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Abstract—In this paper, a low coherence compressed channel
estimation method is proposed for high mobility MIMO OFDM
systems. High mobility always causes large Doppler frequency
spread which costs large spectrum and time resources to obtain
the accurate channel state information (CSI). As numerous recent
experimental studies have shown that high mobility broadband
wireless channels tend to have some inherent sparsity, compressed
sensing (CS) has been introduced to utilize the inherent sparsity
and reduce the CSI estimation complexity. In this paper, the co-
herence of CS is studied and we prove that lower coherence leads
to better CS performance. An iterative algorithm is proposed to
reduce the coherence by designing pilots with the known channel
model before transmitted. Numerical results confirm that the
proposed method has satisfied channel estimation performance
in high mobility environments.

Index Terms—Compressed sensing, channel estimation, low
coherence, high mobility, MIMO OFDM.

I. INTRODUCTION

To achieve high data rates and high spectral efficiency,
multiple input multiple output (MIMO) and orthogonal fre-
quency division multiplexing (OFDM) techniques have been
considered to be the the most promising technologies for the
4G wireless communication systems [1]. In high mobility envi-
ronments, the effects of Doppler frequency spread destroy the
orthogonality among subcarriers in OFDM, and lead to inter-
carrier interference (ICI) at the receiver. Channel estimation in
high mobility environments has already been considered in a
number of recent papers. In [2]-[4], different kinds of methods
are proposed to overcome the ICI caused by high mobility.
However, these methods are based on the implicit assumption
of a rich underlying multipath environment and focused on
decreasing the influences caused by ICI. They introduced
several complicated iterative algorithms at the receiver part
and estimated CSI with costing many iterations.

Recently, growing experimental evidences have shown that
the high mobility channels in broadband wireless communi-
cation systems tend to exhibit a sparse structure at some high
dimensional signal space such as the delay-Doppler domain,
and can be characterized with significantly few parameters in
those domains. To utilize the inherent channel sparsity, many
researchers have studied the application of compressed sensing
(CS) methods in the doubly-selective channel [5][6] which
well reflects the natures of the high mobility channel. However,
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these methods have seldom considered the coherence of CS,
which degrades the CS reconstruction performance directly.
Fundamental research [7] shows that the coherence plays
an important role in CS, and [7] made a conclusion that
lower coherence between the measurement matrix and the
dictionary matrix leads to better CS performance. Therefore,
how to reduce the coherence in a certain environment, e.g.
high mobility environment in this paper, is a very interesting
and valuable problem.

In this paper, a low coherence compressed channel estima-
tion method is proposed for a MIMO OFDM system in the
high mobility environment, in which we study the coherence
between the pilot matrix and the channel model dictionary
matrix. An low coherence pilot design algorithm is proposed to
reduce the coherence with the fixed channel model. Numerical
results show that the proposed method has satisfied estimation
performance in high mobility environments.

Through out this paper, diag(·) denotes a diagonal matrix,
dxe denotes the maximum integer that is no larger than x, ‖·‖`0
counts the number of nonzero entries in a matrix, ‖·‖`2 is the
Euclidean norm, (·)T denotes the transposition of a matrix, ⊗
denotes the Kronecker product, and a = vec(A) denotes the
vector obtained by stacking columns of A.

II. SYSTEM MODEL

In this section, we consider a MIMO OFDM system with Nt
transmit antennas and Nr receive antennas in a high mobility
environment. And we suppose that there are K subcarriers
in each OFDM symbol. In the nth OFDM symbol, the infor-
mation signal Xn

t (k) is transmitted over the frequency k at
the tth transmit antenna, in which n = 1, ..., N , k = 1, ...,K
is the subcarrier, and t = 1, ..., NT is the transmit antenna.
Each transmit antenna performs the inverse discrete Fourier
transform (IDFT) and sends independent OFDM symbols.
After the parallel to serial module, the cyclic prefix (CP) is
inserted into the transmitted signals to avoid the intersymbol
interference (ISI). Let Hn

rt(k) be the channel state information
(CSI) between the tth transmit antenna and the rth receive
antenna at the kth subcarrier, for r = 1, ..., NR. Since there are
NT transmit antennas emitting different signals, the received
signal Y nr (k) is the sum of NT transmitted signals passing all
subchannels.

