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Abstract—In this paper, we improve the Trace-orthonormal
full-diversity cyclotomic space-time codes using coordinate in-
terleaving. We find that in the original design of full-rate full-
diversity cyclotomic linear dispersion codes (FR-FD LDC), the
constellation is restricted. Fortunately, a coordinate interleav-
ing method enables not only symbol-level diversity but also
coordinate-level diversity for high rate LD code design. Using this
method, we can improve the performance of the cyclotomic LD
codes over the constellations without the constellation restriction,
in block and fast fading channels.

Index Terms—MIMO communication systems, linear disper-
sion codes, full diversity, full rate, coordinate interleaving.

I. INTRODUCTION

Multiple-input multiple-output wireless links are important
recent developments to meet the challenges brought along by
the rapidly growing demands in wireless communications. The
importance of the MIMO communication systems lies in the
fact that M transmitter antennas and N receiver antennas are
used enabling the system to exploit the high performance pro-
vided by the space diversity available in MIMO channels [1],
[2]. Full diversity (FD) is achieved when the total degrees
of freedom (M × N ) offered in the multiantenna system are
utilized. This will ensure a good performance in terms of
probability of error for detecting the transmitted symbols at
a high signal-to-noise ratio (SNR) . A full symbol rate, on
the other hand, is achieved when one symbol is transmitted
by each of the multiple transmitter antennas per time slot
(often called a ”channel use”). Specifically, for M transmitter
antennas, we will have M symbols per channel use at full rate
(FR).

To achieve good performance and good transmission rate in
MIMO communications, Hassibi [3] proposed linear disper-
sion (LD) codes in which the transmitted codeword is a linear
combination of certain weighted matrices. The key to LD code
design is that the basic matrices are optimized such that the
resulting codes maximize the ergodic capacity of the MIMO
system. But, for the LD codes proposed in [3], good error
probability performance is not guaranteed. Then Heath [4]
proposed an LD code design using frame theory that typically
performs well in terms of both ergodic capacity and error

performance. However, their design still cannot guarantee full
diversity.

Investigation based on number theory has shown that it
is possible to design FR-FD LD codes. In [5], the authors
examined the design of LD codes applied to a MIMO
communication system from both the information-theoretic
and detection error viewpoints. By applying cyclotomic field
theory, this has led us to reach a very efficient design of
full diversity rectangular LD code at a symbol transmission
rate equal to the number of the transmitter antennas. But this
design is only adapt to some restricted constellation. In [6], the
authors proposed a general coordinate-interleaving method for
LD codes, which enables not only symbol-level diversity but
also coordinate-level diversity for high rate LD codes. In this
paper, we propose trace-orthonormal full-diversity cyclotomic
LD codes using coordinate interleaving to impove the diversity
performance over some constellations in block and rapid
fading channels.

II. MIMO SYSTEM WITH LD CODES

We consider a MIMO system with M transmit antennas,
N receive antennas, and an interval of T symbols available
to us during which the propagation channel is constant and
known to the receiver. The information signal symbols {sk}
are randomly selected from a certain constellation with zero
mean and unit variance. At the tth transmission time slot,
an M -dimensional vector (a coded version of the information
symbols) is transmitted. Thus, for T transmission time slots,
there are T coded signal vectors forming an M × T coded
signal matrix S given by [3]

S =
K∑

k=1

(Aksk + Bks∗k), (1)

where sk (k = 1, 2, . . . ,K) denotes information symbols
selected from an alphabet to be transmitted within the T
time slots, and Ak and Bk denote the M × N matrices. Let
s = [s1, s2, . . . , sk]T . At the receiver, the received signal can
be written as

978-1-4244-1708-7/08/$25.00 ©2008 IEEE 777

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:42 from IEEE Xplore.  Restrictions apply.



