
An Improved Implementation for the Recursive V-BLAST Algorithms to Save
Memories and Permutation Operations

Hufei Zhu (Member, IEEE), Bin Li (Member, IEEE)
Communication Technology Research Dept.

Huawei Technologies Co., Ltd.
Shenzhen 518129, P.R. China

Email: zhuhufei, binli@huawei.com

Wen Chen (Member, IEEE)
Dept. of Electronic Engineering

Shanghai Jiao Tong Univ.
Shanghai 200240, P.R. China
Email: wenchen@sjtu.edu.cn

Abstract—In this paper, we propose an improved imple-
mentation for the recursive V-BLAST algorithms, which saves
memories and permutation operations, as the existing V-
BLAST algorithm with memory saving. When the same num-
ber of transmit and receive antennas are assumed, the proposed
implementation requires only half memories and saves more
than twice permutation operations, with respect to the existing
V-BLAST algorithm with memory saving. Moreover, as the
number of receive antennas increases relative to the number of
transmit antennas, the ratio between the memories required by
the proposed implementation and those required by the existing
V-BLAST algorithm with memory saving becomes even smaller.
On the other hand, when the same number of transmit and
receive antennas are assumed, the speedups of the proposed
implementation over the existing V-BLAST algorithm with
memory saving in the number of multiplications, additions
and flops (floating-point operations) are 2.28, 1.86 and 2.18,
respectively.

Keywords-V-BLAST; the recursive algorithms; memory sav-
ing; permutation operations;

I. INTRODUCTION

Bell Laboratories Layered Space-Time architecture
(BLAST), including the most practical version- vertical
BLAST (V-BLAST) can achieve very high data rate and
spectral efficiency in rich multi-path environments through
exploiting the extra spatial dimension [1]. However, the
required computational complexity is quite high. Recently
several fast algorithms have been proposed to reduce the
computational complexity of V-BLAST [2]–[7]. The square-
root algorithm in [2] can reduce the computational com-
plexity of the conventional V-BLAST by 0.7𝑀 , where 𝑀
is the number of transmit antennas. The speedups of the
fast recursive algorithm in [3] over the algorithm in [2] in
the number of multiplications and additions are 1.54 and
1.89 respectively [4]. Improvements for different parts of
the fast recursive algorithm [3] were proposed in [5] and
[4], respectively, which were then incorporated in [6] to
give the “fastest known algorithm”. The contributions of [6]
also include a further improvement for the “fastest known
algorithm”. Base on the recursive algorithm for V-BLAST in
[6], recently an improved recursive algorithm for V-BLAST

was proposed in [7].
On the other hand, in [2]–[7], only the computational

complexities of the V-BLAST algorithms were considered,
while the required memories and permutation operations
were not counted in [8], which are also important in practi-
cal implementations. Thus a recursive V-BLAST algorithm
with memory saving was proposed in [8], which can save
memories and permutation operations, with respect to the
V-BLAST algorithm in [6].

In this paper, we propose an improved implementation
for the recursive V-BLAST algorithms in [6], [7], which
save memories and permutation operations, and do not
increase the computational complexity. As a comparison,
the recursive V-BLAST algorithm with memory saving in
[8] saves less memories and permutation operations, and
increases much computational complexity.

This paper is organized as follows. In Section 2, the
system model for V-BLAST is overviewed. In Section 3, we
describe the recursive V-BLAST algorithms in [6], [7] and
the V-BLAST algorithm with memory saving in [8]. Then
we propose the improved implementation for the recursive
V-BLAST algorithms in [6], [7] in Section 4. Finally, we
make conclusions in Section 5.

In the following sections, (∙)𝑇 , (∙)∗, and (∙)𝐻 denote
matrix transposition, matrix conjugate, and matrix conjugate
transposition, respectively. I𝑀 is the identity matrix with size
𝑀 .

II. SYSTEM MODEL

The considered V-BLAST system consists of 𝑀 transmit
antennas and 𝑁(≥ 𝑀) receive antennas in a rich-scattering
and flat-fading wireless channel. At the transmitter, the data
stream is de-multiplexed into 𝑀 sub-streams, and each
sub-stream is encoded and fed to its respective transmit
antenna. Each receive antenna receives the signals from all
𝑀 transmit antennas. Let s = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑀]𝑇 denote the
vector of transmit symbols from 𝑀 antennas, and assume
𝐸(ss𝐻) = 𝜎2

s I𝑀 . Then the received signal is given by

x = H ⋅ s+ n, (1)