In this paper, pilot-assisted estimation is used to reduce the
estimation complexity and ensure the CSI accuracy. Assume
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that there are P pilots placed at subcarriers k1, k2, ..., kP
at each transmit antenna, and P ≤ K. Let Hn

rt =
[Hn

rt(k1), H
n
rt(k2), ...,H

n
rt(kP )]

T be the high mobility channel
frequency response vector from the tth transmit antenna to the
rth receive antenna at the pilot subcarriers, and let Wn

r (k) be
the additive white Gaussian noise (AWGN) with zero mean
and variance σ2

r . Then the received pilot vector at the rth
receive antenna can be represented as the matrix form:

Yn
r =

NT∑
t=1

Xn
t Hn

rt +

NT∑
t=1

Hn
rtICI

Xn
tvec

+ Wn
r , (1)

=

NT∑
t=1

Xn
t Hn

rt + Nn
r , (2)

where Yn
r is the received pilot vector of the rth receive

antenna, Xn
t = diag([Xn

t (k1), X
n
t (k2), ..., X

n
t (kP )]

T ) is the
transmitted pilot matrix from the tth transmit antenna at
the pilot subcarriers, and Xn

tvec
= vec(Xn

t ). Hn
rtICI

is a
P × P channel matrix with zero diagonal entries and whose
off-diagonal entries represent the ICI caused by time-variant
channels. Nn

r = [Nn
r (k1), N

n
r (k2), ..., N

n
r (kP )]

T is the sum
vector of Wn

r and the ICI part (here we consider the ICI as
noise so that we can use CS easily).

A. High Mobility Channels
In high mobility environment, e.g. 350km/h or more, the

wireless channel changes rapidly and causes large Doppler
frequency spread leading to time selective fading. In addition,
frequency selective fading caused by the multipath effect is
also unavoidable. So the high mobility channel can be con-
sidered as a time and frequency doubly-selective channel [5].
In this paper, we assume that the channel between a transmit
and a receive antenna is independent and identically distributed
(i.i.d.). Let vmax be the maximum Doppler frequency spread,
τmax be the delay spread, Td be the packet duration and W
be the bandwidth. Therefore, we can give the representation
of the high mobility channel between the tth transmit antenna
and the rth receive antenna in delay-Doppler domain as

Hrt(n, f) =

L−1∑
l=0

M∑
m=−M

βl,m,r,te
j2π m

Td
n
e−j2π

l
W f , (3)

where L = dWτmax + 1e represents the maximum number
of resolvable delays and M = dTdvmax/2e represents the
maximum Doppler shifts within the delay-Doppler spread of
the high mobility channel, f is the subcarrier frequency and n
is the time slot. Let uf =

[
1, e−j2π

1
W f , ..., e−j2π

(L−1)
W f

]
and

un =

[
e
j2π−M

Td
n
, e
j2π

(−M+1)
Td

n
, ..., e

j2π M
Td
n

]
. Then we have

Hrt(n, f) = ufBrtu
T
n = (un ⊗ uf )brt, (4)

where Brt is an L×(2M+1) channel coefficient matrix in the
delay-Doppler domain of the high mobility channel between
the rth receive antenna and the tth transmit antenna, i.e.,

Brt =

 β0,−M,r,t · · · β0,M,r,t

...
. . .

