
Vegas-W: An Enhanced TCP-Vegas for Wireless
Ad Hoc Networks

Lianghui Ding, Xinbing Wang, Youyun Xu, Wenjun Zhang, Wen Chen
Department of Electronic Engineering
Shanghai Jiaotong University, China

Email: {lhding, xwang8, xuyouyun,zhangwenjun, Wen Chen}@sjtu.edu.cn

Abstract— The performance of TCP-Vegas is not satisfactory
in multihop ad hoc networks over IEEE 802.11 MAC protocol.
We analyze the problem with a unified network model and
simulation results. We observe that the aggregate throughput
of all traffics decreases as the load of the network increases. The
main reasons lie in Vegas’s large minimum congestion window,
large reset slow start threshold and aggressive window increase
policy. To fix these problems, we propose a modified TCP protocol
based on TCP-Vegas for multihop ad hoc networks, called Vegas-
W. We extend the congestion window to fraction; change the
probing mechanisms of legacy TCP-Vegas in both slow start and
congestion avoidance and update slow start threshold tracking
the stable window. We evaluate the performance of Vegas-W
through ns-2. Extensive simulation results under a variety of
scenarios show that Vegas-W can improve the throughput up to
87% over legacy TCP-Vegas and up to 27% over FeW, which is
another improved algorithm based on TCP-Newreno scenarios.1

I. INTRODUCTION

The performance of legacy TCP over multihop ad hoc
networks is not satisfactory due to the special features of
wireless networks, such as hidden terminal and exposed termi-
nal problems, channel errors, topology variations and routing
instability, etc [1]. However, most wireless applications rely
on legacy TCP to communicate with the TCP-dominant wired
hosts, and it is likely that TCP will remain as the major
transport protocol for the clients of 802.11 networks [2].
Hence, the analysis and improvement of TCP performance
over multihop ad hoc networks is important and valuable.

Researchers have done much work on improving TCP
performance in multihop ad hoc networks in recent yeas [1],
[3]–[6]. Most of the previous research mainly considered
the problem from the perspective that features of wireless
networks and protocols at MAC and routing layers affect the
performance of TCP. Packet losses caused by router breakage
or transmission errors were distinguished from those due to
congestion and treated with different policies. This category
of enhancement is suitable for all legacy TCP variations, which
consider packet losses as the indication of network congestion.

Since rate control mechanisms of TCP variations are dif-
ferent from each other, their performance in multihop ad hoc
networks is not the same. Application of TCP in multihop ad
hoc networks requires specific consideration for the particular
TCP variation. TCP-NewReno [7] and TCP-Vegas [8] are

1This work is supported by NSF China (No. 60702046).

two widely used transport protocols. For NewReno, K. Nahm
etc, recently considered its performance in multihop ad hoc
networks and proposed an improved algorithm FeW [2].
As to Vegas, only some experimental results were presented
in [9] [11]. Those results showed that Vegas outperforms other
TCP protocols in most scenarios for its window adjustment
based on round trip time (RTT) variations. To the best of
our knowledge, there has been no literature considering the
specific features of Vegas in multihop ad hoc networks in depth
and proposing related improved algorithms.

In this paper, we analyze the behavior of Vegas in multihop
ad hoc networks with a unified network framework and
simulation results. It is concluded that large minimum window,
large reset slow start threshold W r

th and aggressive window
increase policy are main reasons of the low throughput. Based
on the analysis, we propose a modified Vegas, called Vegas-
W, which improves TCP-Vegas in four aspects for multihop
wireless circumstances: (i) We extend the congestion window
to fraction with a rate control timer under the TCP sending
process; (ii) We change the probing mechanism in slow start
phase by keeping congestion window constant until the num-
ber of received ACKs is larger than a threshold; (iii) Window
increase in congestion avoidance phase is also changed similar
to that in slow start phase, but with a larger threshold; (iv)
We update slow start threshold Wth to keep track of the
stable window. The simulation results show that Vegas-W
improves throughput of Vegas significantly over a wide variety
of scenarios.

The rest of the paper is organized as follows. The back-
ground information about TCP-Vegas and related work is
described in Section II. Section III presents analytical model
and our Vegas-W algorithm. We evaluate the performance of
Vegas-W through ns-2 in Section IV. This paper is concluded
in Section V.

