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ABSTRACT

Recently, the conventional A/D conversion has been extended to the
A/D conversions based on shift invariant spaces, in which, the pre-
filtering is performed by quasi-projections into shift invariant spaces
and sampling is performed in the shift invariant spaces. This paper
studies the accuracy of the extended prefiltering. As a contribution
of this paper, a formula to exactly evaluate the average aliasing error
is established. Furthermore, for a signal in Sobolev space, remov-
ing the restriction that the exponent of Sobolev space is greater than
1/2 imposed by the previous authors, this paper finds that the aver-
age aliasing error decays at the rate as the exponent of the Sobolev
space.

Index Terms- prefiltering, aliasing error, quasi-projection, shift
invariant spaces.

1. INTRODUCTION

In digital signal processing (DSP) and digital communications, an
analog signal is converted to a digital signal by an analog-to-digital
(A/D) converter. An ideal A/D converter prefilters an analog signal
of finite energy by an ideal lowpass filter as illustrated by

Input signal )| Ideal lowpass filter - Prefiltered signal, (1)

and produces a discrete time (DT) signal by passing the prefiltered
signal through an ideal impulse train. The derived DT signal is then
subjected to a quantization process. Since an ideal lowpass filter and
an ideal impulse train are impossible to be realized in hardware, a
conventional practical A/D converter prefilters an analog signal of
finite energy by a non-ideal lowpass filter and passes the prefiltered
signal through a non-ideal impulse train.

Recent research on A/D conversion based on shift invariant spaces
reveals that the conventional prefiltering by a lowpass filter can be
extended and formulated as the prefiltering by quasi-projections into
shift invariant spaces [5] as illustrated by

Input signal Quasi-projection Prefiltered signal. (2)

Such an extension of prefiltering is significant and useful because it
establishes a theoretical framework for the conventional prefiltering
and conversely provides the new methods to design a non-ideal A/D
converter of high accuracy and low computational complexity [5].
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An important issue in prefiltering is the difference between the
prefiltered signal and the original signal, which is referred to as the
aliasing error. For an ideal prefiltering, the aliasing error can be
easily derived using the Parserval's identity. However, the estimate
of aliasing error for the prefiltering by a quasi-projection into shift
invariant space involves complicated analysis tools in approximation
theory. For a smooth enough signal, certain kind of investigation has
been done [3, 2, 10], which claims that the aliasing error decays
with respect to the scale of the shift invariant space, at the order of
the Strang-Fix condition that the generator satisfies. Since a practical
signal is usually non-smooth, the estimate of aliasing error for a non-
smooth signal is desirable for theoretical completeness and practical
broadness.

The signals considered in [3] are taken from the Sobolev space.
Since the only criterion for a signal in Sobolev space is the proper
decay of its spectrum, Sobolev space is regarded to be an appro-
priate signal space for practical signal processing. The exponent of
Sobolev space in [3] is assumed to be greater than 1/2, which re-
sults in the Holder continuity of the signal in Sobolev space, and
hence excludes the large class of discontinuous signals. In the recent
work done in [5], the authors derived an estimate of the aliasing er-
ror for the Lipschitz continuous signals in the sense of square norm,
which can cover some discontinuous signals. But Lipschitz continu-
ity of a signal in the sense of square norm is inconvenient to verify
in practical manipulation.

For the practical purpose of convenience and the theoretical pur-
pose of generality, it is desirable to establish the estimate of aliasing
error for the signals in Sobolev space, but remove the restriction on
the exponent of the Sobelev space imposed in [3]. One of our ob-
jectives in this paper is to establish such an estimate. Removing the
restriction on the exponent of Sobolev space, this paper derives a
formula to exactly evaluate the average aliasing error; Furthermore,
for a signal in Sobolev space, the average aliasing error is found to
decay at the order as the exponent of the Soblev space. In addition,
we have derived the coefficient of the decay rate, which has lower
computational complexity than the previous ones [3, 5].