...
βL−1,−M,r,t · · · βL−1,M,r,t

 . (5)

In this paper we assume that the coefficients are constant.
Let brt , vec(Brt) be the stacking vector of the channel
coefficient matrix. As M increases with the speed of system,
Brt can still model the high mobility precisely with more
coefficients. Coefficients {βl,m,r,t} are approximately equal
to the sum of the complex gains of all physical paths at the
sampling points in the delay-Doppler space. Thereby, the task
of estimating the high mobility channel in frequency domain
is reduced to estimating the channel coefficients {βl,m,r,t},
which are fortunately sparse in practice [5][6].

B. Channel Estimation

Let ψn = [un ⊗ uk1 ,un ⊗ uk2 , · · · ,un ⊗ ukP ]
T be the

P×L(2M+1) subchannel dictionary matrix in the nth OFDM
symbol, in which P < L(2M+1). Substitute the high mobility
channel model (4) into (2) to derive the matrix form

Yn
r =

NT∑
t=1

Xn
t Hn

rt + Nn
r = XnΨnbr + Nn

r , (6)

where Xn =
[
Xn

1 , · · · ,Xn
NT

]
is the P × NTP pilot matrix

of all transmit antennas, br = [br1, · · · ,brNT
]
T is the

NTL(2M + 1) × 1 channel coefficient matrix, and Ψn =
diag([ψn, · · · , ψn]T ) is the NTP × NTL(2M + 1) block-
diagonal channel model dictionary matrix. Here we define the
dominant non-zero coefficients in br as those contributing
significant channel coefficients, i.e. |βl,m,r,t|2 > γ, where
γ is an appropriately chosen threshold whose value depends
upon the design accuracy. For some appropriate threshold
γ > 0, the channel is said to be S-sparse, if ‖br‖`0 =
S < P � NTL(2M + 1). Recent researchers in [5] and [6]
have shown that the doubly-selective channels have a certain
inherent sparsity and can be represented sparsely in the delay-
Doppler domain, which means that br is sparse in practice.
Therefore CS is introduced in this paper to utilize the inherent
channel sparsity.

III. COHERENCE OPTIMIZED COMPRESSED ESTIMATION

Different to the conventional channel estimation method
based on linear estimators such as least-squares (LS), CS can
utilize the inherent sparsity of the wireless channel, which is
known as the compressed channel estimation [5]-[7]. For better
explanation, here we review CS simply. Let signal x ∈ Rm
be an m × 1 vector. Assuming that signal x has the sparsity
of S under the dictionary basis D ∈ Rm×U (m < U ), that is
x = Da, and there are only S non-zero elements in vector a
with ‖a‖`0 = S � m < U . By using a measurement matrix
P ∈ Rp×m, which is not related to the dictionary basis D, it
projects the signal x to y: y = Px = PDa, where PD should
satisfy the Restricted Isometric Property (RIP) [7]. Then the
CS reconstruction methods such as the Basis Pursuit (BP) [10]
and Orthogonal Matching Pursuit (OMP) [12] can be used to
reconstruct x by y.

A. Coherence

Here we recall the definition of the coherence [7][15], which
is a fundamental concept in CS.
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Definition 1: For a matrix M with the ith column of di,
its coherence is defined as the largest absolute value of the
normalized inner product between different columns in M and
can be written as follows:

µ{M} = max
i 6=j

∣∣dTi dj
∣∣

‖di‖ · ‖dj‖
. (7)

The coherence provides a measure of the worst similarity
between the dictionary columns. It is a value that exposes
the matrix’s vulnerability, as two closely related columns may
confuse the reconstruction techniques. The concept of the co-
herence of the dictionary D plays a major role in CS. Previous
work [14]-[16] established that both BP and orthogonal greedy
algorithms (OGA) (including OMP) approaches can be used
if the condition in the following theorem is satisfied.

Theorem 1: For a matrix D, if some representation of the
signal x = Da satisfies

S = ‖a‖`0 <
1

2

(
1 +

1

µ {D}

)
, (8)

then a) a is the unique sparsest such representation of x; b)
the deviation of the reconstructed â from a by BP or OGA
can be bounded by

‖â− a‖2`2 ≤
ε2

1− µ{D}(2S − 1)
, (9)

for some constant ε > 0.
Proof: The proof is given in [11].