II. BACKGROUND AND RELATED WORK

A. TCP-Vegas

TCP-Vegas [8] adjusts its congestion window according
to the phases it performs and the gap between the real and
estimated sending rates. The estimation is done once per
round trip time RTT . Vegas sets BaseRTT to the minimum
of all measured RTT s and computes the Expected rate as
Expected = W/BaseRTT , where W denotes the window
size. Let RTTa denote the average measured RTT , then Vegas

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 2383

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

calculates the Actual rate as Actual = W/RTTa. The gap
between the real and estimated sending rates is defined as
∆ = (Expected−Actual) ∗BaseRTT . Three thresholds α,
β and γ are defined in Vegas. TCP senders compare ∆ with
γ in slow start phase and with α, β in congestion avoidance
phase to determine window adjustments.

In slow start phase, congestion window is smaller than slow
start threshold Wth. When receiving a new ACK, if ∆ is less
than γ, the TCP sender increases w by one. If not, the sender
will decrease window size by a specific percentage p, sets
Wth to be the reset value W r

th, and switches to congestion
avoidance phase.

When TCP sender is in congestion avoidance phase and
receives a new ACK, Vegas increases window by 1/W if ∆
is less than α, decrements it by 1/W if ∆ is larger than β,
and keeps it unchanged when ∆ falls between α and β.

More details about Vegas such as fast retransmit and fast
recovery etc. refer to [8].

B. Related Work

Previous research on TCP in multihop ad hoc networks
was mainly on distinguishing between packet losses caused
by router breakage or transmission errors and those due to
real network congestion. The retransmit timer was fixed after
retransmitting once rather than increasing exponentially in
[12]. Feedback at network layer was adopted for notification of
routing breakage in [1]. Upon receiving route failure messages,
TCP sources snooze all its variables and stop transmitting
anymore to shield the effects of multihop ad hoc networks.

In the meanwhile, interaction between TCP layer and link
layer has been considered in many documents. MAC layer
control frames were utilized to conduct network layer’s flow
control in [13]. It was observed in [15] that RTT is limited
by the number of round trip hops. Fu et al. showed that
the maximum throughput can be achieved under a specific
window limit in [3] and LRED algorithm was adopted for
dropping packets. Zhai et al. reported that TCP window may
be less than one in multihop ad hoc networks and rate based
transport control based on the channel busy ratio was proposed
to improve the performance [6].

In addition, some research has been done on analyzing
and improving the performance of a particular TCP variation
in multihop ad hoc networks. Performance of different TCP
variations with distinct routing protocols is compared in [9]
and [11]. K. Nahm et al. observed the interaction between
TCP, routing and MAC layers and proposed FeW with a small
window increase step based on TCP-NewReno.

However, the performance of TCP-Vegas in multihop ad hoc
networks has not been studied in depth. Interaction between
Vegas ends and the network, and that between TCP-Vegas and
MAC protocols have not been totally addressed. Hence, in this
paper, we investigate the behavior of Vegas in multihop ad
hoc networks and propose Vegas-W aiming at improving its
throughput, and our approach could be applied to the sensor
networks as well [10], [14].

III. VEGAS-W

A. Unified Network Framework

Interaction between TCP ends and network can be described
with the unified network framework shown in Figure 1, which
consists of three components: TCP sources, network and TCP
receivers. Network is a container of data and ACK packets
with limited resources, which drop packets according to the
load with related stochastic probability. All the TCP sources
compose the load ‘injection’ to the network with rate λd.
All the TCP receivers feedback ACKs to senders through the
network with rate λa. TCP sources adjust the sending rates,
which are controlled by congestion windows, based on the
states of ACKs (lost, new or dup) and variations of RTT , and
then change the load of the network accordingly.

Data

PHY

MAC

Routing

Collision /
Retransmission

RREQ / RREP /
RERR / etc

Channel Error

Source 1

Source 2

Source n

Receiver 1

Receiver 2

Receiver n

ACK

dλ

aλ

Fig. 1: Model of unified network framework.