2. PREFILTERING BY QUASI-PROJECTIONS INTO
SHIFT INVARIANT SPACES

In this section, we will set up the prefiltering by quasi-projections
into shift invariant spaces and introduces the related symbols and
concepts, such as shift invariant space, Sobolev space, aliasing error,
Fourier transform (FT), signals of finite energy, bandlimited signals
and the Dirac signal.
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2.1. Signals of finite energy, Fourier transform, bandlimited sig-
nals and the Dirac signal

An analog signal f is of finite energy if the square norm lf 112
(R If(t) 2dt) 1/2 < o0. We also denote by L2 (R) the signal space
of finite energy, that is, L2(R) = {f f:I2 < oo}. f is said to
be bandlimited if F(w) = 0 whenever w > of for some of > 0,
where F is the spectrum or Fourier transform (FT) of f defined by
F(w) = fR f (t)e- 2T7tdt. In this case, f is called a u7-band signal.
The continuous time (CT) Dirac signal d is defined as d(t) = 0 for
t 7? 0 and fR6(t)dt = 1; The discrete time (DT) Dirac signal is
defined as 6[0] = 1 and 6[f] = 0 for f 7? 0.

2.2. Shift invariant spaces

For a A > 1, the (scaled) shift invariant space (SIS) VA (f ) generated
by the generator o C L2(R) is defined as [2, 9],

V,(c) := (A - 2 < 0} c L2(R), (3)

where A, called the scale of the SIS VA (Q), is understood to be band-
width in prefiltering or sampling ratio in sampling. In this paper, we
also assume that {fo(A -. )}I is a Riesz basis of VAQ(), that is,
a < GK< b almost everywhere for some positive constants a and
b [2], where G,,= TI( + ) 12 is called the ratio of orthonor-
mality for the Riesz basis {fo( - )I. taking sinc t sint the
SIS VA (sinc) is exactly the A-band signal space of finite energy.

2.3. Prefiltering and aliasing error

The conventional ideal prefiltering by an idea lowpass filter boils
down to a quasi-projection PSAnc: L2 (R) -, VA, (sinc), defined by,

Psinc(f) A E(f, sinc(A- j)) sinc(A - ), Vf C L2(R),

where (, ) isthe innerproductinL2 (R) definedby (f,g) = fR (t)
g(t)dt. Hence the aliasing error is ef f-Psnc (f), which can be
made arbitrarily small by increasing the scale A of the SIS VA (sinc),
i.e., the bandwidth of the lowpass filter (see equaton (1)). This ob-
servation is very essential to establishing the sampling theory in shift
invariant spaces [4, 6, 7, 8, 12, 13], and the prefiltering theory based
on shift invariant spaces [3, 5], that will be also addressed in this
paper. By replacing the generator sinc by a general generator ~0, one
can consider prefiltering a signal by a quasi-projections into a SIS
(see equaton (2)), that is, to project a signal of finite energy to a SIS
VA (o) by a quasi-projection PA L2(R) -, VA (o) defined by

P>f): AL(f,o(A. (f)).(A - ), Vf c L2(R).

Then the aliasing error is defined as efP= (f). For the sim-
plicity of realization, we do not consider the dual or integral operator
version of quasi-projection in this paper [3, 10].

Taking the small random delay of the initial input to a practical
prefiltering system or the small random initial phase of a practical
sampler into account, it is reasonable to measure some kind of av-
erage aliasing error over a small delay interval or a small sampling
period. Assume that the random delay of the initial input or the ran-
dom initial phase of the sampler is uniformly distributed. Then the

average aliasing error ef is defined as

A
A

A
1

f A f du

where the delayed signal f,, is defined as f,,= f u). Since
the scale A, the bandwidth of the prefilter or the sampling ratio of
the sampling, is usually very large, the average aliasing error is very
close to the mean square error (MSE) of the prefiltering, i.e., ef
lef 112 for f C L2 (R.

