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Abstract—In this paper, we propose an energy efficient cross-
layer design framework for transmitting Markov modulated
Poisson process (MMPP) traffic over Nakagami-m fading channel
with delay demands. The adaptive modulation and coding (AMC)
is used at physical layer. We first investigate the stationary
distribution of this system. With the stationary distribution and
the AMC transmission mode, we derive the close-form expression
of the delay and the energy efficiency. Then, we derive the energy
efficient thresholds to choose the transmission mode. At last, we
get the energy efficient transmission policy with delay constraint
for given traffic. Numerical results are provided to support the
theoretical development.

I. INTRODUCTION

For the rapid growth of mobile data traffic and battery

powered mobile terminals, energy efficient communications

are becoming increasingly important. While a large number

of approaches have been proposed to reduce the energy

consumption from the physical layer, very few studies focus

on the cross-layer optimization.

Adaptive modulation and coding (AMC) can enhance

throughput to time-varying channel conditions [1], [2], which

has been widely applied in current wireless communication

systems and has been incorporated in several wireless stan-

dards, i.e., IEEE 802.11a and IEEE 802.16e. Although AMC

is mainly used to improve the spectral efficiency of a link for a

given set of quality of service (QoS) requirements, its unique

nature for enhancing upper layer protocol design has spurred

the development of cross-layer approaches. These approaches

can integrate the QoS provisioning protocols at higher layers

with energy efficient AMC implemented at the physical layer.

Many recent works focus on cross-layer designs combining

AMC schemes with automatic repeat request (ARQ) [3]–

[5]. However, for the delay-aware traffic from upper-layer,

we should consider the traffic state. In [2], [6]–[8], while

the traffic and channel is known, the policy of choosing

modulation constellation dynamically depending on incoming

traffic state and buffer state in addition to channel state is

studied. However, their works focus on the throughput and do

not consider the energy efficiency. In [9], [10], the authors

proposed a unified reinforcement learning solution for finding

the joint optimal AMC and dynamic power management

policies when the traffic arrivals and channel statistics are

unknown. The performance of energy efficient transmission

power has not been studied in their works either.

Taking a broader view, our work follows the energy efficient

cross-layer design approach, which aims to take the system

variations and statistics at multiple layers of the protocol stack

into account. In particular, the transmission decisions are part

of the physical layer. The retransmission of packet is controlled

by the data link layer. The delay-aware traffic statistics and

the queue condition are the parameters of higher layers. Our

contribution can be summarized as follows:

• We obtain, via finite state Markov chain, the closed-form

expression of delay of the system, which considers the

queuing delay and the transmission delay.

• We derive the closed-form expression of the system

throughput by taking into account the packet drop caused

by both the channel transmission error and buffer over-

flow. The average power consumption is also obtained.

• We derive the energy efficient thresholds to partition the

SNR, which will improve the energy efficiency in com-

parison with other existing partitions from [1], [8]. And

we present performance results to support the theoretical

development.

• We get the energy efficient transmission policy with delay

constraint. For the large average arrival traffic, the energy

efficient transmission policy is the same no matter what

the delay demand is. For the small average arrival traffic,

the energy efficient transmission policy is different with

different delay demands.

II. SYSTEM MODEL

A. Channel Model

Consider a point-to-point frame-by-frame communication

system, with each frame composed of a number of packets.

The channel is frequency-flat and block fading and is also

corrupted with additive white Gaussian noise (AWGN) n with

zero mean and variance σ2.

For transmit power constant at ē, the channel quality can

be captured by a single parameter, namely the received signal

to noise ratio (SNR) γ. Due to block fading, we assume γ
remains invariant within each transmission frame but can vary
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from frame to frame. We consider the general Nakagami-m
fading model. Then the received SNR γ per frame follows a