Since the rate of ACK packets λa is determined by the data
rate λd , the load of the network is determined by sending
rates of all the TCP sources. The capacity of network is
limited by physical channel states, wireless spatial reuse ratio,
MAC contention resolution algorithms, and routing protocols,
etc. According to the results in [3], there should be a load
threshold of the network on which maximum throughput can
be achieved. Dividing the load threshold by packet size and
the number of TCP flows, we define W ∗ for each flow
as the optimal congestion window, on which the aggregate
throughput of all flows is maximized.

B. Interaction between TCP ends and network

Follow we analyze the interaction between TCP ends and
the network based on simulation results with distinct load on
the network, where the network load increases as the number
of flows increases. We focus on only one flow, while other
flows are considered as background traffics. Throughput of all
the flows, that of one flow and the aggregate throughput after
some simple modifications are shown in Table I.

TABLE I: Throughput over 7 hops chain topology
flow numbers 1 2 4 8

whole througput(Kbps) 206.8 165.3 102.4 79.4
throughput of one flow (Kbps) 206.8 81.62 25.51 10.16

modified throughput (Kbps) 192.6 197.2 177.8 138.1

Intuitively, the capacity of the network should be shared by
all the flows and the whole throughput should keeps almost
constant. But the results show that the whole throughput of

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

2384

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

all the flows and that of flow 0 decreases as the number of
flows increases. This is caused by large minimum congestion
window, large reset slow start threshold W r

th and aggressive
window increase policy. They induce overload to the network,
thus increase MAC collision and overhead of routing re-
establishment, which finally reduce the throughput.

We analyze the problem via the window size distribution of
one flow as shown in Figure 2. The zero probability of w = 1
is due to that the minimum window is 2 here. TCP source with
only 1 flow spends about 99% of all the simulation time on
w = 3 and can stabilize on it. The throughput in the scenario
with only 1 flow is close to the maximum throughput analyzed
in [16], hence we approximate the optimal window size W ∗

1

for 1 flow is 3. For other scenarios with multiple flows, the
optimal window will be W ∗

1 divided by the number of flows.
For scenario with 8 flows, W ∗

8 will be less than 1. However,
from Figure 2, the TCP source spends about half of the time
on W = 3. This is because both the minimum window and
reset slow start threshold W r

th are 2, which pushes the window
to increase to larger than 2.

For scenarios with 2 and 4 flows, the optimal window
is around 1. Assuming large minimum window is the only
reason for poor performance, it should be improved when
the minimum window is set to be 1. However, the window
size distribution is similar (the detailed simulation results
are omitted here for space limit), while when we set both
minimum window and slow start threshold to be 1, much
better throughput is shown in the 4th row of Table I. The
results show that joint activity of large minimum window and
large reset slow start threshold rather than each independent
one is the main reason for poor performance.

Fig. 2: Window size distribution of flow 0 over a 7-hop chain.

In addition, aggressive window increase policy aggravates
the problem. Although minimum window 2 is large, the
throughput will be higher than current values, if TCP sources
can fix the windows on the minimum ones. But TCP sources
spend much time on window 3 and 4, as shown in Figure 2,
because congestion window is increased when receiving a
new ACK and the value of ∆ meets the requirement. But
RTT is distributed in a large area as shown in our technical
report [?]. Thus increasing W based on only one ∆ meeting

the requirement is too aggressive.

C. Vegas-W

Based on the observation above, we propose our Vegas-W
algorithm. Its improvement consists of four aspects: fractional
window support, slower start, moderate congestion avoidance,
and Wth update. With fractional window support, window is
extended to less than 1, which aims at reducing the impact of
large minimum window problem. Slower start and moderate
congestion avoidance increase window based on more than one
∆ meeting requirement of thresholds to solve the aggressive
window increase problem. Besides, speeds of window increase
in slow start phase and congestion avoidance phase are dis-
tinguished for different features. Wth update avoids too slow
window increase when W ∗ is larger than W r

th.
1) Fractional Window Support: In wireless ad hoc net-

works, W ∗ may be fractional, and even less than one, which
requires that TCP sources send fractional number of packets
in one RTT . We assume that Nfw consecutive timeout events
occurring with window equal to one is an indication of
fractional window requirement. For simplicity, window is set
to be 0.5 after the indication. A rate control timer is placed
under the TCP sending process to schedule the transmission.