2.4. Sobolev spaces

Let r be a positive real number. The Sobolev space W' consists of
all measurable functions f satisfying f IwI 2r ff(w) 12dw < oc. In
line with the definition of regularity, we use the notation Ilf(r)112 =
(fR Iw 2rIf(w) 2dw)1/2. Sobolev space is a broad and appropriate
signal space for the practical signals since the spectrum of signal in
a Sobolev space decays appropriately. For example, in the conven-
tional practical sampling where the actual sampling rate is less than
the Nyquist sampling rate, it is appropriate to take the signal into a
Sobolev space if the spectrum of the signal decays appropriately.

2.5. Strang-Fix Condition

In this paper, we also consider the Strang-Fix condition which has
been widely used in approximation by shift invariant spaces [2, 10,
11]. A generator o is said to satisfy the Lth order Strang-Fix con-
dition if its spectrum 1 satisfies 1)(O) 7 0 and T(D)(f) = 0 for
all integer f 7? 0 and = 0, ... , L 1. We also assume that
E It + f IL l(t + f) < oc, so that b has the bounded derivatives
up to L.

3. AVERAGE ALIASING ERROR FOR PREFILTERING BY
QUASI-PROJECTIONS INTO SHIFT INVARIANT SPACES

In this section, we are going to evaluate the average aliasing error for
prefiltering by a quasi-projection into a shift invariant space. Fur-
thermore, we will use the derived formula to estimate the average
aliasing error for a signal in Sobolev space. Finally a numerical ex-
ample based on the symmetric B-splines is calculated to demonstrate
the good performance of general prefiltering as compared to the con-
ventional prefiltering.

3.1. Average aliasing error

In this subsection, we are going to evaluate the average aliasing error
for a signal of finite energy prefiltered by a quasi-projection into shift
invariant space. For a generator o, we define the kernel function K(,
using the spectrum 1 of o as K,p := 1-2 l(1)2 + D1 2Gi. It is of
interest to note that the kernel can be simplified to K,= 1 _ D1 2,
if o is orthonormal. In particular, Ksin 1 -X[-1/2,1/2] for the
ideal prefiltering. Using the kernel K(, and combining the tools from
approximation theory and classical analysis, we obtain the following
simple formula to exactly calculate the average aliasing error.

Theorem 1 Ifa signal f offinite energy is prefiltered by the quasi-
projection PA into the SIS VA\ (po), then the average aliasing error is
-A 12 ' 1/2
ef {R JF(w) K,(K dw}l where F is the spectrum of f.
.
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Compared to what obtained in [3], Theorem 1 removes the re-
strictions f C WT and r > 1/2. Since a practical signal is usu-
ally not smooth or continuous, this result, because of its applicabil-
ity to any signal of finite energy, establishes a more general frame-
work for the extended prefiltering. Theorem 1 also indicates that
one can exactly calculate the average aliasing error for the prefilter-
ing by quasi-projections. For example, the average aliasing error

ef= {f [F(w)2 + IF(-w) 1] dw}l/2 for the ideal prefiltering
(o = sinc), which coincides with the the conventional argument on

this issue, and hence can be made arbitrarily small by increasing the
bandwidth A.

3.2. Signals in Sobolev spaces

For the ideal prefiltering, by the argument in the last sub-subsection,
if the spectrum F decays at some rate, say f C W' for some r > 0,
then the average aliasing error satisfies

A< >-T 1°c
T, F((,.) 12 + F(-1, 2] d} <)2d r< 2 (4)

In the same spirit, it is desirable to establish a similar estimate of the
average aliasing error for the prefiltering by quasi-projections into
shift invariant spaces if f belongs to the Sobolev space Wr for some
r > 0. This is expressed in the following theorem.

