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ABSTRACT

In the more general framework ' shift invariant subspace", the paper obtains a different estimate of sampling in function
subspace to our former work, by using the Frame Theory. The derived formula is easy to be calculated, and the estimate is
relaxed in some shift invariant subspaces.
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1. INTRODUCTION

In digital signal and image processing, digital communications, etc., a continuous signal is usually represented and
processed by using its discrete samples. Then a fundamental question is how to represent a signal in terms of a discrete
sequence. The famous classical Shannon Sampling Theorem describes that a finite energy band-limited signal is
completely characterized by their sample values. Realizing that the Shannon function sin c(t) = sin(t)It is in fact a
scaling function of an MRA (Multi-resolution Analysis), Walter18 found a sampling theorem for a class of wavelet
subspaces. Following Walter18's work, Janssen'3 studied the shift sampling in Wavelet subspaces by using Zak-transform.
Xia-Zhang22 discussed the so-called sampling property. Walter'9, Xia21 and Chen-Itoh7'8 studied the more general case' ' over-sampling." On the other hand Aldroubi-Unser1' 2,3 and Unser-Aldroubi17 studied the sampling procedure in shift-
invariant subspaces. Chen-Itoh9 improved Walter18 and Aldroubi-Unser3's works, and we found a general sampling
theorem for shift-invariant subspace.

However, in many real applications samplings are not always made regularly. Sometimes the sampling steps need to be
fluctuated according to the signals so as to reduce the number of samples and the computation complexity. There are also
many cases where undesirable jitter exists in sampling instants. Some communication systems may suffer from the
random delay due to the channel traffic congestion and encoding delay. In such cases, the system will be made to be more
efficient ifthe irregular factor is considered. Then how are these irregularly sampled signals could be dealt with? For the
finite energy band-limited signals, a generalization of Shannon Sampling Theorem, known as the Codec Theorem23, can
be used. Following the works on sampling in wavelet subspace, Liu-Walter15, Liu'4, and Chen-Itoh-Shiki4 extended Codec
Theorem to a class of wavelet subspaces. But their results are not mild. Then Chen-ltoh-Shiki6 introduced a function class

L[a, b] (2 > 0, a E [0,1), and 0 E [a, b] c [—1,1]) and a norm I•1112
[a b]

of i4 [a, b]. Finally we found an
irregular sampling theorem for wavelet subspaces with an L [a, b] -scaling function as the following.
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Theorem 6

Suppose a continuous L [a, b] -scaling function ç(t) ofan MRA {Vm}m 5 such that

Zço (0, cv) 0,
(t) = O(t ) , for some S > 1.

Then there is a (0,1] such that for any sequence {8k }k [—6 ] n [a, b] , there is an sequence

{Sak (t)}k V0 such that

f(t) =L f(k+ + 8k )Sk (t)

holds if

1/2

8cr,ço <
ZçØ (ø, (O)Gç Zç, (ø, w)/Gq

(W///q7(s,a) L[a,h}

Applying the theorem to calculating the B-spline of order I scaling function N1 (t) =tZ[01) +(2 — t)[l,2) , we find

60,N1 < 2 when all 6k > or all 8k < 0 . But Liu-Walter'5 found that the superrium of perturbation for B-spline of
order 1 could be 1/2, i.e., 60N < 2 , and they also showed that 1/2 is the optimal superrium of perturbation for

sampling in space generated by N1 (t) . This implies that Chen-Itoh-Shiki6's result is not at least optimal.

Our purpose in this paper is trying to find the optimal 6 such that the aforementioned reconstruction formula holds.
We would like to consider the sampling in the more general framework 'shift invariant subspaces." In this framework we
obtain a different estimate of 6 by using Frame Theory. By applying the new result to calculating the B-spline of
order 1 , we find 60,NJ < 1 I 2 when all 8k > 0 or all 8k < 0 .