Gamma distribution with probability density function (PDF):

fγ̄(γ) =
mmγm−1

γ̄mΓ(m)
exp

(
−mγ

γ̄

)
, (1)

where γ̄ � E {γ} is the average received SNR, Γ(m) �∫∞
0

tm−1e−tdt is the Gamma function, and m is the fading

parameter (m ≥ 1/2). We choose the Nakagami-m channel

model because it applies to a large class of fading channels.
we consider adaptive modulation and coding for transmis-

sion at the physical layer. Let N denote the total number of

AMC transmission modes available. The entire SNR range

is divided into N + 1 nonoverlapping consecutive intervals,

with boundary points given by {γn}N+1
n=0 , where γ0 = 0 and

γN+1 = +∞. The channel is said to be in state n when

γ ∈ [γn, γn+1). Then the fading process can be represented by

a finite-state Markov chain (FSMC). With (1), the probability

that the channel is in state n is given by

Pr(n) =

∫ γn+1

γn

fγ̄(γ)dγ. (2)

Let the transmission rate corresponding to channel state n be

denoted as bn bits per channel use.

B. Traffic and Queuing Model
We assume that the user’s incoming traffic is a Markov

modulated Poisson process (MMPP), where in any state the

incoming traffic is Poisson distributed and the transitions

between the states are governed by an underlying Markov

chain. A wide range of multimedia traffic can be represented

with a MMPP model, which is accurate and reasonable [11],

and the poisson arrival is the special case of this model.
Let F = {f1, f2, · · · , fK} denote the set of states of the

incoming traffic and Pfi,fj denote the probability of transition

from state fi to state fj . Each state follows Poisson distribution

with average arrival rate λi, i = 1, 2, · · · ,K. Denote the row

vector πf = [πf
1 , π

f
2 , · · · , πf

K ] as the stationary distribution of

the incoming traffic, and it satisfies πf = πfPf , where Pf

is the transition probability matrix for the underlying Markov

chain governing transitions between traffic states. The arrival

transition matrix Pf is a right stochastic matrix, we can write∑K
j=1 Pfi,fj = 1. By the stationary distribution πf , we can

get the average arrival rate as λ̄ =
∑K

i=1 π
f
i λi.

The user’s queuing model is a single server M/G/1

queue [12], and the buffer is finite with size M . The M/G/1

model assumes Markovian or memoryless arrivals at average

rate λ̄, a general service distribution and a single server.

Therefore, λ̄ is the mean packet generation rate from the

traffic F, and cn is the service rate at the physical layer

corresponding to channel state n. The service rate cn is in

the set of C = {c1, · · · , cN}.

III. CROSS-LAYER QUEUING AND DELAY ANALYSIS

A. Queuing Analysis
1) Service Rate: We assume that a packet is in error if

at least l out of packet size L bits are corrupted. Then we

can characterize the average packet successful transmission

probability P̄sn corresponding to channel state n as

P̄sn = 1−
L∑
i=l

(
L
i

)
(P̄n

b )
i(1− P̄n

b )
L−i, (3)

where P̄n
b is the average uncoded bit error rate (BER) for

channel state n, which is shown in (27).

In the M/G/1 queue model, the packet service time STn in

state n has the following probability mass function:

P {STn
= kτn} = P̄sn(1− P̄sn)

k−1, k = 1, 2, · · · , Nmax
r ,(4)

where τn represents the packet transmission time when the

channel is in state n,

τn(bn) =
L

TubnRs
, (5)

where Tu and Rs are the time unit and the symbol rate

respectively. From (4), we can get the mean service time at

channel state n:

E {STn
} =

Nmax
r∑
k=1

kτnP̄sn(1− P̄sn)
k−1

=
τn
P̄sn

[
1− (1 +Nmax

r P̄sn)(1− P̄sn)
Nmax

r

]
.

(6)

From (5) and (6), the service rate cn at state n is given by:

cn =
TubnRsP̄sn

L

[
1− (1 +Nmax

r P̄sn)(1− P̄sn)
Nmax

r

]−1

.(7)

2) Stationary Distribution: Let index t denote the time unit

and At be the amount of packets generated by the source

between time t and t−1. From the MMPP model, we can get

P (At = a| fi) =
{

λa
i e

−λi

a! , ∀fi ∈ F, if 0 ≤ a ≤ A

0, otherwise .
(8)

Let St be the queue state at the start of the t-th time slot,

and St ∈ S = {s0 = 0, s1 = 1, · · · , sM = M}. Let Ct ∈ C

denote the number of packets removed from the queue at the

start of each time slot. The resulting recursion of the queue

state can be summarized as

St = min {M,max {0, St−1 − Ct}+At} . (9)