R =
√

ρ

M
HS + V, (2)

where ρ is the signal-to-noise ratio per receiver antenna,
R = [r1, r2, ..., rT ], and V = [v1, v2, ..., vT ] denote the
N × T received signal and noise matrices, respectively. Here,
H is an N × M channel matrix. Throughout the paper, we
assume that H, S and V are independent and that the channel
coefficients hnm (m = 1, ...,M, n = 1, ..., N), of the matrix
H are samples of independent circularly symmetric zero-mean
complex white Gaussian random variables with unit variances.
An equivalent model can be established by vectoring both
sides of (2) such that [5]

vec(R) =
√

ρ

M
H(As + Bs∗) + vec(V), (3)

where H = IT ⊗ H, A = [vec(A1), vec(A2), ..., vec(AK)]
and B = [vec(B1), vec(B2), ..., vec(BK)]. Combining (3) and
its conjugate, and applying a transformation matrix T to the
combined equation, it results in a model that involves only
real multiple inputs and real multiple outputs such that

[
vec(Rre)
vec(Rim)

]
=
√

ρ

M
THH̃FT

[
sre

sim

]
+
[
vec(Vre)
vec(Vim)

]
, (4)

where the unitary transformation matrix is given by

T =
1√
2

[
I jI
I −jI

]
, (5)

the precoder matrix is given by

F =
[A B
B∗ A∗

]
, (6)

the matrix H̃ is defined as H̃ = diag(H,H∗), and [·]re

and [·]im denote the real and imaginary parts of a quantity,
respectively. Eq. (4) is useful in analyzing the detection
performance of an LD code at the receiver as well as the
ergodic capacity of the LD coded channel.

III. DESIGN OF LD CODES

A. Design of FR-FD LD Codes

In this subsection, we examine the structure of an LD code
used in MIMO communications and give the design of FR-FD
LD codes proposed in [5].

Firstly, from an information-theoretic viewpoint, we found
that a good LD code should have an interunitary structure.
To obtain a capacity optimum coding matrix F such that it
renders the ergodic capacity of the LD coded channel equal
to that of the original uncoded channel, we have the following
assertion [7].

Theorem 1: Let K = MT (i.e., consider full symbol rate
transmission). Then, subject to the power constraint:

K∑
k=1

tr
(

AkAH
k + BkBH

k

)
= MT, (7)

F is capacity-optimal if and only if F is unitary, or equiva-
lently, the following conditions hold:

tr(AkAH
k′ + Bk′BH

k ) = δ(k − k′), (8)

tr(BkAH
k′ + Bk′AH

k ) = 0, (9)

for k, k′ = 1, 2, ...,K, where δ(k−k′) is the Kronecker delta.
Secondly, from a detection error viewpoint, a good LD code

should have an intraunitary structure. In the following, we
explore the properties of a good code by establishing the lower
bound of the worst case pairwise error probability (PEP) and
examining the necessary code structure for the lower bound
to be reached.

Let us first define the minimum distance of the constellation
S as dmin(S) = mins,s′∈SK ,s �=s′ |s − s′|. The following
theorem provides us with an expression on the universal lower
bound of the worst case PEP for any linear dispersion code [8].

Theorem 2: Let Sre and Sim denote two constellations
consisting of, respectively, the real and the imaginary parts
of the elements in constellation S. If S satisfies the following
geometrical property:

dmin(S) = dmin(Sre) = dmin(Sim), (10)

then for any LD code F with a power budget tr(FFH) ≤
MT , the lower bound of the worst case PEP of the ML
detector is given by

max
s,s′∈SK ,s �=s′

PF (s → s′) ≥ J

(
ρTd2

min(S)
8MK

)
, (11)

where J(a) = (1/π)
∫ π/2

0

(
1 + a/ sin2(θ)

)−MN
dθ for a > 0.

Furthermore, a necessary condition for the lower bound to be
achieved is that the pair of matrices, Ak and Bk, associated
with each individual symbol must satisfy the following con-
ditions:

AkAH
k + BkBH

k =
T

K
IM , AkBH

k + BkAH
k = 0, (12)

Theorem 2 establishes from a detection viewpoint that each
individual code matrix of a good LD code should have an
intraunitary structure. The following comments on the result
should be noted.