Theorem 1 implies that if the sparsity S determined by the
system is constant, which in our system is determined by the
channel model, then the sparse signal a can be recovered with
a given error bound related to µ. It is easy to found that
lower µ{D} will result in higher upperbound of S, which
means that a can contain more nonzero atoms, and introduces
lower reconstruction error bound leading to better CS recovery
performance.

Based on the previous point, suppose that the measurement
matrix P has been chosen independent of the dictionary basis
D. Then we can solve the vector a in y = Px = PDa by BP
or OMP as described in the following corollary.

Corollary 1: For a dictionary matrix D and measurement
matrix P, assume that PD satisfies the RIP, if the represen-
tation y = Px = PDa satisfies the requirement

S = ‖a‖`0 <
1

2

(
1 +

1

µ {PD}

)
, (10)

then a) a is the unique sparsest such representation of x; b)
the deviation of the reconstructed â from a by BP or OGA
can be bounded by

‖â− a‖2`2 ≤
ε2

1− µ{PD}(2S − 1)
, (11)

for some constant ε > 0.
Proof: The proof is similar to the proof of Theorem 1 by

proving that PD satisfies the RIP.
Corollary 1 implies that if P is designed with a fixed D

such that µ {PD} is as small as possible, a large number
of candidate signals are able to reside under the umbrella of
successful CS behavior and lead to better CS performance.

While these conclusions are true from a worst-case stand-
point, it turns out that the coherence as defined in Defini-
tion 1 does not justify the actual behavior of the practical
system. Considering the performance of the practical CS
reconstruction, an average measure of coherence is more likely
to describe the true behavior. So we consider the average
coherence [14] in our system to reflect the practical system
behavior. The previous theorem and corollary are still valid to
the average coherence µδ as described in Definition 2.

Definition 2: For a matrix M with the ith column of di,
its average coherence is defined as the average of all absolute
inner products between the different normalized columns in
M that are beyond δ, where δ is a threshold and 0 < δ < 1.
Put formally

µδ{M} =

∑
i6=j

(|gij | ≥ δ) · |gij |∑
i6=j

(|gij | ≥ δ)
, (12)

where gij = d̃Ti d̃j and d̃i = di/‖di‖`2 .

B. Coherence Optimization

As we have already known that lower µδ leads to better CS
performance, we are going to reduce the coherence µδ{PD}
in our system to get better estimation performance. In this
paper, we design the pilot entries of the pilot matrix Xn (i.e.
the measurement matrix in CS) with given pilot locations and
known channel model dictionary Ψn (i.e. the dictionary basis
matrix in CS) to minimize the average coherence µδ {XnΨn}.
The influence of the pilot location is not considered in this
paper since considering both of the two factors is a difficult
joint optimization problem, which will be discussed in the
future work. Here we assume that the pilot locations are fixed
and are the same for each antenna. Therefore, the problem can
be formulated as following optimization problem

min
Xn

µδ {XnΨn} . (13)

Hence the coherence optimized pilot matrix is given as

X̂n = argmin
Xn

µδ {XnΨn} . (14)

C. Low Coherence Pilot Design Algorithm

In this subsection, we propose an algorithm to get the
optimized pilot X̂n in (14). According to the system model
(6) and Definition 2, the average coherence can be calculated
as µδ {XnΨn} = µδ

{[
Xn

1ψ
n, · · · ,Xn

NT
ψn
]}

with columns
di, and 1 ≤ i ≤ NTL(2M + 1). As Xn consists of NT
diagonal matrices, it is difficult to get the optimal X̂n directly.
So we assume that the pilots at each transmit antenna are the
same, which means Xn

