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Abstract—Recently, sub-root pairs and sequences are intro-
duced to identify Davis-Jedwab (DJ) codes, non-Davis-Jedwab
(non-DJ) Golay complementary sequences (GCS) and non-
Golay complementary sequences (non-GCS) for OFDM with
low PMEPR. In this paper, we extend sub-root pairs to super-
root pairs. A discrete version of super-root pairs called multi-
dimensional root pairs are used to build arbitrarily interleaving
Boolean functions of long length. The newly identified arbitrarily
interleaving Boolean functions can produce more non-DJ GCS
and non-GCS with PMEPR at most pre-chosen positive number
not always being a power of 2. In this way, we propose an efficient
method to identify more codes with low PMEPR for OFDM.

Index Term–Golay complementary sequences, OFDM,
PMEPR, Root pair.

In multicarrier communications, the orthogonal frequency
division multiplexing (OFDM) has been made use widely.
However, a major drawback of OFDM signals is the high
peak to mean envelope power ratio (PMEPR) of the uncoded
OFDM signal. Several coding schemes to use the so-called
Golay complementary sequences [1], [2], [3], [4] to encode
the OFDM signals with PMEPR of at most 2 have been
studied [5], [6], [7]. A main theoretical advance made by
Davis and Jedweb [10] established a link between Golay’s
complementary sequences and certain second-order cosets of
the generalized first-order Reed-Muller codes. A powerful
code based on the union of these cosets can be used to
perform error correction and ensures a PMEPR of at most 2.
But the code rate rapidly decreases for larger block lengths.
So Davis and Jedweb proposed including further cosets in
order to increase the code rate at the cost of a slightly higher
PMEPR [10]. Paterson’s work [11] and more general study by
Schmidt and Finger [16] provided a construction for further
second-order cosets comprising of sequences lying in the
complementary sets of size 2k+1. Thus the PMEPR of the
code words in each coset of RMq(1,m) is at most 2k+1.
But its upper bounds is not always tight. Another construction
based on complementary sets was proposed by Parker and
Tellambura [17], [18]. But in generally, the construction does
not produce cosets of RMq(1,m).

Recently, sub-root pairs which is called seed extension
in [15] are introduced to identify Davis-Jedwab (DJ)-codes,
non-Davis-Jedwab (non-DJ) Golay complementary sequences
(GCS) and non-Golay complementary sequences (non-GCS)
for OFDM with low PMEPR [12]. However, the binary vari-

ables of the sub-root pairs’ Boolean function representations
can not employ an arbitrarily interleaving pattern with those of
DJ-codes. This is a drawback when come to the non-DJ Galay
complementary sequences (GCS) which is discovered recently
and explained in [8], [9]. In this paper, we generalize sub-
root pairs to super-root pairs which can be used to construct
longer codes with low PMEPR for OFDM by any arbitrarily
interleaving patten with DJ-codes. A discrete version of super-
root pairs called multi-dimensional root pairs are used to
build arbitrarily interleaving Boolean functions of long length,
which can identify more non-DJ GCS and non-GCS with
PMEPR at most pre-chosen positive number not always being
power of 2. In this way, we propose an efficient method to
identify more codes with low PMEPR for OFDM.

I. NOTATIONS AND PRELIMINARIES

Before proceeding further, let us introduce the OFDM
signals, the PMEPR and the related concepts at first. Through-
out this paper ξ = exp (2πj/M), where M is a positive
integer. Let an M -ary phase shift keying (MPSK) constellation
be denoted by ξZM = {ξk : k ∈ ZM}, where ZM =
{0, · · · ,M − 1}.

A. OFDM and Power Control

Let j be the imaginary unit, i.e., j2 = −1. For an MPSK
modulation OFDM, let a codeword c = (c0, . . . , cn−1) with
c` ∈ ξZM , the frequency separation between any two adjacent
subcarriers is ∆f = 1/T . Then the n subcarrier complex
baseband OFDM signal can be represented as

sc(t) =
n−1∑

`=0

c`e
j2π`∆ft, (1)

where 0 ≤ t < T . The instantaneous power of the complex
envelope sc(t) is defined by

Pc(t) = |sc(t)|2. (2)

So the peak-to-mean power ratio (PMEPR) of the codeword c
is defined by

PMEPR(c) =
1
n

sup
0≤t<T

|sc(t)|2. (3)

Notice that the PMEPR can be as large as n, which occurs,
for example, if c is the all-one word. However, it is desirable
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to use codewords with PMEPR that is substantially lower than
n.