Let (Ft−1, Ct, St−1) denote the states of the traffic and the

service and the queue, and let P(fi,cx,sq),(fj ,cy,sl) denote the

transition probability from (Ft−1 = fi, Ct = cx, St−1 = sq)
to (Ft = fj , Ct+1 = cy, St = sl), where (fi, cx, sq) ∈ F ×
C×S, and (fj , cy, sl) ∈ F×C×S. We can organize the state

transition probability matrix in a block form

P =
[
R(fi,cx),(fj ,cy)

]
, 0 ≤ i, j ≤ K, 0 ≤ x, y ≤ N, (10)

where R(fi,cx),(fj ,cy) can be shown in (11). Thus, the Markov

chain has the total states l = K ×N × (M + 1).
The element of R(fi,cx),(fj ,cy) is shown in (12), where

Pfi,fj and Pcx,cy represent the transition probabilities of

the traffic states and channel states respectively. The second
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R(fi,cx),(fj ,cy) =

⎡
⎢⎢⎢⎣
P(fi,cx,s0),(fj ,cy,s0) P(fi,cx,s0),(fj ,cy,s1) · · · P(fi,cx,s0),(fj ,cy,sM )

P(fi,cx,s1),(fj ,cy,s0) P(fi,cx,s1),(fj ,cy,s1) · · · P(fi,cx,s1),(fj ,cy,sM )

...
...

. . .
...

P(fi,cx,sM ),(fj ,cy,s0) P(fi,cx,sM ),(fj ,cy,s1) · · · P(fi,cx,sM ),(fj ,cy,sM )

⎤
⎥⎥⎥⎦ . (11)

P(fi,cx,sq),(fj ,cy,sl) = P (Ft = fj , Ct+1 = cy, St = sl|Ft−1 = fi, Ct = cx, St−1 = sq)

= Pfi,fjPcx,cyP (St = sl|Ft−1 = fi, St−1 = sq).
(12)

P (St = sl|Ft−1 = fi, St−1 = sq) =

{
P (At = sl − max {0, sq − cx} |fi), if 0 ≤ sl < M,

1−∑
0≤sl<M P (St = sl|Ft−1 = fi, St−1 = sq), if sl = M.

(13)

equality in (12) follows from the fact that both the channel

transition and the traffic transition are independent of others.

We assume slow fading so that transition happens only

between adjacent states. The nonzero elements Pcx,cy is de-

scribed in [1]. At the same time, the conditional probability

of (12) can be derived as (13). Therefore, based on (12)

and (13), we can get the transition probability matrix P.

We propose a lemma to prove that the stationary distribution

π =
[
π(f1,c1,s0), · · · , π(f1,c1,sM ), · · · , π(f1,cN ,s0), · · · ,

π(f1,cN ,sM ), · · · , π(fK ,c1,s0), · · · , π(fK ,cN ,sM )

]
exists.

Lemma 1. The stationary distribution π of the process
{(Ft, St, Ct), t ≥ 0} exists, and πt → π as t → ∞.

Proof: Based on the theorem of [13, Theorem 4.1], the

Markov chain {(Ft, St, Ct), t ≥ 0} exists stationary distribu-

tion only when the Markov chain is irreducible and recurrent.

The MMPP traffic has nonzero transition probability for

each transition from fi to fj , denoted as fi → fj . And

from (13), we can get P {(cx, sq)|(cx, sq)} = P (At =
sq − max {0, sq − cx} |fi), then the transition

(fi, cx, sq) → (fj , cx, sq) (14)

has nonzero probability.

When the traffic stays in the state fj , the transition proba-

bility

P {(cx, sq)|(cx, sl)} = P (At = sl − max {0, sq − cx} |fj).
Thus, the transition from

(fj , cx, sq) → (fj , cx, sl) (15)

has nonzero probability. The channel state x can always

have transition path to the state y from the neighbour state,

then state cx can go to state cy . And P {(cx, sl)|(cy, sl)} =
P (At = sl − max {0, sl − cx} |fi), therefore,

(fj , cx, sl) → (fj , cy, sl) (16)

also has nonzero transition probability. Based on (14), (15)

and (16), we know that the {(Ft, St, Ct), t ≥ 0} is irreducible.