1 = · · · = Xn
NT

. From Definition 2,
we can know that the average coherence only care about the
columns with |gij | ≥ δ. Therefore the problem of minimizing
µδ {XnΨn} is equivalent to minimizing each µδ {Xn

t ψ
n}

respectively. An iterative algorithm is proposed here to reduce
µδ {Xn

t ψ
n} and get the optimized pilot matrix X̂n

t with
fixed subchannel basis model ψn. The algorithm is given in
Algorithm 1.
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Algorithm 1 : Low Coherence Pilot Design Algorithm
1: Initialization: Set the initial pilot matrix Xn

t as the com-
plex Gaussian random variables sequence with zero mean
and variance 1

NT
; set the threshold δ, the shrink factor λ

and the maximum iteration time Iter.
2: Obtain the effective dictionary D̂ by normalizing each

column in the matrix Xn
t ψ

n.
3: Compute Gram matrix: G = D̂T D̂.
4: Update the Gram matrix and obtain Ĝ with

ĝij =


λgij ,

λδ · sign(gij),
gij ,

|gij | ≥ δ,
δ ≥ |gij | ≥ λδ,
λδ ≥ |gij | ,

where sign(x) = 1 if x ≥ 0, and −1 otherwise.
5: Apply singular value decomposition (SVD) to Ĝ with the

diagonal entries in decreasing order. Reduce the rank of
Ĝ to P by keeping only the first P diagonal entries of
the diagonal matrix.

6: Build the square root of Ĝ: STS = Ĝ.
7: Find the new diagonal Xn

t that minimizes the error
‖S−Xn

t ψ
n‖2F and goto Step 2 if the iteration is less

than Iter.
8: Output the optimized pilot matrix X̂n

t after Iter iterations.

After Iter iterations, we can get the optimized pilot matrix
X̂n
t and hence the optimized X̂n is obtained since the pilots at

each transmit antenna are the same. Therefore, X̂n can be used
to estimate the CSI by CS estimators. The numerical results
in the next section will show that Algorithm 1 will converge
to a stationary pilot matrix. As afore algorithm analysis is not
restricted to any specific channel, Algorithm 1 is also effective
to other channels with known channel model dictionary.

D. Low Coherence Compressed Channel Estimation

The flow chart of the low coherence compressed channel
estimation in practical system is shown in Fig. 1.

Firstly, the high mobility wireless channel is modeled as (4)
and known at both the transmit and receive sides. Ψn reflects
the channel properties and the mobility is represented by the
Doppler frequency shifts. In this paper, we assume that the
channel coefficients b is sparse in the delay-Doppler domain.
Secondly, the random pilot matrix Xn is initialized at the
transmit side as Algorithm 1. Since Xn does not always have
the lowest coherence with the high mobility channel model
Ψn, Algorithm 1 is operated to get the coherence reduced pilot
X̂n. And X̂n is also known at both sides for pilot-assisted
channel estimation. After X̂n is transmitted and passed the
high mobility wireless channel, Yn is received at the receive
side for all antennas with AWG noise. Then, CS reconstruction
algorithms such as BP and OMP can reconstruct the estimated
channel coefficients b̂ by Yn = X̂nΨnb + Nn. Finally, the
reconstructed CSI is obtained by Ĥn = Ψnb̂ at the receive
side. The mean square error (MSE) performance between the
reconstructed Ĥn and the actual channel Hn is introduced in
this paper to measure the performances of different channel
estimators and pilots.

Fig. 1. Flow chart of the low coherence compressed channel estimation

IV. NUMERICAL RESULTS

In this section, under the high mobility environment, we
compare the MSE performances of the LS estimator, the
linear minimum mean square error (LMMSE) [8] estimator
and the best linear unbiased estimator (BLUE) [9] with two
compressed channel estimators BP [10] and OMP [12]. LS,
LMMSE and BLUE estimators are all considering the ICI as
described in [8]. BP and OMP are both based on the random
pilot and the optimal pilot. Both BP and OMP are shown to
benefit from the coherence optimized pilot.