2) Slower Start: Probing the network with more than one
RTT and keeps window unchanged until the number of
received ACKs is larger than a threshold. Let ns denote the
number of received ACKs satisfying ∆ < γ in slow start
phase. Let Ns denote the window increase threshold. When
ns is less than Ns and calculated ∆ per RTT is less than γ,
window keeps constant and ns increases by 1 . When ns is
larger than Ns, the window increases by 1, and ns is reset to
be 0. Window is decreased by percentage p when ∆ is larger
than γ. The Slower Start process can be described as in (1).

W =

W , if ∆ < γ & ns <= Ns

W + 1 , if ∆ < γ & ns > Ns

W × (1 − p) , if ∆ >= γ
(1)

3) Moderate Congestion Avoidance: Let nCA denote the
number of received ACKs satisfying ∆ < α in congestion
avoidance phase. Let NCA denote the window increase thresh-
old. When nCA is less than NCA and ∆ is less than α, window
keeps constant and nCA increases by 1. When nCA is larger
than NCA, the congestion window increases by 1/W , and nCA

is reset to be 0. When ∆ falls between α and β, nCA keeps
unchanged. Other operations is same to Vegas. The Moderate
Congestion Avoidance can be described as in (2).

W =

W + 1
W , if ∆ <= α & nCA > NCA

W , if α < ∆ < β
or ∆ <= α & nCA <= NCA

W − 1
W , if ∆ >= β

(2)

With Moderate Congestion Avoidance, we slow down the
window increase speed in congestion avoidance phase and try
to make the window stabilize on the optimal window W ∗ for
long time with large window increase threshold NCA.

In the congestion avoidance phase, TCP sources have es-
timated the bandwidth of the network and try to oscillates

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

2385

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

around the stable window, while in the slow start phase, TCP
sources probe the network with no prior information. Hence
the increase step should be different and distinct window
increase thresholds Ns and NCA are used to reflect distinct
features of the two phases.

4) Wth Update: In legacy Vegas, Wth is set to be one
half of the window when timeout occurs. This is not suitable
in wireless networks, because packets can be dropped for
physical transmission errors or collision at the MAC layer
rather than congestion. Wth should not always be halved
strictly when timeout occurs. Besides, the window increase
step of Vegas-W is slower than Vegas after application of
Moderate congestion avoidance, and large gap between Wth

and W ∗ will waste bandwidth.
Hence, Wth update proposed here adjusts Wth tracking W ∗.

For estimating the real optimal window W ∗ is difficult, stable
window is taken as W ∗ when TCP sources stabilize on it for
time longer than a threshold, where the time is normalized by
RTT . Wth update comprises two parts: one is for Wth reset
when receiving a new ACK, another is for Wth decrement
when timeout occurs.

Algorithm 1: Wth Update When Receiving a New ACK
Initialization: Receiving a new ACK with sequence number

equal to or larger than beg seqno
Method:

1. Calculate Expected and Actual
2. Calculate the integral number of packets congested:

∆ = (int)((Expected − Actual) ∗ baseRTT + 0.5)
3. IF w < Wth

4. IF ∆ > γ
5. Wth ← current window minus 1
6. END
7. ELSE
8. IF ∆ < α
9. nsCA keeps unchanged
10. END
11. IF ∆ > β
12. nsCA ← 0
13. END
14. IF α ≤ ∆ ≤ β
15. IF Currentwindow > Ws

16. nsCA ← 0
17. Ws ← current window
18. END
19. nsCA ← nsCA + 1
20. IF nsCA > NSCA

21. Wth ← w
22. nsCA ← 0
23. END
24. END
25. END
26. beg seqno ← sequence number of the ACK

Fig. 3: Wth update when receiving a new ACK.

Let nsCA denote the number of stable RTT periods on
the window Ws in congestion avoidance phase. When ∆ is
between α and β, nsCA increases by 1, or it keeps constant.
When nsCA is larger than a threshold NSCA, Wth is set to
be the window size and nsCA is set to be 0. When the current
window is larger than Ws, nsCA is set to be 0 and Ws is set

to be the current window size. Wth update when receiving a
new ACK is shown in Figure 3.