On the other hand, based on the conclusion of [13], that

all states in a finite irreducible Markov chain are recurren-

t. In all, the stationary distribution of the Markov process

{(Ft, St, Ct), t ≥ 0} exists.

Now, the stationary distribution is obtained by solving

π = πP,
∑

f∈F,s∈S,c∈C

π(f,s,c) = 1. (17)

The solution π is the left eigenvector of P corresponding to

the eigenvalue 1.
3) Packet Dropping Rate: Let Pd denote the packet drop-

ping rate. When the remaining space of the queue is smaller

than the number of packet arrivals, packet overflow happens.

With the current service rate Ct, the remaining space is

rt = M − (St−1 − Ct). Thus the queue can accommodate rt
arriving packets in the current time slot. Now, if the number

of arriving packets At is larger than rt, At − rt packets will

be dropped. Therefore, based on the stationary distribution of

π, we can compute Pd as [2]

Pd � lim
T→∞

∑T
t=1 Dt∑T
t=1 At

=
E {D}
E {At} =

E {D}
λ̄

. (18)

The average number of dropped packets E {D} can be found

in (19). where θ(x, y) is a positive difference function, which

returns the difference of x and y when x > y, and returns

0 when x ≤ y. With Pd available, we can get the effective

average traffic rate and the system throughput.

B. Delay Analysis

Based on the queue state and service rate, we can get the

actual service rate given (S=s, C=c) as

cn(S = s, C = c) =

{
cn, if c = cn, s ≥ c
s
c cn, if c = cn, s < c.

(20)

Thus, the average service rate calculation corresponding to

state n can be derived as

c̄n =
∑

s∈S,c=cn

cn(S = s, C = c)π(s,c)∑
s∈S,c=cn

π(s,c)
, (21)
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E {D} =
∑

f∈F,s∈S,c∈C

[θ(At,M − (St−1 − Ct))× P (At = a|f)× πf,s,c] , (19)

where π(s,c) denotes the stationary distribution of the system

state. Therefore, considering the influence of queuing, the

average spectral efficiency is b̄n = c̄n
cn
bn.

The effective traffic rate into the queue can be evaluated

as r = λ̄(1 − Pd). By [12], using the Pollaczek-Khintchine

formula, we can get the mean queue length for state n as

Q̄n
q =

rE
{
S2
Tn

}
2(1− δn)

, (22)

where δn = r/c̄n is the traffic intensity or utilization, and

E
{
S2
Tn

}
is the second moment of the service distribution.

Using (4), we can get E
{
S2
Tn

}
. For notational brevity,

E
{
S2
Tn

}
� f(P̄sn , N

max
r ).

Theorem 1. A necessary condition about the existence of a
steady state of the queue and the finite numbers of packet
dropping is that the average received SNR should satisfy γ̄ ≥
γ̄min, and γ̄min is the γ̄ by setting

∑N
n=1 Pr(n)cn = λ̄.

Proof: We omit the proof due to limited space.

It is known that the average waiting time of a packet consists

of queuing time and service time for the M/G/1 queue, and

the queuing delay is D̄q =
Q̄q

r , which is akin to Little’s

formula [12]. In summary, the average delay W̄n for a packet

corresponding to state n is given by (23), where τn(b̄n) is

given by substituting b̄n into (5). Thus, the average delay for

a packet with AMC can be derived as

W̄ =

N∑
n=1

Pr(n)W̄n. (24)

Substituting (23) into (24), we can get the average delay W̄ .

IV. ENERGY EFFICIENCY ANALYSIS

In this section, we determine the energy efficient transmis-

sion policy with the joint effects of finite length queue and

AMC also with the delay-aware arrival traffic.

A. Energy Efficiency

Whenever the CSI feedback to the transmitter falls within

the interval [γn, γn+1), the transmission rate bn of AMC is

chosen, data is transmitted with power en,t(γ) at time-slot t.