2010 International Conference on Communications and Mobile Computing

978-0-7695-3989-8/10 $26.00 © 2010 IEEE

DOI 10.1109/CMC.2010.196

352

where n is the 𝑁 × 1 complex Gaussian noise vector with
zero mean and covariance 𝜎2

𝑛I𝑁 , and H = [h1,h2, ...,h𝑀]
is the 𝑁 × 𝑀 complex channel matrix with statistically
independent entries. The vector h𝑚 represents the 𝑚𝑡ℎ

column of H.
The linear MMSE detection of s is

y =
(
H𝐻H+ 𝛼I𝑀

)−1
H𝐻x, (2)

where 𝛼 = 𝜎2
𝑛/𝜎

2
𝑠 . Let R = H𝐻 ⋅H+ 𝛼I𝑀 . Then

Q = R−1 =
(
H𝐻H+ 𝛼I𝑀

)−1
(3)

is the covariance matrix for the detection error e = s − y
[2], [3], i.e., 𝐸{ee𝐻} = 𝜎2

𝑛Q. So the best estimate, i.e., the
component of y with the highest SNR, is corresponding to
the minimal diagonal element in Q.

The conventional V-BLAST scheme detects 𝑀 compo-
nents of s by 𝑀 iterations with the optimal ordering. In
each iteration, the component with the highest post detection
SNR among all the undetected components is detected by
an MMSE filter and then its effect is substracted from the
received signal vector [1]–[3].

III. THE RECURSIVE V-BLAST ALGORITHMS IN [6],
[7] AND THE V-BLAST ALGORITHM WITH MEMORY

SAVING IN [8]

Represent the first 𝑚 columns of H as H𝑚 =
[h1,h2, ...,h𝑚], where h𝑚 is the 𝑚𝑡ℎ column of H. Then
write [6]⎧⎨⎩

R𝑚 = H𝐻
𝑚H𝑚 + 𝛼I𝑚 =

[
R𝑚−1 v𝑚−1

v𝐻
𝑚−1 𝜐𝑚

]
, (4a)

Q𝑚 = R−1
𝑚 =

[
T𝑚−1 w𝑚−1

w𝐻
𝑚−1 𝜔𝑚

]
, (4b)

where R𝑚−1 and T𝑚−1 are the (𝑚− 1)× (𝑚− 1) leading
principal sub-matrices of R and Q𝑚, respectively.

In the initialization phase of the recursive V-BLAST
algorithm [6], the initial z𝑀 is computed by

z𝑀 = H𝐻x. (5)

To obtain the initial Q𝑀 from Q1, Q𝑚 is computed from
Q𝑚−1 recursively (for 𝑚 = 2, 3, ...,𝑀) by⎧⎨⎩

T𝑚−1 = Q𝑚−1 +
Q𝑚−1v𝑚−1v

𝐻
𝑚−1Q𝑚−1

𝜐𝑚 − v𝐻
𝑚−1Q𝑚−1v𝑚−1

, (6a)

Q𝑚 =[
T𝑚−1 −𝜐−1

𝑚 T𝑚−1v𝑚−1

−𝜐−1
𝑚 v𝐻

𝑚−1T𝑚−1 𝜐−1
𝑚 + 𝜐−2

𝑚 v𝐻
𝑚−1T𝑚−1v𝑚−1

]
.

(6b)

In the recursion phase of the V-BLAST algorithm [6],
𝑀 entries of s are detected recursively with the optimal
ordering. In each recursion, estimate the entry 𝑠𝑝𝑚 in s,
i.e. the symbol with the highest signal-to-noise ratio (SNR)
among all the undetected symbols, by

𝑦𝑝𝑚 = q𝐻
𝑚̂z𝑚, (7)

where q𝑚̂ is the last 𝑚𝑡ℎ column of the permuted Q𝑚̂.
Notice that in some variables for the recursion phase, we
rewrite the subscript 𝑚 into 𝑚̂, to distinguish these variables
from those in the initialization phase, e.g., usually Q𝑚̂ ∕=
Q𝑚. From 𝑦𝑝𝑚 , obtain the hard decision 𝑠𝑝𝑚 = 𝑄[𝑦𝑝𝑚],
where 𝑄[⋅] indicates the quantizing procedure according to
the constellation in use. Then cancel the effect of 𝑠𝑝𝑚 in z𝑚
by

z𝑚−1 = z[−1]
𝑚 − 𝑠𝑝𝑚v𝑚̂−1, (8)

where z
[−1]
𝑚 is obtained by removing the last entry in z𝑚,

and v𝑚̂−1 is in the last column of the permuted R𝑚̂, as
shown in (4a). Correspondingly deflate Q𝑚̂ by