Let toss denote the number of consecutive timeout events
with window less than Wth. When toss is larger than a
threshold TOss, Wth decreases by 1 and toss is set to be
0.

IV. SIMULATION AND RESULTS

In this section, we evaluate Vegas-W and compare it with
legacy TCP-Vegas and FeW over a wide variety of scenarios.
Due to the space limit, we only present the simulation results
with DSR routing protocol over chain topology here.

A. Simulation Setup

We implement our algorithm into ns-2simulator and evaluate
the performance with DSR routing protocol, which is a widely
used on demand routing protocols. IEEE 802.11 is set as the
MAC layer protocol. Both basic rate and data rate at the
802.11 MAC layer are set to be 2Mbps. Other parameters
are kept as default in ns-2. Long-lived TCP flows (of 500
seconds) are evaluated over different topologies. The receiving
range is 250m and carrier sensing range is 500m. The wireless
propagation model is the two ray ground model. The packet
size is 1024 bytes. The three thresholds α, β and γ are set to
be 1, 3 and 1, and parameter p in slow start phase is set to
be 1/8 as default. Selection of parameters in Vegas-W should
consider the tradeoff between algorithm dynamics and network
stabilization. Based on simulation results, we choose the value
as follows. Nfw for fractional window decision is set to be 2.
Ns and NCA for moderate window increase are set to be 10
and 100 to distinguish window increase policies in different
phases. The two parameters NSCA and TOss for Wth update
are set to be 100 and 2, respectively.

B. Simulation Results

Chain is a common topology with limited resources and
shared by different TCP flows. We examine Vegas-W algo-
rithm over chain topology with the number of hops from 4
to 16. Scenarios with 1, 2, 4 and 8 TCP flows are evaluated
over the chain, which denote different load of the network. All
flows are from a same source node to an identical destination
node. We plot the throughput in Figures 4(a). Vegas-W obtains
significant throughput improvement compared to TCP-Vegas
and FeW.

We can see that in Figure 4(a), when the number of flows
is 8 and network load is heavy, throughput of Vegas-W is
better than that of Vegas by about 62% and that of FeW by
about 22% on average. Based on above results, the optimal
window W ∗

8 for 8 flows is less than one. Fractional window
support of Vegas-W extends congestion window to less than
1. Wth update adjusts W r

th to 1 and slows down the window
increase speed. Combination of these two new mechanisms
obtains high throughput gain.

When the number of flows is 4 and network load is
moderate, the throughput of Vegas-W is better than that of
Vegas by about 87% on average, while is similar to FeW.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

2386

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

The optimal window W ∗
4 is less than and close to 1, while

the initial window of legacy Vegas is 2, which induces more
packets on flight than the network capacity. The modification
of minimum window from 2 to 1, slower start and moderate
congestion avoidance make TCP sources inject appropriate
load to the network and improve the throughput. This makes
TCP-Vegas similar to TCP-NewReno.

When the number of flows is 2 and network load is slightly
heavy, throughput of Vegas-W is larger than Vegas about 27%
and similar to FeW. The reason is same with that in the
scenario with 4 flows.

When there is only one flow over the chain and the load is
light, both Vegas-W and Vegas almost obtain same throughput
and is larger than FeW by about 7%. For this scenario, W ∗

1

is larger than W r
th = 2 of legacy Vegas, and TCP sources

can stabilize on it in most of the time. So loss probability
will be small and the system will run fluently. Separation
of different window increase thresholds in slow start and
congestion avoidance phases and Wth update mechanisms
of Vegas-W reserve this stable property of Vegas and make
Vegas-W obtain close throughput better than FeW.

(a) Eight flows (b) Four flows

(c) Two flows (d) One flow

Fig. 4: Throughput comparison over chain topology with DSR
and 95% confidence interval.