Theorem 2 Assume that the kernel satisfies KII 2r 0 < °°.
Then the average aliasing error satisfies ef < A-r f(r) Kf

* -2r o ifa signal f in the Sobolev space Wr for some r > 0 is

prefiltered by the quasi-projection PA. U

Therefore the average aliasing error decays at the rate as the ex-
ponent of the Sobolev space. Compared to the error estimate for
ideal prefiltering, there are additional multiplier IIK I * I-2rIl in
the average aliasing error for the general prefiltering. For o = sinc,
the additional multiplier term 11 Ksinc I1 2rIIo = 11 (l-X[-ArAl )I

2r 1100 = 1, which shows that this estimate covers the conventional
ideal prefiltering.

The next step is to find the conditions on the generator o such
that 11 KF I-2r 10 < oc. It is worth of indicating that a necessary
condition for .KI K-r < oo is K(0) = 0, i.e., G (0) =
2 -1(0) -2. Since G,(0) > 0, it deduces that 1I(0) > 2/2.
Technically, it is easy to choose a generator such that 1)(0) = 1 by
normalizing it as / 1 (0). Without loss of generality, we can assume
that )(0) = 1 for a general generator. Combining with the necessary
condition K(u) = , we have G(O) = 1. Then ()(f) = 5[f] for
any integer X, which exactly implies that o satisfies the first order
Strang-Fix condition. Conversely, T(D + w) = 6[f] + 0(w) if o

satisfies the first order Strang-Fix condition. Then KI 0(w2)
bywritingKS 1-II (2122+I± 2 I(f+ )12, andhence
IIK, * -2r I00 < oc for 0 < r < 1. This is showed the following
Corollary.

Corollary 1 Suppose that 1)(0) = 1. Then the generator o satisfies
thefirst order Strang-Fix condition ifand only if K, - 2r 00o <00
for some positive number r < 1. Consequently, the average aliasing
error satisfies ef < A-r lf(r) 2 11K, 2r ifa signal f in the

Sobolev space WT is prefiltered by the quasi-projection P\. 0
In general, if o satisfies the Lth order Strang-Fix condition for

some positive integer L, we have the following criterion.

(a) a signal f of finit energy (b) amplitude of the spectrum F off
0 1 2 3 20
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Fig. 1. (a) the input signal f; (b) The amplitude of the spectrum F

of the input signal f, which empirically decays at the rate 0(w_ 2.5) ;

(c) the B-spline of degree 2, /32 and the sine function; (d) the alias-

ing effrfrs fof prefiltering by ideal lowpass filtef of bandwidth A and

by a quasi-projectionpP2 for the scale A= 10 20.

Corollary 2 Assume that the generator o satisfies the Lth order
Strang-Fix condition. Then there is a 0, a finite linear combination
of the shifts of o, such that Kp * 2- o, < 00. Consequently, the
average aliasing error ef satisfies ef < A- f(r)112 JKV 2r
ifa signal f in the Sobolev space Wr for some r > 0 is prefiltered
by the quasi-projection PA into VA,(so) and r < L. U

Intuitively it seems that Strang-Fix condition is too strong for
obtaining the decay rate of the average aliasing error. But in some
sense, the Strang-Fix condition is a necessary condition for the aver-
age aliasing error to decay at some rate [3, 2, 10].

3.3. Numerical results

We give a numerical example to demonstrate the prefiltering based
on the symmetric B-spline shift invariant space. A symmetric B-
spline O3N of degree N is defined as the N-times convolution of the
characteristic function X[-1/2,1/2], i.e., O3N = X[-1/2,1/2] * ... *
X[- 1/2,1/2]. Then Fourier transform of O3N is sinCN. Since K3N =

1 -2 sinc2N + sinc2N G33N, by Theorem 1, the average aliasing
error is

ef fIF(w)2[1 (A) + sinc2N (dA) G (

if a signal f of finite energy is prefiltered by the quasi-projection
FL3¾ into the SIS VA(O).