Q𝑚̂−1 = T𝑚̂−1 − 𝜔−1
𝑚̂ w𝑚̂−1w

𝐻
𝑚̂−1, (9)

where T𝑚̂−1, 𝜔𝑚̂ and w𝑚̂−1 are in Q𝑚̂, as show in (4b).
The recursive V-BLAST algorithm in [6] is summarized

in Table I, where 𝑞𝑚̂𝑖,𝑘 and 𝑟𝑚̂𝑖,𝑘 denote the entries in the 𝑖𝑡ℎ

row and 𝑘𝑡ℎ column of Q𝑚̂ and R𝑚̂, respectively.
In [7], a fast algorithm to compute the inverse matrix

Q = R−1 is applied to improve the corresponding step of
the recursive V-BLAST algorithm in [6]. The algorithm to
compute the inverse matrix is⎧⎨⎩

𝜔𝑚 =
(
𝜐𝑚 − v𝐻

𝑚−1Q𝑚−1v𝑚−1

)−1
, (10a)

w𝑚−1 = −𝜔𝑚Q𝑚−1v𝑚−1, (10b)

T𝑚−1 = Q𝑚−1 + 𝜔−1
𝑚 w𝑚−1w

𝐻
𝑚−1. (10c)

Then in the recursive V-BLAST algorithm in [6], we can
use (10) and (4b) instead of (6) to compute the initial Q𝑀

recursively.
On the other hand, in [8] the V-BLAST algorithm with

memory saving was proposed, where R is not calculated at
all. Thus the V-BLAST algorithm with memory saving in
[8] can save the memories for storing R and the associated
permutation operations with R. At the same time, it requires
much more computational complexity than the V-BLAST al-
gorithm in Table I. The V-BLAST algorithm in Table I only
requires 1

2𝑀
2𝑁+ 2

3𝑀
3+𝑂(𝑀𝑁+𝑀2) multiplications and

additions [7], while the V-BLAST algorithm with memory
saving in [8] requires 5

2𝑀
2𝑁 + 1

6𝑀
3 + 𝑂(𝑀𝑁 + 𝑀2)

multiplications and 2𝑀2𝑁+ 1
6𝑀

3+𝑂(𝑀𝑁+𝑀2) additions
[8]. When 𝑀 = 𝑁 , the V-BLAST algorithm with memory
saving in [8] requires (52 + 1

6)/(
1
2 + 2

3) = 2.28 times
of multiplications and (2 + 1

6)/(
1
2 + 2

3) = 1.86 times of
additions, with respect to the V-BLAST algorithm in Table I.
Then it can be seen that the floating-point operations (flops)
[3] required by the V-BLAST algorithm with memory saving
in [8] are

(
(52 + 1

6)× 6 + (2 + 1
6)× 2

)
/
(
(12 + 2

3)× 8
)
=

2.18 times those required by the V-BLAST algorithm in
Table I. Though the V-BLAST algorithm with memory
saving in [8] requires much more computational complexity,
it is still beneficial in some cases since it saves memories
and permutation operations [8].

353

Table I
THE RECURSIVE ALGORITHM FOR V-BLAST IN [6]

Initialization: Compute z𝑀 by (5). Compute the initial R = R𝑀 = R𝑀̂ . Compute (6) recursively to get the
initial Q = Q𝑀 = Q𝑀̂ .

Recursion: Set p = [1, 2, ⋅ ⋅ ⋅ ,𝑀]𝑇 . For 𝑚 = 𝑀,𝑀 − 1, ⋅ ⋅ ⋅ , 2:
(a) Find 𝑙𝑚 = argmin𝑚𝑖=1(𝑞

𝑚̂
𝑖,𝑖). Exchange rows and columns 𝑙𝑚 and 𝑚 in Q𝑚̂ and R𝑚̂.

Exchange entries 𝑙𝑚 and 𝑚 in p and z𝑚.
(b) Use (7) to compute 𝑦𝑝𝑚 (i.e. the estimate of the 𝑝𝑚𝑡ℎ signal 𝑠𝑝𝑚). Then quantize 𝑦𝑝𝑚 to get
𝑠𝑝𝑚 = 𝑄[𝑦𝑝𝑚].
(c) Cancel the effect of 𝑠𝑝𝑚 in z𝑚 by (8), to obtain z𝑚−1.
(d) Deflate Q𝑚̂ to obtain Q𝑚̂−1 according to (9). Remove the last column and row of R𝑚̂ to
obtain R𝑚̂−1.