V. CONCLUSION

In this paper, we analyze the poor performance of Vegas
over wireless ad hoc networks via simulation together with a
unified network framework. We identify the major reasons as
large minimum window, large reset slow start threshold W r

th

and aggressive window increase policy. We then propose a
new algorithm, called Vegas-W, which considers the special
features of wireless ad hoc networks and improves legacy
Vegas in four aspects: fractional window support, slower start,
moderate congestion avoidance and Wth update, respectively.
We evaluate Vegas-W through ns-2, and compare it with legacy
Vegas and FeW with DSR over the chain topology in this paper

with different network load. The simulation results show that
Vegas-W obtains higher throughput than Vegas up to 87% and
outperforms FeW up to 27%.

ACKNOWLEDGMENT

This work is supported by NSF China (No. 60702046,
60625103), and Science and Technology Commission
of Shanghai Municipality (STCSM) under the grant
NO. 05DZ22102; China Ministration of Education (No.
20070248095); Shanghai Jiaotong University Young Faculty
Funding; Shanghai Jiaotong University Pre-Research Funding;
Qualcom China Research Grant.

REFERENCES

[1] G. Holland and N. Vaidya, “Analysis of tcp performance over mobile ad
hoc networks,” in Proc. IEEE/ACM MOBICOM, Aug 1999.

[2] K. Nahm, A. Helmy and C. -C. Jay Kuo, “TCP over multihop 802.11
networks: Issues and performance enhancement,” in Proc. ACM MobiHoc,
Urbana-Champaign, IL, USA, May 2005.

[3] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The impact
of multihop wireless channel on tcp throughput and loss,” in Proc. IEEE
INFOCOM, San Francisco, USA, Mar 2003.

[4] K. Xu, M. Gerla, L. Qi and Y. Shu, “Enhancing tcp fairness in ad
hoc wireless networks using neighborhood red,” in Proc. MobiCom, San
Diego, California, USA, Sep 2003.

[5] Z. Fu, X. Meng and S. Lu, “How bad tcp can perform in mobile ad
hoc networks,” in IEEE International Symposium on Computers and
Communications (ISCC’02), Taormina, Italy, Jul 2002.

[6] H. Zhai, X. Chen and Y. Fang, “Rate-based transport control for mobile
ad hoc networks,” in Proc. IEEE WCNC, New Orleans, LA USA, Mar
2005.

[7] S. Floyd and T. Henderson, “RFC2582: The NewReno modification to
TCP’s fast recovery algorithm,” Apr 1999.

[8] L. S. Brakmo, S. W. O’Malley and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in Proc. ACM SIG-
COMM, Oct 1994.

[9] M. Yahia, J. Bı́ró, “Behavior of TCP algorithms on ad-hoc networks based
on different routing protocols (MANETS) and propagation models,” in
Proc. ICWMC, Bucharest, Romania, Jul 2006.

[10] Mo Li and Yunhao Liu, ”Rendered Path: Range-Free Localization
in Anisotropic Sensor Networks with Holes”, ACM MobiCom 2007,
Montreal, Quebec, Canada, September 2007.

[11] M. Berger, S. Lima, A. Manoussakis, J. Pulgarin and B. Sanchez, “A
performance comparison of TCP protocols over mobile ad hoc wireless
networks,” in Proc. CERMA, Cuernavaca, Mexico, Dec 2006.

[12] T. D. Dyer and R. V. Boppana, “A comparision of TCP performance
over three routing protocols for mobile ad hoc netwoks,” in Proc. ACM
MobiHoc, Oct 2001.

[13] H. Zhai and Y. Fang, “Distributed flow control and medium access in
multihop ad hoc networks.” IEEE Trans. Mobile Comput., vol. 5, no. 11,
pp. 1503–1514, 2006.

[14] Mo Li and Yunhao Liu, ”Underground Structure Monitoring with Wire-
less Sensor Networks”, ACM/IEEE IPSN, Cambridge, Massachusetts,
USA, April, 2007.

[15] K. Chen, Y. Xue and K. Nahrstedt, “On setting TCP’s congestion
window limit in mobile ad hoc network,” in Proc. IEEE ICC, Anchor-
age,Alaska, May 2003.

[16] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee and R. Morris, “Capacity of
ad hoc wireless networks,” in Proc. of MobiCom, Rome, Italy, Jul 2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

2387

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on April 9, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