B. Generalized Boolean Functions and Associated Sequences

A generalized Boolean function f is defined as a mapping
f : Zm

2 → ZM . Such a function can be written uniquely
in its algebraic normal form, i.e., f is the sum of weighted
monomials

f(x0, x1, ..., xm−1) =
2m−1∑

i=0

ci

m−1∏

`=0

xi`

` ,

where the weights co, ..., c2m−1 are in ZM , and
(i0, i1, ..., im−1) is the binary representation of i, 0 ≤ i < 2m,
i.e., i =

∑m−1
`=0 i`2`. The order of the ith monomial is defined

to be
∑m−1

`=0 i`, and the order or algebraic degree of a
generalized Boolean function, denoted by deg(f ), is defined
to be the highest order of the monomials with a nonzero
coefficient in the algebraic normal form of f.

A generalized Boolean function may be equally represented
by sequences of length 2m. Denote fi = f(i0, i1, ..., im−1),
where (i0, i1, ..., im−1) is the binary representation of i,
0 ≤ i < 2m. Define the ZM -valued sequence associated with
f as ψ(f) , (f0, f1, ..., f2m−1), and the polyphase sequence
associated with f as ϕ(f) , (ξf0 , ξf1 , ..., ξf2m−1). Denote
ψ(fi) , fi and ϕ(fi) , ξfi .

C. Aperiodic Correlations and Golay Complementary Se-
quences

Let a = (a0a1...an−1) and b = (b0b1...bn−1) be two
complex vectors of length n, where ai, bi ∈ C, 0 ≤ i < n−1.
For an integer `, define the aperiodic correlation by

C(a, b)(`) ,





∑n−`−1
i=0 ai+`b

∗
i , if 0 ≤ ` < n∑n+`−1

i=0 aib
∗
i−`, if − n < ` ≤ 0

0, otherwise,
(4)

and the auto correlation by A(b)(`) , C(b, b)(`).
From (1), (2) and (4), it is an easy exercise to show that

Pc(t) = |Sc(t)|2

=
n−1∑

`=1−n

A(c)(`)ej2π`∆ft

= A(c)(0) + 2 ·Re

n−1∑

`=1

A(c)(`)ej2π`∆ft. (5)

A ξZM -sequence c of length n is called a Golay comple-
mentary sequence (GCS) [10] if there is a ξZM -sequence d of
length n such that

A(c)(`) + A(d)(`) = 2nδ(`), (6)

where the Dirac function δ(`) is defined as δ(0) = 1 and
δ(`) = 0 for ` 6= 0. It is easy to see that Pc(t) + Pd(t) = 2n,
and hence PMEPR(c) ≤ 2, if c is a GCS. The pair (c, d)
is called a Golay complementary pair (GCP). A large class of

GCS called DJ-codes can be constructed by Boolean functions.
Let a GCP (c, d) of the form in [10], i.e.,

{
c = M

2

∑m−1
k=1 yπ(k)yπ(k+1) +

∑m
k=1 ckyk + c0

d = c + c
′
0 + M

2 yπ(1)

,

where π is a permutation of {1, 2, ..., m} and
c
′
0, c0, c1, ..., cm ∈ ZM . Then (c, d) is a DJ-GCP and

either c or d is a DJ-codes.

II. SUPER-ROOT PAIRS AND MULTI-DIMENSIONAL ROOT
PAIRS.

Sub-root pairs [12] called seed extension in [15] are used
to construct long codes with low PMEPR by using short DJ-
codes. However, the binary variables of the sub-root pairs’
Boolean function representations can not employ an arbitrarily
interleaving pattern. Here we extend sub-root pairs to super-
root pairs which is a sub-class of Reed-Muller codes. A
discrete version of super-root pairs called multi-dimensional
root pairs are used to build arbitrarily interleaving Boolean
functions of long length. Firstly, the definition of super-root
pairs and multi-dimensional root pairs are given below.

