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Abstract—Recent studies show that dynamic scheduling using
the latest available information is superior to the flooding
scheduling. While the existing works on informed dynamic
scheduling focus on belief propagation (BP) based algorithm for
binary LDPC codes, in this paper we devise a novel method which
is appropriate for majority-logic decoding of non-binary LDPC
codes. We firstly clarify that previous methods are not suitable
for majority-logic decoding of non-binary LDPC codes. Then we
give a practical scheduling strategy which utilizes the stability of
check nodes to select the messages for propagation. Furthermore,
we discuss the computational complexity of this proposed scheme
in detail. Simulation results verify that our approach can achieve
better performance compared with layered and flooding schemes.

Index Terms—LDPC; Non-binary LDPC; Informed dynamic
scheduling; Majority logic decoding.

I. INTRODUCTION

Low-Density-Parity-Check (LDPC) codes were firstly in-
vented in early 1960s by Gallagar [1] and rediscovered by
Mackay [2] in 1996. Nowadays, a great deal of research efforts
have been done on non-binary LDPC codes defined over the
Galois field GF(q) [3], [4], [5], for some q > 0. It is shown
that non-binary LDPC codes have potentially better bit error
rate (BER) performance at the cost of increased computational
complexity.

Belief propagation (BP) algorithm is a general decod-
ing method for LDPC codes. Flooding is the most popular
scheduling strategy for BP, in which the same pre-update
information is propagated to update all the check or variable
nodes simultaneously. Nevertheless, recent studies have shown
that sequential scheduling strategies, which propagate the lat-
est available information, can improve decoding performance
compared to the conventional flooding scheme [6]. One of the
most widely used sequential scheduling is layered BP (LBP)
[7], which is a sequential check node update strategy. In this
paper, layered and flooding scheduling strategy are adopted
for comparison purpose in simulations.

In LBP, messages are updated by a predetermined order,
whereas in the informed dynamic scheduling (IDS) scheme,
the message update order is calculated dynamically according
to the current state of messages in the graph. Examples of
IDS include residual belief propagation (RBP), node-wise
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residual belief propagation (NWRBP) [8], [9] and informed
variable-to-check residual belief propagation (IVC-RBP) [10].
By utilizing the residual to organize the message updates,
NWRBP can speed up the convergence and have better BER
performance than layered scheduling. IVC-RBP outperforms
NWRBP by adopting the unstable decision technique. In
addition, a mixed scheduling scheme is introduced in [11]
to further improve the code performance. However, strategies
stated above face the problem that much extra complexity is
required for residual computation. In this paper we propose
a new ordering metric which requires less computational
complexity.

The main obstacle to implement non-binary LDPC codes for
practical applications is the high computational complexity.
Although Fast Fourier Transform based q-ary sum-product
algorithm (FFT-QSPA) can significantly reduce the compu-
tational complexity, the number of computations is still too
large. Iterative soft-reliability-based majority-logic decoding
(ISRB-MLGD) for non-binary LDPC codes is presented in
[12], which requires only integer operations and computation
over finite field thus achieves low computational complexity.
The drawback of this algorithm is that it suffers from signifi-
cant BER performance degradation compared with BP based
algorithms. A double-reliability-based MLGD for non-binary
LDPC codes is proposed in [13], which significantly improves
the BER performance with limited complexity increasing.

To the best of our knowledge, the existing works on IDS
focus on BP based decoding of binary LDPC codes, few efforts
have been made on MLGD of non-binary LDPC codes. In this
paper, we devise a practical IDS scheme especially for MLGD.
We will explain why the previous residual based scheduling
methods are not suitable for MLGD of non-binary LDPC
codes.

The rest of this paper is organized as follows. Section II
presents the modified ISRB MLGD algorithm for non-binary
LDPC codes. Section III briefly reviews RBP for LDPC
decoding and explains why the residual based scheduling
scheme can not be used for MLGD. Then we introduce and
justify the proposed algorithm in detail. Section IV analyzes
the complexity of the proposed IDS mehtod in one iteration.
The simulation results which verify the effectiveness of our
proposed methods are discussed in Section V. Finally, Section
VI draws a conclusion.
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II. A MODIFIED ITERATIVE SOFT-RELIABILITY-BASED
MLGD ALGORITHM