Here we consider a MIMO OFDM system with 4 trans-
mit antennas and 4 receive antennas in the high mobility
environment. Assumed that there are 512 subcarriers in each
OFDM system and 12.5% are pilot subcarriers. All pilots are
allocated with equal intervals. The bandwidth is 5MHz, the
packet duration is Td = 0.5ms and the carrier frequency is
operated at fc = 2.6GHz, according to the LTE standard. The
additive noise is a Gaussian and white random process. The
high mobility channel is modeled as (4). The maximum delay
spread is τmax = 40µs and the maximum Doppler frequency
spread is vmax = 1.204KHz, which means that the maximum
velocity of the receiver is 500km/h. In our experiment, we
assumed that there are only 10% of the channel coefficients
are nonzero, which means that we only care about the largest
10% coefficients as dominant coefficients and set others to
zero. Simulations are carried out with the random pilot matrix
Xn
t at each transmit antenna and the optimized pilot matrix

X̂n
t . Xn

t consists of the complex Gaussian random variables
sequence with zero mean and variance 1

NT
as Algorithm 1. X̂n

t

is generated by Algorithm 1 with δ = 0.2, λ = 0.8, Iter = 8.
Fig. 2 presents the comparison of the MSE performances of

LS, LMMSE and BLUE channel estimators with BP and OMP
compressed channel estimators versus the SNR at 500km/h. It
can be observed that the CS channel estimators significantly
improves the MSE performances by utilizing the inherent
sparsity of high mobility channels. On the other hand, LS
and LMMSE need more pilots to obtain enough channel
informations and reconstruct the CSI accurately. Therefore, CS
estimators save more spectrum resources than linear estimators
and get better performance. As expected, both BP and OMP
with optimized pilots (BP-OP and OMP-OP with Iter = 8)
offer better performances than those with random pilots. It
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Fig. 2. MSE performance of estimators and BP OMP with random and
optimized pilot matrix in a 4 × 4 MIMO OFDM system at 500km/h. 512
subcarriers in each OFDM system, and 12.5% are pilot subcarriers.

Fig. 3. MSE performance of estimators and BP OMP with random and
different optimized pilot matrices in a 4×4 MIMO OFDM system at 100km/h.
512 subcarriers in each OFDM system, and 12.5% are pilot subcarriers.

means that the proposed pilot design algorithm reduces the
coherence between the pilot matrix and the high mobility
channel dictionary matrix effectively and improves the system
performance directly.

Fig. 3 presents the comparison of the MSE performances of
different estimators at 100km/h, that generates the maximum
Doppler shift frequency spread as vmax = 241Hz. As can
be seen, all estimators get better performances at lower speed
because there are more sparsity in channel coefficients, but LS
and LMMSE still need more pilots to get the accurate CSI. The
MSE performances of BP and OMP estimators with optimized
pilots by different iterations are given in this figure. Iter is
the iterations of Algorithm 1 and Iter = 0 means the initial
random pilot without optimization. It can be found that the
gains become smaller and smaller with Iter growing, which

shows the convergence property of Algorithm 1. Numerical
results show that the optimized pilot with Iter = 8 is
good enough for our system. As can be seen, the coherence
optimized pilots also improve the performances of both BP
and OMP estimators.

V. CONCLUSION

In this paper a compressed channel estimation method with
coherence optimized pilot is proposed for MIMO OFDM sys-
tems in high mobility environments. The proposed algorithm
reduces the the coherence between the pilot matrix and the
high mobility channel model effectively. Numerical results
show that the proposed method get better performance than
the conventional estimators with the same number of pilots
in high mobility environments and also show the convergence
property. In addition, as the optimized pilots can be operated
to the known channel model and known at both the transmit
side and the receive side before transmitted, the proposed
scheme does not cost more time or frequency resources than
the conventional pilot-assisted channel estimation methods and
can be realized easily in practical communication systems.
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