Definition 1: Let f(x1, x2, ..., xm) and g(x1, x2, ..., xm) be
two Boolean functions over Zm

2 → ZM . Denote N = 2m.
Let C denote the unit circle. If for any complex vector Z =
(z0, z1, ..., zN−1) ∈ CN , there is

∣∣ϕ(f)ZT
∣∣2 +

∣∣ϕ(g)ZT
∣∣2 ≤ γN , (7)

for a given positive number γ, then [f, g, γ,m] is called a super-
root pair. f and g are both called super-root sequences.

Since Z could be any complex vector in CN , it is difficult
to build super-root pairs. Instead, a discrete version of super-
root pairs called multi-dimensional root pairs, which have the
same good properties will be defined. Our main identification
theorems will be based on multi-dimensional root pairs. At
first, some notations are given here. Denote the matrix rep-
resentation of an 1-dimensional L-length IDFT with an over
sampling factor λ as

Q1
L (λ) ,

[
ej 2π(i−1)(j−1)

λL
]
1≤i≤2 ,1≤j≤λL

.

Let
⊗

denote the tensor product of matrices. Then the matrix
representation of an s-dimensional L-length IDFT with an over
sampling factor λ is defined as

Qs
L (λ) , Q1

L (λ)
⊗

Q1
L (λ)

⊗
...

⊗
Q1
L (λ)

⊗
Q1
L (λ)

︸ ︷︷ ︸
The number of Q1

L(λ) is s.

.

It is easy to see that any vector Z ∈ CL could be represented
by the transpose of one of the column vector chosen from
Q∞
L (∞), where

Q∞
L (∞) , lim

s→∞, λ→∞
Qs
L (λ) .

Furthermore, when s and λ are large enough, Qs
L (λ) is a good

discrete and finite approximation of the above Z. Hence we
have the following definitions:
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Definition 2: Let f(x1, x2, ..., xm) and g(x1, x2, ..., xm) be
two Boolean functions over Zm

2 → ZM . Denote N = 2m. If
for a given positive number γ,

||ϕ(f)Qm
L (λ) ||2 + ||ϕ(g)Qm

L (λ) ||2 ≤ γN , (8)

then [f, g, γ,m] is called an m-dimensional root pair with over
sampling factor λ. f and g are both called m-dimensional root
sequences. Here || · || denotes the maximum norm of a vector,
which takes the maximum absolute value of all elements of
the vector.

Remark 1: In Definition 2, the dimension of s is set to be
the number of the Boolean functions f’s or g’s variables, i.e.,
m. This is because in the following identification scheme, this
dimension is enough for any arbitrarily interleaving Boolean
function scheme, as the maximum partition possibility of the
variables of f or g is m.

Remark 2: From numerical computation, the oversampling
factor λ = 4 is enough to estimate the PMEPR of the multi-
dimensional root pairs. We will use λ = 4 in the following.

By Remark 1 and 2, let s = m and λ = 4 in Definition 1.
Then the discrete m-dimensional root pairs will be a discrete
version of super-root pair defined in Definition 1.

III. ARBITRARILY INTERLEAVING BOOLEAN FUNCTIONS
WITH LOW PMEPR

In this section, some basic construction theorems and
corollaries are presented to construct Boolean functions of
long length for OFDM modulation scheme from short multi-
dimensional root pairs, by arbitrarily interleaving pattern,
which have the same PMEPR as the multi-dimensional root
pairs. Firstly, some notations and definitions are given.

Let k be an integer such that 0 < k < m. Arbitrarily take
i0, i1, ..., ik−1 such that 0 ≤ i0 < i1 < ... < ik−1 < m.
Suppose that j0, j1, ..., jm−k−1 are the rest indices and 0 ≤
j0 < j1 < ... < jm−k−1 < m. Let X =

(
xi0 , ..., xik−1

)
and

Y =
(
yj0 , ..., yjm−k−1

)
be two binary vectors of length k and

m − k, respectively. Denote X ] Y as the binary vector of
length m decided by interleaving X and Y according to their
indices {i`} and {j`} from small numbers to large numbers.
Denote

Ui ,
[
ej 2π(i−1)(j−1)

λL
]
0≤j≤L

,

and Ui (j) as the jth element of Ui, where 0 ≤ i ≤ λL.
Also denote PL (λ) =

[
UT

i

]
0≤i≤λL as the L-length IDFT

transformation with oversampling factor λ. Similarly to the
propositions in [12], we have the following propositions.