In this section, a modified ISRB MLGD algorithm will be
described in detail. For a review of MLGD for non-binary
LDPC codes, one can refer to [12]. The most important feature
of ISRB is simplicity. This algorithm only requires integer
operations and computations over finite field. The distinction
of our algorithm from [12] is as follows: ISRB calculates the
reliability measure of variable nodes and check nodes in the
initialization. So during each iteration, the reliability measure
of each check node is a constant. In each iteration, every check
node makes a contribution in predicting which element in Ga-
lois field should the connected variable node be decoded into.
This prediction changes dynamically during each iteration. In
contrast, in the modified algorithm, we update the variable-to-
check messages iteratively according to the reliability measure
of variable node. By this method, not only the prediction for
variable node, but also the reliability measure of variable node
and check node are changed dynamically, which improves the
decoding performance and makes this algorithm more suitable
for IDS as well.

For simplicity, we present the decoding algorithm on a
(γ,ρ)-regular LDPC code. Consider a non-binary LDPC code
C defined by a regular M × N parity-check matrix H with
column weight γ and row weight ρ. Let GF(q) denote a Galois
field of size q, where q = 2r. Each entry of H are taken from
GF(q). For a transmitted codeword c = (c0, c1, . . . , cn−1) ∈ C,
we expand each code symbol into an r-tuple over GF(2).
Then a sequence of nr bits are transmitted over a binary-
input Additive White Gaussian Noise (AWGN) channel with
two-sided power spectral density N0

2 . The Binary Phase Shift
Keying (BPSK) modulation is adopted, with modulation map-
ping x 7→ 1 − 2x. Let y = (y0,y1, . . . ,yn−1) denote the
received sequence, where each yj = (yj,0, yj,1, . . . , yj,r−1)
is r tuple. For 0 ≤ k < r, we quantize each received bit
yj,k into 2ω − 1 intervals, where qj,k is the quantized value
represented by ω bits with range in [−(2ω − 1),+(2ω − 1)].
Let (al,0, al,1, . . . , al,r−1) denote the binary representation of
al ∈ GF (q). For 0 ≤ j < n and al ∈ GF (q), the initialized
reliability measure can be computed by

R
(0)
j,l =

r−1∑
t=0

[(1− 2al,t)qj,t + qmax], (1)

where al,t is the t-th bit of binary representation of al, qmax =
2ω makes sure that the reliability measure is always larger than
0. By this method, division between reliability measure can
make sense which will be introduced in the next section and
R0

j,l denotes the reliability measure from channel which gives
belief in the j-th symbol (qj,0, qj,1, . . . , qj,r−1) that should be
decoded into al.

To make the description of this algorithm more clear, we
introduce the following notations. N(ci) denotes the set of
variable nodes connected to check node i. N(vj) denotes the
set of check nodes connected to variable node j. Imax denotes
the maximum iteration number. zk = (zk0 , z

k
1 , · · · , zkn−1)

represents the decoding result in the k-th iteration. s =
(s0, s1, · · · , sm−1) stands for check-sum vector. For 0 ≤ j <

n, R
(k)
j = (R

(k)
j,0 , R

(k)
j,1 , . . . , R

(k)
j,r−1) denotes the reliability

measure vector for zj and Rj,l is the measure of the reliability
that zj is decoded to the l-th element in GF(q). Let τj denote
the maximum reliability value in vector Rj and ψi,j denote
the reliability measure of the voting by check node i. Then the
modified ISRB MLGD algorithm is described in Algorithm 1.

Algorithm 1 A Modified Iterative Soft-Reliability-Based Al-
gorithm

1: Initialization: z0 = z, compute R0 using (1).
2: for k = 1 to Imax do
3: for i = 0 to m-1 do
4: si =

∑
j∈N(ci)

hi,jz
k
j .

5: end for
6: Stopping criterion test.
7: for i = 0 to m-1 do
8: for j∈ N(ci) do
9: s̃i,j = (hi,j)

−1 · si − zkj .
10: end for
11: end for
12: for j = 0 to n-1 do

13: τkj = λ

(
max

l∈GF (q)
Rk

j,l

)
.

14: end for
15: for i = 0 to m-1 do
16: for j∈ N(ci) do
17: ψk

i,j = min
j′∈N(ci)\j

τk
j′
.