1) For the lower bound of (11) to be valid, the constellation
S has to satisfy (10). For example, the square q-ary
QAM satisfies the condition, whereas nonsquare q-ary
QAM and q-ary PSK do not.

2) The conditions in (12) is necessary but not sufficient.

Then we should strive for both interunitary and intraunitary
structures in the design of an LD code, and call such structures
of an LD code trace orthonormality [8], which can be formally
defined as follows.

Definition 1: Let T ≥ M . A sequence of M × T matrices
Ak and Bk, k = 1, 2, ...,K, and K ≤ MT is said to constitute
a trace-orthonormal LD code if the following conditions are
satisfied:

778

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:42 from IEEE Xplore.  Restrictions apply.



AkAH
k + BkBH

k =
T

K
IM , , (13)

AkBH
k + BkAH

k = 0, (14)

tr(AkAH
k′ + Bk′BH

k ) =
MT

K
δ(k − k′), (15)

tr(BkAH
k′ + Bk′AH

k ) = 0, (16)

for k, k′ = 1, 2, ...,K. In particular, when K = MT, it is said
to constitute a trace-orthonormal LD code of full transmission
symbol rate.

Now we develop a scheme for the construction of trace-
orthonormal LD codes. First, we introduce the following
definition and then present the systematic generation of trace-
orthonormal LD codes [5].

Definition 2: Let T = LM , where L is a positive integer.
A 2T × 2T unitary matrix V satisfying

V =
[

X Y
Y∗ X∗

]
, (17)

is said to be of V-structure if the following exists:
a) the entries of the T × T matrices X and Y satisfy

L−1∑
n=0

|x(Mn+m),t|2 +
L−1∑
n=0

|y(Mn+m),t|2 =
1
M

, (18)

for t = 1, 2, ...T ; and m = 1, 2, ...M ;
b) the cross terms between X and Y satisfy

L−1∑
n=0

(
x(Mn+m),ty

∗
(Mn+m),t + x∗

(Mn+m),ty(Mn+m),t

)
= 0,

(19)
for t = 1, 2, ...T ; and m = 1, 2, ...M .

Theorem 3: Let T = LM , and K = RT with R ≤ M .
Suppose that we have the V-structured 2T × 2T matrices Vr,
for r = 1, ..., R, respectively given by (17). By taking the tth
column vectors of the component matrices Xr, Yr of Vr, we
now form the matrices Dt and ∆t as follows:

Dt = [diag(x1,t, ...xM,t), diag(xM+1,t, ...x2M,t), · · ·
diag(x(L−1)M+1,t, ...xLM,t)]

∆t = [diag(y1,t, ...yM,t), diag(yM+1,t, ...y2M,t), · · ·
diag(y(L−1)M+1,t, ...yLM,t)]

for r = 1, ...R and t = 1, ...T . Let two sequences of matrices
Ar,t and Br,t be given by

Ar,t =

√
MT

K
Cr−1

M Dt, Br,t =

√
MT

K
Cr−1

M ∆t, (20)

where CM =
[

O1×(P−1) 1
IP−1 O(P−1)×1

]
. Then the matrix

family Ar,t, Br,t constitutes a trace-orthonormal LD code with
a symbol rate R per channel use.

We now show how to select V-structured matrices from
the trace-orthonormal LD code family such that the resulting
codes will provide full diversity. Meanwhile we state the main
result for the design of trace-orthonormal full diversity LD
codes as follows [5].

Theorem 4: 4: Let K = RT with T = ML̃ and 0 < R ≤
M . Also, let M =

∏d
m=1 qλm

m

∏dM

k=1 pαk

k , R =
∏d

m=1 qµi
m∏dR

l=1 p̃βl

l and L = L0

∏d
i=1 qτm

m

∏dM

k=1 pγk

k

∏dR

l=1 p̃ρl

l , where
qm, pk and p̃l are primes, αk, βl, γi, ρl ≥ 1, and L0 is prime
to both M and R. We choose the V-structured matrices in
Theorem 3 as follows:

Xr = ζr−1
LRM2U ⊗

[R0[1 : M1, :]
OM2×M

]
, (21)

Yr = ζr−1
LRM2U ⊗

[
OM1×M

R∗
0[M1 + 1 : M, :]

]
, (22)

for r = 1, 2, ...R, where M1 + M2 = M , M1,M2 ≥ 0,
U is an arbitrarily given L̃ × L̃ unitary matrix and R0 =
WH

Mdiag(1, ζP , ...ζM−1
P ). Then the resulting signal matrix

s provides full diversity over any constellation carved from
Z

K [ζL] with a symbol transmission rate R symbols per
channel use.