Proposition 1: Let f (x1, x2, ..., xm) be a Boolean function
over Zm

2 → ZM . Denote f̂ = −f (x̂1, x̂2, ..., x̂m), where
(x̂1, x̂2, ..., x̂m) , (1 − x1, 1 − x2, ..., 1 − xm) in the sense
of module 2. Then

1) ||ϕ(f)Qm
2m (λ)||2 =

∣∣∣
∣∣∣ϕ

(
f̂
)

Qm
2m (λ)

∣∣∣
∣∣∣
2
,

2) ||ϕ(f)PL (λ)||2 =
∣∣∣
∣∣∣ϕ

(
f̂
)

PL (λ)
∣∣∣
∣∣∣
2
,

3)
∣∣ϕ(f)ZT

∣∣ =
∣∣∣ϕ

(
f̂
)

ZT
∣∣∣.

Proposition 2: If two ξZM -sequences c and d of length n
form a Golay complementary pair, then

1) ||ϕ (c) Qm
2m (λ)||22 +

∣∣∣
∣∣∣ϕ

(
d̂
)

Qm
2m (λ)

∣∣∣
∣∣∣
2

2
= 2n,

2) ||ϕ(c)PL (λ)||22 +
∣∣∣
∣∣∣ϕ

(
d̂
)

PL (λ)
∣∣∣
∣∣∣
2

2
= 2n,

3)
∣∣ϕ(c)ZT

∣∣2 +
∣∣∣ϕ(d̂)ZT

∣∣∣
2

= 2n.
Theorem 1: Let [a , b, γ, k, ] be a k-dimensional root pair

with oversampling factor λ, and c(Y) and d(Y) be a GCP’s
Boolean function representations of length m− k. Define

f(X ] Y) =

{
a(X) + c(Y), if c(Y) = d(Y)
b(X) + c(Y), if c(Y) 6= d(Y)

,

g(X ] Y) =

{
a(X) + d̂(Y), if c(Y) 6= d(Y)
b(X) + d̂(Y), if c(Y) = d(Y)

.

Then f (X ] Y) and g (X ] Y) are two Boolean function
representations of length m with PMEPR ≤ γ for OFDM
modulation with oversampling factor λ.
Proof: omitted due to limited space.

Remark 3: Theorem 1 indicates that in order to construct
long Boolean function with PMEPR ≤ γ a pre-chosen positive
number not always being power of 2, we have to find two
short k-dimensional root pairs. This can be attained by an
exhaustive search if k is small enough. An example will be
given in Section V.

In order to derive an explicit Boolean function for f and g,
DJ-codes are used instead of c and d in Theorem 1. Similar
approach was used in [8] and [9]. Then we have the following
two corollaries:

Construction 1: Theorem 1 holds if{
f(X ] Y) = a(X)ŷπ(1) + b(X)yπ(1) + c(Y)
g(X ] Y) = f(X ] Y) + M

2 yπ(m−k) + e
.

Similarly to [12], the following construction produces more
sequences.

Construction 2: Theorem 1 holds if



f(X ] Y) = a(X)ŷπ(`)ŷπ(`−1) + b(X)ŷπ(`)yπ(`−1)

+b̂(X)yπ(`)ŷπ(`−1) + â(X)yπ(`)yπ(`−1)

+c(Y)
g(X ] Y) = f(X ] Y) + M

2 yπ(m−k) + e

.

To discern the multi-dimensional sequences identified by the
two Constructions. Let

(
a, a

′
)

be an m-dimensional root pair
over Zm

2 → ZM . Denote

E (a) , {a + e, â + e : e ∈ ZM} .