18: end for
19: end for
20: for i = 0 to m-1 do
21: for j∈ N(ci) do
22: Rk+1

j,s̃i,j
= Rk

j,s̃i,j
+ ψk

i,j .
23: end for
24: end for
25: Tentative Decoding :
26: for j = 0 to n-1 do
27: zk+1

j = GFmax(Rk
j ).

28: end for
29: end for

In Algorithm 1, s̃i,j computed in line 9 denotes that check
node i votes variable node j decoded into s̃i,j . The reliability
measure of this voting is given by ψk

i,j in line 17. τj in line 13
denotes the maximum reliability measure of variable node j,
which will be used to compute the reliability for neighboring
check nodes. The parameter λ is the scaling factor which needs
to be carefully choosed for optimizing the error correction
performance. The optimal value of λ depends on the code
structure and signal-to-noise ratio (SNR). Here we keep λ
constant for simplicity and it is determined by simulation.
Line 22 adds all the votes from check node i to the indicated
element of variable node j. Line 27 is the tentative decoding
according to the reliability measure.

III. INFORMED DYNAMIC SCHEDULING

In this section, we will introduce the informed dynamic
scheduling scheme specifically designed for ISRB MLGD
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algorithm of non-binary LDPC codes. At first we will sum-
marize the previous works and analyze why these algorithms
can not be directly applied to MLGD. Previous works such
as RBP, node-wise RBP in [8] and [9], IVC RBP in [10],
are residual based scheduling for belief propagation of binary
LDPC codes. These algorithms firstly update the message with
the largest residual. A residual is the absolute value of the
difference between the message before and after an update.
For a message m, the residual is defined as

r(m) = ‖mnew −mold‖, (2)

where mnew denotes message after an update and mold

denotes message before an update. As BP converges, the
residual will gradually tend to zero. A message with large
residual means this part of Tanner graph has not converged yet.
Therefore, the intuitive method is to propagate this message
first which will speed up the convergence. RBP is a greedy
algorithm, which has a higher convergence speed but gets
the correct result less often. To solve this problem, a less
greedy node-wise RBP is also presented in [9]. Instead of
only propagating the message with the largest residual, node-
wise RBP update and propagate the messages that correspond
to the same check node at the same time.

All these existing works are based on the common as-
sumption that as decoding converges, the difference between
messages before and after an update will gradually tend
to zero. Therefore, the ordering metric which decides the
propagating sequence is determined by the residual. In the
case of MLGD for non-binary LDPC codes, the reliability
of variable node accumulates as the decoding converges, and
the reliability measure sent from check node to variable node
is calculated by the minimum neighboring variable node’s
reliability. So neither residual of variable node message nor
residual of check node message makes sense in MLGD of
non-binary LDPC codes.

In our proposed IDS scheme, we define a new parameter
to determine the ordering metric. We observed that if the
maximum reliability of variable node is much larger than
the second largest reliability in the reliability vector, then
this variable node has a large probability to stay stable in
later iterations. On the contrary, if the maximum reliability is
comparable with the second largest reliability, this variable
node would probably be decoded into the element which
holds the second largest reliability. Based on this observation,
we propose a parameter ”stability” defined by the following
equation

Svj =

max
l∈GF (q)

Rj,l

max
l′∈GF (q)\l

Rj,l′
. (3)

The stability of check node is measured by the minimum
stability value in the neighboring variable nodes. It can be
calculated using the following equation:

Sci = min
j∈N(ci)

Svj . (4)

For each check node, we use a set ”V ote” to record it is
visited or not. If a check node ci is visited, update V ote(ci) =

0. After all the check nodes are visited in one iteration, we
update all the entries in V ote to 1 for next iteration.

The proposed IDS for MLGD based non-binary LDPC in
pseudo-codes is given in algorithm 2:

Algorithm 2 IDS for ISRB MLGD of non-binary LDPC codes
1: Initialize z0 = z, compute R0.
2: Initialize all S(vj) using equation (3), all S(ci) using

equation (4), all V ote(ci) = 1.
3: if there are unsatisfied check nodes with V ote(ci) = 1

then
4: Find the largest S(ci) with unsatisfied check node ci.
5: else
6: Find the largest S(ci) with V ote(ci) = 1.
7: end if
8: Update the set V ote.
9: for every vj ∈ N(ci) do

10: generate and propagate mci→vj .
11: update variable node stability using S(vj) =

max
l∈GF (q)

Rj,l

max
l′∈GF (q)\l

Rj,l′ .