Let us now roughly introduce the shift invariant subspaces and the frame Theory respectively. For ço(t)L2 (R) , let

V(ço) =kCk(O(t — k) : {Ck }k E 2

In general {ço(t — k)}k 5 not a Riesz basis of V0 (ço) . In fact {ço(t —k)}k is a Riesz basis of V0 (çø) ifand only if

0 < G (co) � G (w) <
ço

where

G(co)=(kI (w+2ko)2)h/2,
and (w) is the Fourier transform of ço(t) defined by

b(o)) = o(t)e"° dt.

If {ço(t —k)}k 5 a Riesz basis of V0 (çø) , ço(t) is called a generating function, and V0 (ço) called a shfi invariant
subspace. The {ço(t — k)}k is an orthonormal basis of V0 (çø) if and only if G (w) =1 (a. e.). In this case ço(t) is called
an orthonormal generating function and V0 (çø) called an orthonormal shfl invariant subspace12'

A function sequence {S (t)} of a subspace H of L2 (R) is called a frame of H if there is a constant C �1 such that

C1f2 � (f(t),S(t))2 � Cf
holds for any f(t) E H. Obviously a Riesz basis is a frame. Moreover there must exist an unique frame {S (t)} of H

(called the dualframe of {S (t)}) such that
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f(t) = (f(t), Sn (t))Sn (t) Kf(t), n (t))5n (t)
always holds for any f(t) H 23

The following are some notations used in this paper. For a measurable set E , E denotes the measure of E . For the

measurable functions f(t) and g(t) , we write

(f(t), g(t)) = JR f(t)g(t)dt,

= j(f(t), g(t)),
I 2,r 2

fL = f(t)

= sup1Elo infl?\E f(t),

fL = inf110 sup R\E f(t),

qf (s, t) = n f(s - n)f(t-n),

y* (a)) =L f(n)e.

2. A SAMPLING THEOREM FOR SHIFT INVARIANT SUBSPACES

When we want to find a method to reconstruct a signal f(t) by using their samples {f(tk )}k obviously the samples
can not be arbitrary, i.e., some constraints should impose on {f(tk )}k . The weaker the constraints are the better the
reconstruction method will be. Our purpose in this section is to find some weak constraints for reconstructing signals from
their discrete samples. Fortunately we found a near necessary-sufficient condition such that a reconstruction formula like
the one in theorem of section 1 holds. This result will be also applied to the following sections on the perturbation of

sampling in the integer points.

Theorem

Suppose a generating function ço(t) of a shift invariant subspace V0 (çø) is such that {ço(t — E 12 for any integer n
(n E Z). Then there is a frame {n (t)}n of V0 (çø) such that

f(t) = n f(tn)n (t)
holds for any f(t) E V0 (ço) if there is a constant C � 1 such that

c' f2 n f(tn )2 Cf2
holds for any f(t) E V0 (çø).

Proof
Take g(t) such that

(w) = w)G1(m).

Then g(t) is an orthonormal generating function of the shift invariant subspace V0 ()12 Suppose

G'(w) = L g1kOJ
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Then

g(t)=gkco(t—k),
and

( 2\2
g(tfl —k) )

= : k g(t - k)eI

=: k1 g1(t — k — l)e1k)

=: g1e° k (t — k —l)e''°
= : G' (t -k)e'

� —G' (w)LL (t,1-k)e'°

= G1 () k (t -k)2 )1/2

Therefore {g(t —k)}k E 2 due to {ço(t —k)}k E 12 . Let

. qg(t,tn)=g(t_k)g(tfl —k)

Then qg (t, t, ) S well defined and qg (t, ) E V0 (P) due to {g(t —n)} is a Riesz basis of V0 (ço) . For any
f(t) V0 (49) , there must be a {Ck }k 12 such that fQ) =k c, g(t —k) . Following the Parseval Identity, we derive

(f(t), qg (t, tfl))

=
;: SR'k g()g(t -k)elkdw

=
: SR cke L (w)g(t — k)e°dw

= 2 SR(w)kcke L — k)ek0)dw

=
.{o,,ri G cke k g(t —k)e1k0dw

IO2] k Ck e' k g(t —k)e_1kc0 dw

ktn —k)
=f(t)