Solution: When 𝑚 = 1, execute the above-described step (c) to obtain 𝑠𝑝1 . The hard decision of the symbol
𝑠𝑝𝑚 is 𝑠𝑝𝑚 , 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 .

Table II
TO AVOID PERMUTATION OPERATIONS IN THE V-BLAST ALGORITHM [6]

Recursion: (a’) Find 𝑙𝑚 = argmin𝑚𝑖=1(𝑞𝑝𝑖,𝑝𝑖). Exchange entries 𝑙𝑚 and 𝑚 in p.
(b’) Follow step (c). In (7), q𝑚̂ = [𝑞𝑝1,𝑝𝑚 , 𝑞𝑝2,𝑝𝑚 , ⋅ ⋅ ⋅ , 𝑞𝑝𝑚,𝑝𝑚]𝑇 .

(c’) Follow step (d). In (8), z[−1]
𝑚 is obtained by removing the 𝑙𝑚

𝑡ℎ

entry in z𝑚, while v𝑚̂−1 = [𝑟𝑝1,𝑝𝑚 , 𝑟𝑝2,𝑝𝑚 , ⋅ ⋅ ⋅ , 𝑟𝑝(𝑚−1),𝑝𝑚]𝑇 .

(d’) In Q𝑀 , let 𝑞𝑝𝑖,𝑝𝑘 = 𝑞𝑝𝑖,𝑝𝑘 − 𝑞−1
𝑝𝑚,𝑝𝑚𝑞𝑝𝑖,𝑝𝑚𝑞∗𝑝𝑘,𝑝𝑚 , where

1 ≤ 𝑖, 𝑘 ≤ 𝑚− 1 and 𝑝𝑖 ≤ 𝑝𝑘 . Release the memories that store
the entries in the 𝑝𝑚𝑡ℎ row or column of R𝑀 and Q𝑀 .

IV. THE IMPROVED IMPLEMENTATION FOR THE
RECURSIVE V-BLAST ALGORITHMS IN [6], [7] TO SAVE

MEMORIES AND PERMUTATION OPERATIONS

In this section, we propose the improved implementation
for the Recursive V-BLAST Algorithms in [6], [7]. The
improved implementation does not increase the computa-
tional complexity. At the same time, it saves more memories
and permutation operations than the V-BLAST algorithm
with memory saving in [8]. In the following, we introduce
the improved implementation for the recursive V-BLAST
algorithm in Table I.

Firstly, in Table I, H is not required when computing Q𝑀 ,
since Q𝑀 is computed from R𝑀 , while H is not required
in the recursion phase, either. Thus after R𝑀 is computed
in the initialization phase, we can reuse the memories for
H𝑁×𝑀 to store Q𝑀 . Contrarily, the algorithm with memory
saving in [8] can not reuse the memories for H, since it
needs H to compute Q𝑀 , and H is also required in the
recursion phase [6, Table IV]. Notice that in the recursion
phase, the algorithm with memory saving in [8] utilizes
the columns of H for interference cancellation, while the
recursive V-BLAST algorithm in Table I utilizes the entries
of R𝑀 for interference cancellation.

Secondly, in the improved implementation proposed by
us, we only store the upper (or lower) triangular part of
the Hermitian R𝑀 and Q𝑀 , since the entries in the not-
stored triangular part can be obtained by 𝑟𝑖,𝑘 = 𝑟∗𝑘,𝑖 and

𝑞𝑖,𝑘 = 𝑞∗𝑘,𝑖, where 𝑟𝑖,𝑘 and 𝑞𝑖,𝑘 are in the 𝑖𝑡ℎ row and 𝑘𝑡ℎ

column of R𝑀 and Q𝑀 , respectively. The algorithm with
memory saving in [8] requires 𝑁×𝑀+𝑀×𝑀 memories to
store H𝑁×𝑀 and Q𝑀 , while the proposed implementation
only requires 2 × (𝑀+1)×𝑀

2 = 𝑀 ×𝑀 +𝑀 memories to
store the triangular part of the Hermitian R𝑀 and Q𝑀 . The
ratio between the memories required by the algorithm with
memory saving in [8] and those required by the proposed
implementation is (𝑁 ×𝑀 +𝑀 ×𝑀)/(𝑀 ×𝑀 +𝑀) ≈
𝑁
𝑀 + 1. Then it can be seen that the ratio is nearly 2 when
𝑁 = 𝑀 , and increases as 𝑁 increases relative to 𝑀 .