Let c ∈ E (a) and d ∈ E
(

a
′
)

form an m-dimensional

root pair. If E (a) 6= E
(

a
′
)

, then we call c and d form m-
dimensional root pair by a cross-over of their autocorrelation
functions [8], [9]. In this case, (c, d) is also called a non-
standard m-dimensional root pair, and c and d are both called
non-standard m-dimensional root sequences; Otherwise, (c, d)
is called a standard m-dimensional root pair, and c and d are
both called standard m-dimensional root sequences.
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IV. LOW PMEPR CODES FOR OFDM

In this section, we will identify long codes with low PMEPR
for OFDM using the above Construction 1 and 2. It is obvious
that the degrees of the identified f and g are respectively
(by Construction 1)

max{deg(f)} = max{deg(g)} = max{deg(a)}+ 1;

and (by Construction 2)

max{deg(f)} = max{deg(g)} = max{deg(a)}+ 2.

Firstly, we get all of the 2-dimensional and 3-dimensional
codes represented by the Boolean functions f : Z2

2 → ZM

and f : Z3
2 → ZM with PMEPR less than a pre-chosen γ

by exhaustive computer search. Then we use them to identify
more codes with PMEPR controlled by γ for OFDM which
lie in the third, fourth and fifth order cosets of the first-order
Reed-Muller codes. Let

f(x1, x2) = C0 + C1x1 + C2x2 + C3x1x2,

where Ci ∈ ZM , xi ∈ Z2. Then we obtain a sequence

(C0, C0 + C1, C0 + C2, C0 + C1 + C2 + C3).

It is straightforward to see that the vector minus C0 from
each element can represent these different sequences with the
same PMEPR [8]. So it’s enough to use only [C1, C2, C3] to
represent these sequences, while C0 is any element in ZM .
So is [C1, C2, C3, C4, C5, C6, C7] when considering f : Z3

2 →
ZM .

In order to present some construction examples, the ini-
tial [a, b, 5, 2] 2-dimensional root pairs with 28 pairs rep-
resentatives are listed in Table I. Choose a root pair(
(0, 0, 1), (1, 1, 0)

)
from Table I, i.e.,

{
a(x1, x2) = x1x2,

b(x1, x2) = x1 + x2.

Then {
â(x1, x2) = 1 + x1 + x2 + x1x2,

b̂(x1, x2) = x1 + x2.

We have

Max
{||ϕ(a)Q2

4 (4) ||22 + ||ϕ(b)Q2
4 (4) ||22

} ≤ 4 · 22.

In order to construct sequences f and g of length 24, let c be
a DJ-code over Z2

2 −→ Z2, i.e.,

c(y1, y2) = c0 + c1y1 + c2y2 + yπ(1)yπ(2).

Applying Construction 1 to 〈a, b〉, we have

f = x1x2 + x1yπ(1) + x2yπ(1) + x1x2yπ(1) + c0 + c1y1

+ c2y2 + yπ(1)yπ(2).

TABLE I
THE INITIAL [a, b, 5, 2] ROOT WITH 28 PAIRS REPRESENTATIVES.

a b 1
4

Max{||ϕ(a)Q2
4 (4) ||22

a1 a2 a3 b1 b2 b3 +||ϕ(b)Q2
4 (4) ||22}

0 0 0 0 0 1 5
0 0 0 0 1 0 4
0 0 0 0 1 1 5
0 0 0 1 0 0 4
0 0 0 1 0 1 5
0 0 0 1 1 0 4
0 0 0 1 1 1 5
0 0 1 0 1 0 5
0 0 1 0 1 1 2
0 0 1 1 0 0 5
0 0 1 1 0 1 2
0 0 1 1 1 0 5
0 0 1 1 1 1 4
0 1 0 0 1 1 5
0 1 0 1 0 0 4
0 1 0 1 0 1 5
0 1 0 1 1 0 4
0 1 0 1 1 1 5
0 1 1 1 0 0 5
0 1 1 1 0 1 4
0 1 1 1 1 0 5
0 1 1 1 1 1 2
1 0 0 1 0 1 5
1 0 0 1 1 0 4
1 0 0 1 1 1 5
1 0 1 1 1 0 5
1 0 1 1 1 1 2
1 1 0 1 1 1 5

Applying Construction 2 to 〈a, b〉, we have

f = x1x2 + x1yπ(`−1) + x2yπ(`−1) + x1x2yπ(`−1)

+x1yπ(`) + x2yπ(`) + x1x2yπ(`) + yπ(`−1)yπ(`)

+x1yπ(`−1)yπ(`) + x2yπ(`−1)yπ(`) + c0 + c1y1

+c2y2 + yπ(1)yπ(2).

