 0.1719 + 0.7560i

0.9126 + 0.5724i −0.1064 − 0.0097i

]

. (90)

Fig. 3 compares the secrecy rate performance of our proposed
precoding with the gradient descent algorithm [16]. We observe
that our algorithm outperforms the gradient descent algorithm
in high SNR regimes because the gradient descent algorithm is
susceptible to initial points.

To further show the influence of initial points for the proposed
precoding and the gradient descent algorithms, we run these two
algorithms 2000 times with Gaussian distributed initial points
(applying a normalization to satisfy the power constraint).
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TABLE I
DISTRIBUTION OF SECRECY RATE FOR VARIOUS INITIAL POINTS

Fig. 4. Average secrecy rate as a function of the ED’s transmit correlation ρ.

Table I shows the distribution of secrecy rate for the proposed
precoding and the gradient descent algorithm with SNR =
7.5 dB. The result demonstrates the superiority of the proposed
algorithm. Our algorithm has over 90% probability to converge
to a better solution while the gradient descent algorithm only
has 46.6% probability to achieve this goal.

C. Example 3: Secure Multicast Scenario With One ED

In this example, we consider a fading secure CR network with
one ST, two SRs, one ED and one PR. Each node in the system
has two antennas. The transmit correlation matrices are given
by

Θh1 = R(0.95),Θh2 = R(0.85),

Θg1 = R(ρ),Θf1 = R(0.50). (91)

The SNR is defined as SNR = γ0 , where γ0 is the total transmit
power at the ST. The normalized interference threshold at the
PR is 10 dB less than the total transmit power, i.e., γ1 = 0.1γ0 .

Fig. 4 investigates the maximum average secrecy rate as a
function of the ED’s transmit correlation ρ with SNR = 5 dB,
7.5 dB, 10 dB and 12.5 dB. The input signal is drawn from
QPSK constellation. As we can see, the average secrecy rate
is monotonically decreasing with respect to ρ. This interesting
phenomenon occurs because the impact of transmit correlation
depends on the channel knowledge [32]. Reference [32] con-
sidered a single-user channel and showed that if the transmitter
only knows statistical CSI, the average capacity is Schur-convex
with respect to the channel correlation, i.e., the more correlated
the transmit antennas are, the more capacity can be achieved.
Therefore, when ρ increases, we need more redundancy rate to
confuse the ED and the average secrecy rate decreases. In the
extreme case that ρ = 0.85, the average secrecy rate is always
zero because Θh2 = Θg1 .

In Fig. 5, we investigate the average secrecy rate as a function
of the SNR under BPSK, QPSK, 8PSK and 16QAM modula-

Fig. 5. Average secrecy rate as a function of the SNR.

tions. The ED’s transmit correlation is set as ρ = 0.2. Fig. 5
shows that precoding design by the proposed GQMP algorithm
is very effective because it can achieve robust performances for
a large-SNR range with various modulations. These results also
indicate that we should adaptively determine the modulation
based on the SNR. If the system works in the low SNR regime,
we should use low-order modulations to reduce the complex-
ity for precoder design. If the system works in the high SNR
regime, we can use high-order modulations to achieve a better
performance.

D. Example 4: Secure Multicast Scenario With Multiple EDs

In this example, we consider a fading secure CR network
with one ST, two SRs, two EDs and two PRs. Each node in the
system has two antennas. The transmit correlation matrices are
given by

Θh1 = R(0.9),Θh2 = R(0.95),Θg1 = R(0.3)

Θg2 = R(0.4),Θf1 = R(0.5),Θf2 = R(0.7). (92)

The normalized interference thresholds at PRs are 20 dB less
than the total transmit power, i.e., γ1 = γ2 = 0.01γ0 , and the
SNR is defined as SNR = γ0 .