12: tentative decoding zj = GFmax(Rj).
13: for every ca ∈ N(vj)\ci do
14: compute check sum for ca.
15: update check node stability using S(ca) =

min
k∈N(ca)

S(vk).

16: end for
17: end for
18: if Stopping rule is not satisfied then
19: Go to line 3;
20: end if

To make it clear, we define the procedure from line 3-17
in the proposed IDS algorithm as an update. When all the
check nodes have been updated, we call this an IDS iteration.
Without loss of generality, we assume that ci with the largest
stability is selected to be updated. For message update, firstly
message from ci to vj is generated and propagated to update all
the neighboring nodes of ci as line 10 indicates. Secondly we
calculate the stability of each updated variable node and make
a tentative decoding. Then for each neighboring check node
ca ∈ N(vj)\ci , new check sum will be calculated, and the
stability of check node which is the ordering metric will also
be updated, as line 14-15 indicate. Finally we check whether
the stopping rule is satisfied. Similar to the node-wise RBP,
our proposed algorithm is also a less greedy algorithm which
updates and propagates messages corresponding to the same
check node at the same time.

Figure.1 shows an example to explain how our algorithm
works. Without loss of generality, we assume v1, v2 are
erroneous variable nodes. v3, v4, v5 are correct variable nodes.
The stability of variable nodes satisfy that S(v1) < S(v2) <
S(v3) < S(v4) < S(v5). Since v1, v2 contain errors in
them, c2 is certainly an unsatisfied check node. c1 may also
be an unsatisfied check node with a large probability. c3 is
a satisfied check node. According to equation (4), we have
S(c1) = S(v1), S(c2) = S(v2), S(c3) = S(v3). In layered
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TABLE I
COMPLEXITY IN ONE ITERATION COMPARISON

Methods Update No. For Ordering Metric
Layered Mdc 0
Flooding Mdc 0

NW RBP Mdc
Real Mul Special Operations

2Md2c(dv − 1)(dc − 1) Md2c(dv − 1)(dc − 1)(tanh+ tanh−1)

Our Method Mdc
GF addition GF Mul Real comparison Real Div

Mdc(dv − 1)(dc − 1) Mdc(dv − 1)dc Mdc(2q − 3) +Mdc(dv − 1)(dc − 1) Mdc

Fig. 1. Example of proposed method.

scheduling, the update order is c1, c2, c3. First we propagate
the messages from c1 to v1, which are generated using v2 and
v3. As v2 is erroneous, this propagation will reinforce the error
in v1. In our proposed method, as c2 is the unsatisfied check
node which holds the largest stability, it will be selected first,
then v2 can be corrected. c1 is selected as the next check node
after v2 is corrected. Therefore messages pass from c1 to v1
which is generated using v2 and v3 will indicate the correct
element in GF(q). v1 will probably be corrected by this update.
Finally c3 is selected and propagate messages to strengthen
the reliability of neighboring variable nodes. Considering the
most troublesome trapping set problem where only degree-1
and degree-2 check nodes exist in the sub-graph [9], [10]. Our
method focuses on the unsatisfied check nodes with maximum
stability first. In the trapping set, degree-1 check nodes are
certainly unsatisfied, while degree-2 check nodes may be
satisfied according to the error and parity check matrix. It’s
likely that degree-1 check nodes will be updated first, then the
connected variable node can be corrected. Therefore, degree-2
check nodes become degree-1 in the subgraph. Then another
variable node will be corrected. So this method can solve some
trapping set problems which can not be solved by layered
scheduling.

IV. COMPLEXITY ANALYSIS

In this section, we will analyze the computational complex-
ity of the proposed IDS algorithm in detail.

Let M denote the number of rows in parity check matrix
H, dc be the check node degree and dv be the variable
node degree. From algorithm 2 we can observe that selected
check node will propagate dc messages to neighboring variable
nodes. Thus in an iteration there are Mdc message generations
and propagations. The complexity analysis is given by Table
I. The NWRBP algorithm [9] needs to calculate the check-to-
variable messages to be propagated in the next update step.

However, only part of the messages corresponding to the
selected check node will be used for update while the other
messages are just for residual computation. As we know, check
node update is the most complicated part in BP algorithm.
Therefore we can reduce the complexity by only calculating
the stability of variable and check nodes in the current update.
To justify this, we compare our algorithm with NWRBP style
scheduling in Table I.