Lastly, the steps of the recursion phase in Table I can
be modified into those in Table II, to avoid the permutation
operations with z𝑚, R𝑚̂ and Q𝑚̂ in step (a). In Table II, we
obtain the entries in the permuted R𝑚̂ and Q𝑚̂ from R𝑀

and Q𝑀 , by 𝑟𝑚̂𝑖,𝑘 = 𝑟𝑝𝑖,𝑝𝑘
and 𝑞𝑚̂𝑖,𝑘 = 𝑞𝑝𝑖,𝑝𝑘

. Moreover, in
step (d’), some stored entries of Q𝑀 , i.e. those in T𝑚̂−1,
are updated to the corresponding entries in Q𝑚̂−1 by (9).
The algorithm with memory saving in [8] only saves the
permutation operations with R𝑚̂, while the proposed im-
plementation saves the permutation operations with z𝑚, R𝑚̂

and Q𝑚̂. So it can be seen that the proposed implementation
saves more than twice permutation operations, with respect
to the algorithm with memory saving in [8].

It can be easily seen that the improved implementation
for the recursive V-BLAST Algorithms in [6], [7] does not
increase the required computational complexity. Then the

354

improved implementation still requires 1
2𝑀

2𝑁 + 2
3𝑀

3 +
𝑂(𝑀𝑁 + 𝑀2) multiplications and additions [6], [7]. So
when 𝑀 = 𝑁 , the speedups of the proposed implementation
over the V-BLAST algorithm with memory saving [8] in the
number of multiplications, additions and flops are 2.28, 1.86
and 2.18, respectively.

V. CONCLUSION

In this paper, we propose the improved implementation for
the recursive V-BLAST Algorithms in [6], [7], which saves
memories and permutation operations, as the V-BLAST
algorithm with memory saving in [8]. When 𝑀 = 𝑁 , the
proposed implementation requires only half memories and
saves more than twice permutation operations, with respect
to the V-BLAST algorithm with memory saving in [8].
Moreover, as 𝑁 increases relative to 𝑀 , the ratio between
the memories required by the proposed implementation and
those required by the V-BLAST algorithm with memory
saving in [8] becomes even smaller. On the other hand,
when 𝑀 = 𝑁 , the speedups of the proposed implementation
over the V-BLAST algorithm with memory saving [8] in the
number of multiplications, additions and flops are 2.28, 1.86
and 2.18, respectively.

ACKNOWLEDGMENT

This work is supported by Major National S&T Program
2009ZX03003-002 of China.

REFERENCES

[1] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R.
A. Valenzuela, “V-BLAST: an architecture for realizing very
high data rates over the rich-scattering wireless channel”,
Proc. URSI International Symposium on Signals, Systems, and
Electronics (ISSSE98), pp. 295-300, 1998.

[2] B. Hassibi, “An efficient square-root algorithm for BLAST”,
Proc. of IEEE International Conf. Acoustics, Speech, and
Signal Processing, (ICASSP ’00), pp. 737-740, June 2000.

[3] J. Benesty, Y. Huang and J. Chen, “A fast recursive algorithm
for optimum sequential signal detection in a BLAST system”,
IEEE Trans. on Signal Processing, pp. 1722-1730, July 2003.

[4] H. Zhu, Z. Lei, F.P.S. Chin, “An improved recursive algorithm
for BLAST”, Signal Process., vol. 87, no. 6, pp. 1408-1411,
Jun. 2007.

[5] L. Szczecinski and D. Massicotte, “Low complexity adaptation
of MIMO MMSE receivers, Implementation aspects”, Proc.
Global Commun. Conf. (Globecom05), St. Louis, MO, USA,
Nov. 28 - Dec. 2, 2005.

[6] Y. Shang and X. G. Xia, “An Improved Fast Recursive Al-
gorithm for V-BLAST With Optimal Ordered Detections”,
IEEE International Conference on Communications 2008 (ICC
2008), May 2008, pp. 756 - 760.

[7] H. Zhu, W. Chen and F. She, “Improved Fast Recursive Algo-
rithms for V-BLAST and G-STBC with Novel Efficient Matrix
Inversion”, IEEE International Conference on Communications
(ICC), 2009, Dresden, Germany.

[8] Y. Shang and X. G. Xia, “On Fast Recursive Algorithms
For V-BLAST With Optimal Ordered SIC Detection”, IEEE
Transactions on Wireless Communications, vol. 8, pp.2860-
2865, June 2009.

355