By numerical computation, such a 2-dimensional root pair’s
four ordered pairwise pattern, i.e., 〈a, b〉, 〈b, a〉,

〈
â, b̂

〉
and〈

b̂, â
〉

can together generate 384 and 192 non-DJ codes f
or g of length 16 by Construction 1 and Construction 2,
respectively. By one-dimensional method [12], we can only
produce 192 and 96 non-DJ codes respectively. It follows that
Multi-dimensional pairs can produce more codes for OFDM
compared with sub-root pairs, because it allows arbitrarily
interleaving Boolean functions schemes.

In order to explain the performance of the arbitrarily in-
terleaving Boolean functions for OFDM, we list some of the
numbers of the identified higher order non-DJ codes by 2-
dimensional and 3-dimensional root pairs and the improved
OFDM code rates in Table II, for 8, 16, and 32 sub-carriers
respectively, which have some performance gain compared to
the previous works [12].

It is noticeable that, in some cases, the new proposed
multi-dimensional scheme will identify more non-DJ codes
for OFDM than the previously proposed sub-root pairs in [12]
with the same PMEPR. An interesting example is already
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TABLE II
ENUMERATE THE IDENTIFIED NON-DJ CODES BY 2-DIMENSIONAL AND
3-DIMENSIONAL ROOT PAIRS AND THE IMPROVED OFDM CODE RATES.

OFDM DJ-codes Identified Old New
Carriers non-DJ codes code rate code rate
The identified codes lie in cosets of RMM (1, m) in RMM (3, m)

using Construction 1 with PMEPR ≤ 4.
8 48 24 0.6981 0.7712

16 384 362 0.5366 0.5964
32 3840 6240 0.3721 0.4156

The identified codes lie in cosets of RMM (1, m) in RMM (4, m)
using Construction 1 with PMEPR ≤ 4.

8 48 26 0.6981 0.7762
16 384 5124 0.5366 0.7767
32 3840 68052 0.3721 0.5042

The identified codes lie in cosets of RMM (1, m) in RMM (3, m)
using Construction 1 with PMEPR ≤ 5.

8 48 192 0.6981 0.9884
16 384 4010 0.5366 0.7563
32 3840 42720 0.3721 0.4848

The identified codes lie in cosets of RMM (1, m) in RMM (4, m)
using Construction 1 with PMEPR ≤ 5.

8 48 192 0.6981 0.9884
16 384 15408 0.5366 0.8717
32 3840 583760 0.3721 0.5989

shown above. We will give more detailed explanations. From
Table ??, when we let the PMEPR be 5, the number of
sub-root pairs of length 2 is the same as the number of 2-
dimensional root pairs, i.e., 28. As the 2-dimensional root pairs
introduce arbitrarily interleaving Boolean function scheme, we
can produce more codes with the same PMEPR for OFDM.
By numerical results, when these 28 pairs are considered as
sub-root pairs, the numbers of the identified generalized first
order Reed-Muller codes lying in the third order non-DJ Reed-
Muller codes are 192, 2198, and 18240 for 8, 16, and 32 sub-
carriers respectively with PMEPR ≤ 5. On the other hand,
when they are considered as the 2-dimensional root pairs,
the numbers of the identified generalized first order Reed-
Muller codes lying in the third order non-DJ Reed-Muller
codes are 192, 4010, and 42720 for 8, 16, and 32 sub-carriers
respectively with the same PMEPR.

V. CONCLUSION

In this paper, we extend sub-root pairs to super-root pairs.
A discrete version of super-root pairs called multi-dimensional
root pairs are used to build arbitrarily interleaving Boolean
functions with long length. The new identified arbitrarily
interleaving Boolean functions can produce more non-DJ GCS
and non-GCS with PMEPR at most a pre-chosen positive
number not always being power of 2. In this way, we propose
an efficient method to identify more codes with low PMEPR
for OFDM.
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