Here we used the fact Gg ((0) = 1 (a.e.). Hence

C'f2 � (f(t),qg(t,tn)) � cff
holds for any f(t) E V0 (çø). It means that {qg (t,t,)}, is a frame of V0 (çø). Thus there is a dual frame {S (t)},, of
{qg(t,t)} in V0(ço). such that

f(t) = (f(t), qg (i', t,))S (t) = f(t )S (t)
holds for any. f(t) E V0 (çø)
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Remark:
1 . On the contrary if {S (t)} in V0(ço) is the frame such that the construction formula in this theorem holds, there is
also a dual frame {S (t)}of V0(ço) such that

c-i f2 � (f(t), (t)) �
holds for some C � 1 and any f(t) e V0 (ço) . In general, the dual frame is not biorthogonal to the frame if it is not a
independent frame. Now we assume that {S (t)} is independent, then

KS(t), f(t))
= ((t), kf(tk(t))
= k f(tk )(S(t), Sk (t))
= f(t)

This implies that our condition is also necessary. So we call it being near sufficient-necessary.

2. The {S (t)} is the solution ofthe equations

K
Sm (t),ç(w)G;2((O)(t— k)elkm ) 228nm

This is because that {S (t)} is biorthogonal to {qg(t,t)} and

Ig (t ,w)
= g(tfl
= k 1c1(t — k -
= G'(w)ç(w) k 1cieI1Wco(t k —

= G(w)ç(w) 1ciehlW ktn
= G;2(w)(w) ktn

3. IRREGULAR SAMPLING IN SHIFT INVARIANT SUBSPACES

An important case of sampling is the perturbation of the regular sampling, i.e., t, = n+ 8 (8 E (—1,1)). A fundamental
question in this case is how to estimate the superrium of the perturbation {S }. Following Codec Theorem for finite
energy band-limited signals, we have given an estimate for wavelet subspace by using the Riesz basis theory in our
former works6. In the following, we obtain a different estimate by using the Frame Theory, which is demonstrated by an
example to be relaxed in some sense.

In order to establish the theorem, we also need to introduce the function class L[a, b] (2 >0, a E [0,1), and

0 E [a, b] c [— 1,1]) given and used in our former work6. We have reasoned that the class is a proper collection by
giving some propositions in that paper. Here we only repeat the definition.

Definition
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A function f(t) is an element of L[a, b] ( 2 > 0 , a [0,1) , and 0 [a, b] c [—1,1]) if there is a constant
Caf >0 suchthatforany 6k n[a,b],

+a+Sk)—f(k +a) � C 5UPk8k
In this case, we also write

HLA[ah] sUPk
5UPk8k

Theorem

Suppose a generating function ço(t) of a shift invariant subspace V0 (çø) is such that

1. C' C (a.e.), for some constant C � 1,

2. ço(t)EL[a,b].
Then for any {6'k }k [—8 ,6] n[a, b], there is a frame {S (t)} of V0(ço) such that

f(t) = f(n + 8, )S (t)
holds for any f(t) n V0 (çø) if

1/2

S / k0ML[a,h]

Proof
We want to apply Theorem 2 to the proof. Let tk =k+ 8k Then we only need to show the following two items.

A. {co(t — k)}k E 12 for any integer n,

B. C' f( )2 Cf2 holds for a constant C � 1 and for any f(t) n V0 (çô).
The "condition 1" in the theorem implies

5*(w) E Lco[O,2,r] c L2[O,2r].
Hence

kk � <co.

Since

kk° _k)2
—

k)2 + k —k)— — k)2
/2

k (k)2 /2 + 5UPk k 2

we derive Ico(t — k)Jk o iL due to p(t) E L[a,b]. It is exactly the "item A'.
On the other hand, if we can show that there is a positive number 0 < 1 such that

k f(tk ) —f(k)2 02 f(k)2
holds for any f(t) o V0 (çø) , then
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(1 -0)2 L f(k)2 � L f(tk )2 (1+9)2L f(k)2
The "condition 1" also implies that there is an S(t) such that (see Chen-Itoh[9])

f(t) = f(n)S(t—n).
This together with the theorem in the former section implies that