B. Coordinate-Interleaving LD Codes (CILDC)

In [6], the authours propose a new LD codes encoding
procedure using coordinate interleaving as follows: Consider
a pair of source data symbol vectors s1 = [s1

1, s
1
2, ..., s

1
K ]T

and s2 = [s2
1, s

2
2, ..., s

2
K ]T , where si

k = Re(si
k) + jIm(si

k) for
i = 1, 2 and k = 1, ...,K. The transmitter first coordinate-
interleaves s1 and s2 into sCI1 = [sCI1

1 , sCI1
2 , ..., sCI1

K ]T and
sCI2 = [sCI2

1 , sCI2
2 , ..., sCI2

K ]T , where sCI1
k = Re(s1

k) +
jIm(s2

k) and sCI2
k = Re(s2

k) + jIm(s1
k). Then, sCI1 and

sCI2 are encoded into two LD codewords of size T × M ,
SCI1 and SCI2, respectively. Then the transmitter successively
sends SCI1 and SCI2 during two interleaved periods.

Su and Liu [9] recently analyzed the diversity of space-
time modulation over Rayleigh fading channels. A modified
strategy can be used to investigate the diversity of CILDC
systems [6].

Consider a CILDC block C, which consists of two LD
codewords of size T × M , SCIi, where i = 1, 2. The
communication model for the CILDC block C can be rewritten
as

R =
√

ρ

M
SH + V, (23)

where the noise vector is V; the received signal vector R =
[[R

1
]T , [R

2
]T ]T , where R

i
= [vec(Ri)]; S is the channel sym-

bol matrix corresponding to the block C, S = diag(S
1
, S

2
),

where S
i

= IN

⊗
diag(S

i

1, ..., S
i

M ), S
i

m = diag([Si]1,m, ...,
[Si]T,m), k = 1, 2 and m = 1, ...,M ; the channel vector
H = [[H1]T , [H2]T ]T , where Hi = [(hi

1,1)
T , ..., (hi

M,1)
T , ...,

(hi
1,N )T , ..., (hi

M,N )T ]T , and hi
m,n = [hk,1

m,n, ..., hk,T
m,n].
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Consider the directed pair of matrices S and S̃ corresponding
to two different blocks C and C̃. The upper bound pairwise
error probability [10] is

P (S → S̃) ≤
(

2r − 1
r

)( r∏
a=1

γa

)−1 ( ρ

M

)−r

, (24)

where r is the rank of (S − S̃)RH(S − S̃)H , and RH =
E[H[H]H ] is the correlation matrix of vector H, a = 1, ..., r

are the non-zero eigenvalues of Λ = (S − S̃)RH(S − S̃)H .
Then the rank and product criteria are

1) Rank criterion: the minimum rank of Λ over all direction
pairs of different matrices S and S̃ should be as large as
possible.

2) Product criterion: the minimum value of the product∏r
a=1 γa over all direction pairs of different S and S̃

should be maximized.

To maximize the rank of Λ, we need to maximize the ranks
of both RH and S − S̃. Denote

Ωk = S
k − S̃

k
, (25)

where k = 1, 2.

Assume that all the possible S
k

and S̃
k

are contained in a

set Sk,i.e. S
k
, S̃

k ∈ Sk, where k = 1, 2. Then the diversity
order of the CILDC, rd is

rd = min{rank(Λ), S, S̃ ∈ S, S �= S̃}. (26)

When S �= S̃, there are three distinct categories of situations,

1) S
1 �= S̃

1
and S

2
= S̃

2
,

2) S
1

= S̃
1

and S
2 �= S̃

2
,

3) S
1 �= S̃

1
and S

2 �= S̃
2
.