Fig. 6 depicts the comparison result with the Gaussian precod-
ing design under QPSK and 16QAM modulations. The Gaus-
sian precoding design employs Gaussian inputs to solve problem
(62), where EH i

I(x;yi) and EG j
I(x; zj ) with Gaussian inputs

can be expressed as

EH i
I(x;yi) = EH i

[
log det

(
I + HiPPHHH

i

)]
(93)

EG j
I(x; zj ) = EG j

[
log det

(
I + GjPPHGH

j

)]
. (94)

Let Q = PPH , then the Gaussian precoding problem is given
by

maximize
Q�0

min
1≤i≤I
1≤j≤J

[
EH i

I(x;yi) − EG j
I(x; zj )

]

subject to tr(Θfk
Q) ≤ γk , k = 0, 1, ...,K

(95)

Since problem (95) is a DC problem, we can obtain a locally
optimal solution Qopt by the convex-concave procedure [3].
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Fig. 6. Proposed precoding versus Gaussian precoding design under different
modulations, for secure multicast scenarios.

After that, we evaluate the finite-alphabet based average secrecy

rate under P = Q
1
2
opt .

Based on the results in Fig. 6, we have the following remarks:
1) In the low SNR regime, finite-alphabet precoding and

Gaussian precoding have the same performance. According to
[14], the low-SNR expansion of mutual information is irrel-
evant to the input distribution, thus the optimal precoders de-
signed under Gaussian inputs are also optimal for finite-alphabet
inputs.

2) In the high SNR regime, the performance of Gaussian
precoding design degrades severely with the increasing SNR.
The reason is that both EH i

I(x;yi) and EG j
I(x; zj ) in (68),

(69) saturate at log M in the high SNR regime. Therefore, if
we do not carefully control the transmit power tr(PHP) in
the high SNR, the average secrecy rate under finite-alphabet
inputs will be log M − log M = 0. Since the objective function
of (95) does not have this saturation property, the covariance
matrix Qopt designed by problem (95) uses too much transmit
power. Therefore, the corresponding average secrecy rate with
finite-alphabet inputs degrades severely in the high SNR regime.

E. Example 5: Secure Broadcast Scenario With Multiple EDs

In this example, we consider a fading secure CR network with
one ST, two SRs, two EDs and two PRs. Each node

in the system has two antennas. The transmit correlation ma-
trices are given by

Θh1 = R(0.9),Θh2 = R(0.8),Θg1 = R(0.45),

Θg2 = R(0.55),Θf1 = R(0.2),Θf2 = R(0.6). (96)

The normalized interference thresholds at PRs are 10 dB less
than the total transmit power, i.e., γ1 = γ2 = 0.1γ0 , and the
SNR is defined as SNR = γ0 .

Fig. 7 depicts the performance comparison with the Gaussian
precoding design under BPSK and QPSK modulations. The
Gaussian precoding solves problem (66) under Gaussian inputs
by GQMP, and then evaluates the finite-alphabet based average
secrecy sum rate with the corresponding suboptimal precoders.
Results in Fig. 6 indicate that our proposed finite-alphabet pre-

Fig. 7. Proposed precoding versus Gaussian precoding design under different
modulations, for secure broadcast scenarios.

coding offers much higher secrecy sum rate than the Gaussian
precoding in the medium and high SNR regimes. This is be-
cause the precoders [P1 ,P2 ] designed by Gaussian precoding
have the following form:

[P1 ,P2 ] = [Popt
1 ,0]. (97)

Equation (97) implies that the Gaussian precoding design al-
locates all the power to the first SR, and the precoder for the
second SR is 0. In contrast, our proposed finite-alphabet precod-
ing allocates power to both SRs, and the precoded signal for the
second SR acts as the jamming signal to further confuse EDs.
Therefore, our proposed precoding significantly outperforms the
Gaussian precoding design.

VI. CONCLUSION

In this paper, we have proposed the generalized quadratic
matrix programming, which is a significant generalization of
quadratic matrix programming. GQMP captures the inherent
structure of input-output mutual information with arbitrary input
distributions, thus it unifies the design of linear precoding under
various MIMO Gaussian channels. By exploiting the features
of generalized quadratic matrix functions, we have designed a
low complexity algorithm that converges to the KKT point of
any GQMP problem. Next, we have applied GQMP to design
linear precoders in downlink underlay secure CR networks. The
considered linear precoding target finite-alphabet inputs directly
and exploit statistical CSI of fading channels. We have demon-
strated that the precoding problems under both secure multicast
and secure broadcast scenarios are GQMP problems, thus we
can solve them efficiently by our proposed GQMP algorithm.
Numerical results have shown that the proposed algorithm is
both robust and effective.