C'fM2 � kL � Cf
holds for some C � I and for any f(t) E V0 (çø). Therefore the item B" is demonstrated. In order to show our
assumption, we let

f(t) = C/O(t —k),
and let

A =

= k/Ctk -l)-ço(k_/))
= k /,m C/Cm (cotk —1) — o(k — l)Xco(tk — m)— ço(k —m))
= /,m C/Cm k (co(tk —1) — ço(k — l)Xco(tk — m)— ço(k —m))

Take

ak/ = (ço(t, —k)— ço(n — k)Xco(t —1) — ço(n—1)).
Then aki = a/k and

A = k,/ak,/CkC/

L,/kk,/RCk +C7)/2
=

� sup k

Furthermore we have

SUD k 1akI

� SUPk / Kco(8 +n—k)—co(n—k)Xco(8 -')—c°(fl—'))I

SU k a flKc0(8 +a)—co(a))(co(Sa+K + fl)ço(fl)

+fl)_(fl)
IIIL [a,b]sup a 8a

2

Here we used the index transform n —k =a and n —1 = fi. Hence

A � L C k[ah] supk 8k 2)2
Since

f(l) = c(l -k),
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we have

f*(w) = *(w)cke_10
Therefore

� *(w)ce1 f*()2 = 2kf(k)2.
Therefore we only need to show

LcL[a,h] 5UPk 8k � * k C.
It is exactly the assumption ofthe theorem.

Remark:
The estimate in our former work is the same to the theorem when ço(t) is orthonormal. But this theorem asserts that this
estimate of perturbation holds for any generating functions. By the way, the {S (t)} in the theorem is the solution of
the equations

K
Sm (0)' ç (w)G2 8 —k)e1k ) 22tSmn.

4. SHIFT SAMPLING IN SHIFT INVARIANT SUBSPACES

Unfortunately there are some important generating functions ço(t)'s with (w)110 = . An obvious example is the B—

spline of order 2, which has been calculated, in our former works. As done by Janssen13 for Walter Sampling Theorem18,
Chen-Itoh-Shik6 for irregular sampling theorem, we also deal with it by shift sampling. Then the shift-sampling theorem

can be obtained by using Zak-transform Zq (a, cv) (a E [0,1)) defined by

Z (a, cv) = ço(a+

By using this Zak transform instead of çb * (cv), we obtain a shift-sampling version of the aforementioned theorem as the

following.

Theorem

Suppose a generating function ço(t) ofa shift invariant subspace V0 (ço) is such that

1. C1 � Z(a,co) � C (ae.), for some constant C � 1,

2. çv(t) e L[a,b].
Then for any 8k E [8a,7 ,8]n [a, b], there is a frame {an (t)} of V0 ()such that

f(t) = f(n + + a)San 0)
holds for any f(t) E V0 (çø) if

1/2

cr k
*
(w)// k°L[a,h]

Remark:

The {crn (t)} in the theorem is the solution of the equations

Proc. SPIE Vol. 4119 1101



K Sm (0),b (w)G2(w)k + n + S — k)elk) 276mn.

5. EXAMPLES TO SHOW THE ALGORITHM

Since Haar function, Daubechies wavelet and Meyer wavelet are all the orthonormal generating functions20"1"6, the
estimate by this theorem is the same to that by our former works (refer to the Remark of the theorem in section 3). We
here calculate the B-spline of order 1 . We find that the estimate is 8, < 1 I 2 , which is better than our former estimate

67 < 1/243 , and which is shown by Liu-Walter'5 to be the optimal. Unfortunately by now we still can not show that the
estimate in our theorem is optimal for a general generating function!

Example'°: B-spline of order 1 is defined by

N1 (t) = t%[01) +(2 — t)%[12).
Then N (w) =1. Since

N1 L[-1,1]

we derive

<1/3
However, when 8k 0 (or 8k � 0) for all integer k,

N1 J)[-1O} = NJ L)[o,l} =2.
Therefore

<1/2.
The {S (t)} is the solution of the equations

(Sm (w), * (w)G2 (w)(8e''° + (1— S, )e')) =2Smn,
where

GN (w) = (1/3+2/3cos2(w/2))h/2,
and ( \2 /

N1(w)= -'y'
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