Note that when RH is full rank,

1) in the above situations (1) and (2), the upper bound of
rank(Λ) is NT;

2) in the above situation (3), the upper bound of rank(Λ)
is 2NT.

Thus CILDC does increase r for the above-mentioned third
situation, which is not the conventional diversity order of the
LD codes and may significantly impact system performance. It
is necessary to introduce a new concept to quantify this effect
as follows.

Definition 3: Statistical diversity order, rsd is the rank of Λ
achieved with a certain probability α, mathematically written
as

P{rank(Λ) ≥ rsd, S �= S̃, {S, S̃} ∈ S} = α, (27)

Then we have the following theorem [6].
Theorem 5: A CILDC is constructed through coordinate

interleaving across a pair of component LDC codewords.
Both component LDC encoders are able to generate different
codewords for different input sequences. The diversity orders

of the component LDCs are r1
d and r2

d, respectively. Suppose
that RH is full rank. The codebook sizes of the two component
LDCs are the same value Na.

1) The diversity order of this CILDC, rd is min{r1
d, r2

d}.

2) Assuming that all directional pairs S and S̃ are equally
probable, the statistical diversity order of this CILDC, rsd is
r1
d + r2

d with probability

α =

(
Na

2

)(
Na

2

)
(

Na

2

)(
Na

2

)
+ Na

(
Na

2

) , (28)

As mentioned in Theorem 2, for FR-FD LD codes, the
constellation S has to satisfy (10). This restricts the con-
stellations that we can use, such as q-ary PSK, nonsqure q-
QAM. Now, the method presented above can help us. Using
coordinate interleaving we can improve the performance with
some constellations, which do not satisfy the condition, as
we can see in the simulation in both block and fast fading
channels.

IV. SIMULATION

In this section, we give the examples to show the per-
formance of our method. In the procedure, perfect channel
knowledge is assumed at the receiver but not at the transmitter.
Channel symbols are estimated using MMSE estimation. The
codes presented in [5] are used as component LDC coding
matrices of CILDC systems in the simulation, and 4-PSK, 8-
PSK, nonsquare 8-QAM is used since they do not satisfy the
condition in (10).

The performance comparison of the code given in example
3 (M = 2, N = 2, K = 4, T = 2) in [5] is shown in Figure 1
and 3, with 4-PSK and 8-PSK, respectively. The performance
comparison of the code given in example 4 (M = 3, N = 3,
K = 9, T = 3) in [5] is shown in Figure 2 and 4, with 4-
PSK and 8-QAM, respectively. All these codes are simulated
in block and fast fading channels.

Although these constellations do not satisfy the condition in
(10), as shown in these figures, using coordinate interleaving,
the performance are improved at high SNRs in both channels.

V. CONCLUSION

In this paper, we improve the Trace-orthonormal full-
diversity cyclomic space-time codes using coordinate inter-
leaving procedure, which enables not only symbol-level di-
versity but also coordinate-level diversity for high rate LD
code design. Although the constellations is restricted in the
design of full-rate full-diversity linear dispersion codes (FR-
FD LDC), CILDC show either much higher average diversity
order or extra coding advantage in both block and fast fading
channels at high SNRs with the constellations which do not
satisfy the restriction as presented in the simulation.
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Fig. 1. BER performance comparison of LDC vs CILDC: M = 2, N =
2, K = 4, T = 2 with 4-PSK
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Fig. 2. BER performance comparison of LDC vs CILDC: M = 3, N =
3, K = 9, T = 3 with 4-PSK
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Fig. 3. BER performance comparison of LDC vs CILDC: M = 2, N =
2, K = 4, T = 2 with 8-PSK
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Fig. 4. BER performance comparison of LDC vs CILDC: M = 3, N =
3, K = 9, T = 3 with 8-QAM
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