In one iteration, number of check-to-variable messages
for update is the same among these four algorithms. The
extra complexity of IDS scheduling is dominated by the
computations only for ordering metric. In Node-wise RBP,
we have to calculate the extra check-to-variable messages,
which is the most complicated part in BP algorithm. In our
proposed algorithm, additional complexity for ordering metric
calculation corresponds to line 14 and 15, which will be
executed by Mdc(dv−1) times in one iteration. For calculating
one check sum, dc − 1 GF addition and dc GF multiplication
are needed. In one iteration, Mdc variable node’s stability
should be calculated, requiring Mdc real divisions according
to equation (3). Complexity of real comparison operation
can be divided into two parts. The first item Mdc(2q − 3)
comes from finding the maximum reliability and the second
maximum reliability of Mdc variable nodes in equation (3).
The second item Mdc(dv−1)(dc−1) comes from calculating
the stability of check node in equation (4), where Mdc(dv−1)
is the execution number, dc − 1 is the complexity to find
the minimum value from dc values. From Table I, we can
easily observe that our method reduces the computational com-
plexity compared with NWRBP. The complexity of NWRBP
is O(Md3cdv) for real multiplication and special operations
which require high computational complexity. In contrast, our
algorithm requires O(Md2cdv) GF operation and real multi-
plication, which have low computational complexity. A small
number of real division, i.e. Mdc, is used in our proposed
algorithm. Therefore, our algorithm reduce the complexity to
calculate the ordering metric.

V. SIMULATION RESULTS

In this section we will show the error correction perfor-
mance of different scheduling strategies over AWGN channel.
In the simulations we use the same rate-1/2 non-binary
LDPC code with block length 1008 over GF(8). Four different
algorithms will be used in our simulations, including the ISRB
[12], the modified ISRB, the layered schduling for modified
ISRB and the proposed IDS for modified ISRB, where the
ISRB and modified ISRB both employ flooding scheduling.

Globecom 2013 - Communication Theory Symposium

1877



5

Fig. 2. BER performance of ISRB, Modified ISRB, Layered Scheduling and
proposed IDS scheduling for at most 8 iterations with non-binary LDPC code
over GF(8) of blocklength-1008 rate-1/2.

The BER of different algorithms mentioned above for 8
iterations is presented in Fig. 2. We can see that the modified
ISRB outperforms ISRB. The reason is that modified ISRB
updates reliability of variable and check nodes iteratively. In
addition, modified ISRB with layered scheduling improves the
BER performance which meets the empirical results because
messages are sequentially updated. Furthermore, our proposed
IDS strategy outperforms layered method by about 0.22 dB
at the BER of 5 × 10−7. The excellent performance of our
proposed IDS scheduling justifies the effectiveness of the
proposed ordering metric.

Fig. 3 shows the frame error rate (FER) performance of
different scheduling strategies as the number of iterations
increase. It is shown that our proposed method can achieve
a better performance in a smaller number of iterations than
layered scheduling strategy. Layered strategy needs nearly 27
iterations for convergence while our proposed IDS method
needs only 17 iterations for convergence. The fast convergence
speed is mainly attributed to that we locate the unsatisfied
check sum in each iteration.

VI. CONCLUSIONS

In this paper we propose a new informed dynamic schedul-
ing algorithm specifically designed for ISRB MLGD of non-
binary LDPC codes. A new ordering metric is proposed in
this paper to describe the stability information of variable
and check nodes. In addition, unsatisfied check sum which
locates the error variable nodes is utilized to speed up the
convergence. Furthermore, we ensure that every check node
votes once in each iteration for fairness. These three criterions
dynamically decide which check node to be selected in each
update and greatly attribute to the excellent performance of
proposed scheduling method. We also discuss the complexity
of proposed method in detail, and verify that the proposed IDS
costs less computational complexity compared with NWRBP.
Furthermore, clarified by the analysis and simulation results,

Fig. 3. FER performance vs the number of iterations for non-binary LDPC
codes over GF(8) with blocklength-1008 rate-0.5 over AWGN channel using
layered scheduling and proposed IDS scheduling at a fixed Eb/N0 = 2.3dB.

we show that the proposed IDS scheduling scheme can achieve
better BER performance and accelerate convergence speed
compared with layered scheduling methods for non-binary
LDPC codes. Therefore, this method is appropriate for high-
speed applications and low-power applications.
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