Suppose that a signal f is taken from the Sobolev space WT for
some r > 0, and prefiltered by the quasi-projection POAT. Since
Matlab shows that IIK3NI * 1-04110 < IIN2, by Theorem 2, the

average aliasing error satisfies Kf< 11N2A-r f(r) , if r <

2. Noting that the O3N satisfies the Nth order Strang-Fix condi-
tion, by Corollary 2, there is ON, a finite linear combination of
the shifts of 13N, such that the average aliasing error satisfies eKf
A-r f(r) |JKv,N>I *1-2rll , if f is prefiltered by PA and r <

2 V
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Fig. 2. The original input signal f, the prefiltered signal by quasi-
projection P1A2 and the ideal prefiltering /)s nc The ideally pre-
filtered signal /)s nc(f) introduces ripples in the smooth part of f;
while the prefiltered signal P1A2 (f) approximates f very well. In
this simulation, A = 20.

N. In the following, we try to figure out the ON for the small N,
e.g., N = 2, 3. Since (sinc2)'(0) 0, we can take V2 = 2.
Since (sinc3)'(0) = 0 and (sinc3)" = -1, using @(a)(0) =

=( )Pk()(0) (sinc2) (k)() = [a] for a = 0,1,2, we have
P2(0) = 1, 2(°) = 0, P2(0) = 1. This solves co 8Tr21
Cl =Tl andC2 41 2 -Therefore = 8T2 1 i_1 (- _ ) +872anc28247 8,r2C
412 o(o -2). We leave the interesting calculation for N > 3 to the
interested readers. We now turn to consider prefiltering a physical
signal based on the symmetric B-spline of degree 2 and compare it
with the ideal prefiltering.

Consider the input signal f as shown in Fig. 1 (a). The spec-
trum F of f is shown in Fig. 1 (b). Empirical estimate shows that
F(w) = O(W-2 5) at infinity (see Fig. 1 (b)), and hence f C W'
for r < 2. For simplicity, we use the prefiltering EP12 (see Fig. 1 (c)
for the graph of $32). Since Matlab shows that K32 (w)/ g14 < 45,
the average aliasing error satisfies ef < 4511 f (r)1f 2A -r for r < 2.
Fig. 1 (d) shows this estimate versus the actual aliasing error for
A = 10, ... , 20. The actual aliasing error is seen to be lower than
the estimate, which implies that our estimate is not yet optimal. We
also put the actual aliasing error for the ideal lowpass prefiltering in
Fig. 1 (d) for comparison. It is observed that the actual accuracy of
prefiltering by PA32 is superior to that by PSJnc even if their theoreti-
cal estimates are in the same order. Visually, we see that the prefilter-
ing by a quasi-projection into VA (Q2) provides good approximation.
In Fig. 2, the ideal lowpass prefiltering PS>nc introduces ripples in
the smooth part of f. However, PA (f) approximates f very well.
Since f32 is compactly supported, this means reduction of the com-
putational complexity in prefiltering.

4. CONCLUSIONS

In this paper, we investigate the prefiltering by quasi-projections into
SIS. This paper establishes a formula to exactly calculate the average
aliasing error for a signal prefiltered by a quasi-projection. Further-
more, removing the restriction on the exponent of Soboleve space,
this paper finds that the average aliasing error decays at the order

as the exponent of the Sobolev space as long as the generator satis-
fies sufficient order Strang-Fix condition. Numerical results show
that, compared to the ideal prefiltering, the prefiltering by quasi-
projection offers high accuracy for some signals. It also reduces
the computational complexity in prefiltering by choosing the gener-
ators of fast decay or compact support. Since a prefiltered signal can
be perfectly reconstructed from the sampled DT signals by passing
the DT signals through a proper admissible filter, and the admissible
filters in time domain can be made to be of fast decay or compactly
supported, it reduces the noise sensisivity and computational com-
plexity in D/A conversion. Therefore, the extended A/D conversion
offers rich choices to design a non-ideal A/D conversion system of
high accuracy and low computational complexity in prefiltering, as
well as low computational complexity and reduced noise sensitivity
in D/A conversion. Meanwhile, such A/D conversion scheme based
on shift invariant space is amenable to the arbitrary band signals by
choosing a generator such that its spectrum matches the bands of the
practical signals.
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