APPENDIX A
PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1: Since g(W) is a differentiable convex
function, it can be lower bounded by its first-order Taylor ap-
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proximation at any point W0 [23, ch. 3.1.3]:

g(W) ≥ g(W0) + tr
[
(W − W0)H∇W g(W0)

]
. (98)

By plugging W = XHAX, W0 = XH
0 AX0 and G =

∇W g(W0) into (98), we have

g(XHAX)≥tr
(
XHAXG

)
+ g(XH

0 AX0) − tr
(
XH

0 AX0G
)
.

(99)

Since tr(YHVYZ) = vec(Y)H · (ZT ⊗ V
) · vec(Y) [33], we

can express tr
(
XHAXG

)
alternatively as

tr
(
XHAXG

)
= tr

(
XHA(+ )XG

)
+ tr

(
XHA(−)XG

)

(100)

= vec(X)H ·
[(

GT ⊗ A(+ )
)

+
(
GT ⊗ A(−)

)] · vec(X).

(101)

If g(W) is MND, its complex gradient G � 0 for all X0
[23, ch. 3.6.1]. Therefore, GT ⊗ A(+ ) � 0 and GT ⊗ A(−) � 0
[33], which imply the convexity of tr

(
XHA(+ )XG

)
and the

concavity of tr
(
XHA(−)XG

)
respectively. The convex function

tr
(
XHA(+ )XG

)
can be further lower bounded by its first-order

Taylor approximation at X0 :

tr
(
XHA(+ )XG

)

≥ tr
(
XHA(+ )X0 + XH

0 A(+ )X − XH
0 A(+ )X0G

)
. (102)

Combining (99), (100) and (102), we obtain a concave lower
bound when g(W) is MND.

If g(W) is MNI, its complex gradient G � 0 for all X0
[23, ch. 3.6.1]. Therefore, GT ⊗ A(+ ) � 0 and GT ⊗ A(−) � 0
[33], which imply the concavity of tr

(
XHA(+ )XG

)
and the

convexity of tr
(
XHA(−)XG

)
respectively. The convex function

tr
(
XHA(−)XG

)
can be further lower bounded by its first-order

Taylor approximation at X0 :

tr
(
XHA(−)XG

)

≥ tr
(
XHA(−)X0 + XH

0 A(−)X − XH
0 A(−)X0G

)
. (103)

Combining (99), (100) and (103), we obtain a concave lower
bound when g(W) is MNI. �

Proof of Theorem 2: Since (X − X0)HA(−) (X − X0) � 0
and (X − X0)HA(+ ) (X − X0) � 0, the following inequalities
hold

XHAX � U1(X) (104)

XHAX � U2(X) (105)

with

U1(X) =XHA(+ )X+XHA(−)X0 +XH
0 A(−)X−XH

0 A(−)X0

U2(X) =XHA(−)X+XHA(+ )X0 +XH
0 A(+ )X−XH

0 A(+ )X0.

Here U1(X) is a convex function in the sense that for all X1 ,
X2 and θ with 0 ≤ θ ≤ 1, we have

U1(θX1 +(1−θ)X2) � θU1(X1)+(1−θ)U1(X2). (106)

Based on the definition in (106), −U2(X) is convex, thus
U2(X) is a concave function.

If g(W) is MND, g
(
U1(X)

)
serves as an upper bound of

g(XHAX). Furthermore, for all X1 , X2 and θ with 0 ≤ θ ≤ 1,
we have

g(U1(θX1 + (1 − θ)X2))

≤ g(θU1(X1) + (1 − θ)U1(X2)) (107)

≤ θg(U1(X1)) + (1 − θ)g(U1(X2)) (108)

where (107) and (108) hold due to the MND condition and the
convexity of g(W), respectively. Therefore, g

(
U1(X)

)
serves

as a convex upper bound of g(XHAX) when g(W) is MND.
If g(W) is MNI, g

(
U2(X)

)
serves as an upper bound of

g(XHAX). Furthermore, for all X1 , X2 and θ with 0 ≤ θ ≤ 1,
we have

g
(
U2(θX1 + (1 − θ)X2)

)

≤ g
(
θU2(X1) + (1 − θ)U2(X2)

)
(109)

≤ θg
(
U2(X1)

)
+ (1 − θ)g

(
U2(X2)

)
(110)

where (109) and (110) hold due to the MNI condition and the
convexity of g(W), respectively. Therefore, g

(
U2(X)

)
serves

as a convex upper bound of g(XHAX) when g(W) is MNI.
�

APPENDIX B
PROOFS OF PROPOSITIONS 1–4

Proof of Proposition 1: First, by introducing an auxiliary
variable t, problem (5) is equivalent to

maximize
X∈X ,t

t

subject to f0(X) − t ≥ 0

fj (X) ≥ 0, j = 1, 2, ..., J.

(111)

Then we can directly apply the inner approximation method in
[34] to problem (111). In each iteration, we keep the objective
function t unchanged and approximate all constraints at X0 :

maximize
X∈X ,t

t

subject to f̄0(X;X0) − t ≥ 0

f̄j (X;X0) ≥ 0, j = 1, 2, ..., J

(112)

where f̄j (X;X0) are the corresponding concave lower bound
of fj (X). Note that problem (112) is equivalent to problem
(31), which is the subproblem in each iteration of Algorithm 1.
Therefore, Algorithm 1 and the proposed algorithm in [34] are
equivalent. Based on Theorem 1 in [34], Algorithm 1 converges
to the KKT point of problem (5). This completes the proof.

�
Proof of Proposition 2: Recall that problem (39) is

R = maximize
X∈X

I∑

i=1

[
Fi(X)

]+ (113)

where Fi(X) is given by

Fi(X) = min
1≤j≤J

fij (X). (114)
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Define the set of nonnegative Fi(X) at the optimal solution of
problem (113) as S =

{
i|Fi(Xopt) ≥ 0, i = 1, 2, ..., I

}
, where

Xopt denotes the optimal solution of (113). Then problem (113)
is equivalent to

maximize
X∈X

∑

i∈S
Fi(X). (115)

Note that S can be any non-empty subset of {1, 2, ..., I}, i.e.,
S ∈ {Sm ,m = 1, 2, ..., 2I − 1}, where Sm is the m-th non-
empty subset of {1, 2, ..., I}. Therefore, we need to solve prob-
lem (115) 2I − 1 times with different Sm to obtain R. This
completes the proof. �

Proof of Proposition 3: We first show that {F (Xopt
n )} is

monotonically nondecreasing by the following inequalities:

F (Xopt
n+1) ≥ F̄ (Xopt

n+1;X
opt
n ) ≥ F̄ (Xopt

n ;Xopt
n ) = F (Xopt

n )
(116)

where the first inequality holds because F̄ (·;Xopt
n ) serves as the

lower bound of F (·); the second inequality holds because Xopt
n+1

is the optimal solution of maximize
X∈X

F̄ (X;Xopt
n ). Furthermore,

since the feasible set X is compact and F (·) is continuous, the
sequence {F (Xopt

n )} is bounded above. Therefore, the conver-
gence is guaranteed since every bounded monotone sequence
has a limit. This completes the proof. �

Proof of Proposition 4: The convexity can be shown by re-
formulating g(W;N) as

1
M

M∑

m=1

log
M∑

n=1

exp
[

−N · ln
(

1 +
1
2
eH

mnWemn

)]

. (117)

Since − ln
(
1 + 0.5 · eH

mnWemn

)
is a convex function of W

for any vector emn , and log
∑

i exp(fi) is convex whenever fi

is convex for all i, g(W;N) is a convex function.
The MNI property can be shown by computing the complex

gradient of g(W;N)

∇W g(W, N) = −
∑

m,n

αmnemneH
mn (118)

where

αmn =
N

2M
·

(
1 + 0.5 · eH

mnWemn

)−N −1

∑M
n=1

(
1 + 0.5 · eH

mnWemn

)−N
> 0. (119)

Since ∇W g(W, N) � 0, g(W, N) is a MNI function [23, ch.
3.6.1]. This completes the proof. �
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