Thus, the received SNR is γen,t(γ)/ē, and γ = ē|h(t)|2
σ2 , where

|h(t)|2 denotes the instantaneous channel power gain. The

BER for transmission mode n can be expressed as a function

of the received SNR γen,t(γ)/ē as [14]

Pn
b ≈ 0.2exp(− 1.5

2bn − 1

en,t(γ)

ē
γ), γn ≤ γ < γn+1. (25)

By considering the traffic and queueing influence, we should

use the average transmission rate b̄n to replace bn. From (7),

(20) and (21), we can get b̄n = c̄n
cn
bn. Thus, we get the

transmission power for each AMC mode as follows:

en,t(γ) =
ē(2b̄n − 1)

1.5γ
ln
0.2

Pn
b

. (26)

Let P̄n
b denote the average BER corresponding to state n,

from (2), we can derive P̄n
b as

P̄n
b =

1

Pr(n)

∫ γn+1

γn

0.2exp(− 1.5

2bn − 1
γ)fγ̄(γ)dγ. (27)

Thus, the average transmission power in channel state n is

ēn,t =

∫ γn+1

γn

ē(2b̄n − 1)

1.5γ
ln
0.2

P̄n
b

fγ̄(γ)dγ. (28)

From (2) and (28), we can approximate the actual average

transmission power with AMC at time slot t as

ẽt =

N∑
n=1

ēn,tPr(n). (29)

The system throughput is the average rate at which packets

are successfully transmitted. Therefore, the packet dropping

rate from queuing and packet violation from the channel with

Nmax
r retransmissions are influencing the system throughput.

For an average packet arrival rate λ̄, a packet dropping rate

Pd, and an average packet successful transmission rate P̄s, the

system average throughput T̄ can be calculated by

T̄ = λ̄(1− Pd)(1− (1− P̄s)
Nmax

r ), (30)

where Pd is corresponding to (18). The average probability

of successful packet transmission P̄s can be calculated as the

ratio of the average number of packets successfully transmitted

over the total average number of transmitted packets

P̄s =

∑N
n=1 c̄nPr(n)P̄sn∑N

n=1 c̄nPr(n)
. (31)

Based on (29), (30) and (31), the energy efficiency is

fee �
T̄

ẽt
=

λ̄(1− Pd)(1− (1− P̄s)
Nmax

r )∑N
n=1 ēn,tPr(n)

. (32)

It can be noted from (2) that different thresholds γn deter-

mine the probability distribution of different transmission rate

bn over F× S×C with γ̄ available, which can be also called

the transmission control policy μ(γn, γ̄).

Theorem 2. For a given transmission policy μ0 = μ(γ0
n, γ̄

0),
fee is nondecreasing as increasing the buffer size M , and fee
converges to a supremum.

Proof: We haven’t shown the proof due to limited space.

Theorem 2 reveals the influence of the buffer size to energy

efficient transmission. The buffer size should be large enough

while we only consider the energy efficient transmission.
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W̄n =
TuQ̄

n
q

r
+ TuE {STn

} =
Tuf(P̄sn , N

max
r )

2(1− δn)
+

τn(b̄n)Tu

P̄sn

[
1− (1 +Nmax

r P̄sn)(1− P̄sn)
Nmax

r

]
. (23)

B. Energy efficient Thresholds
The choices of thresholds {γ1, γ2, · · · , γN} can be arbitrary.

In [8], the equal probability method (EPM) was proposed.

The partition based on minimum SNR required to acheive

Ptarget (MSRE) was proposed in [1]. Since we want to get the

energy efficient transmission, we set the threshold γn for the

channel state n to be the energy efficient SNR. We consider

no retransmission, fee corresponding to channel state n can

be written as

fee(γ) =
λ̄(1− Pd) |h(t)|2

σ2

f(γ)

γ
, (33)

where f(γ) = Psn .
Taking derivative of (33) with respect to γ and equating it to

zero, it can be shown that the energy efficient partition (EEP)

γ∗
n satisfies f(γ∗

n) = γ∗
nf

′(γ∗
n). It is shown in [15] that for

an S-shaped (sigmoidal) function, f(γ∗
n) = γ∗

nf
′(γ∗

n) has a

unique solution, and f(γ) is S-shaped.

Lemma 2. The energy efficient thresholds γ∗
n (n =

1, · · · , N ) is the unique solution of the following equation:
αnL
bn

√
βnγ
2π e−

βnγ
2 + αnQ(

√
βnγ) = 1, where αn = 2(1 −

2−bn/2), βn = 3
2bn−1

and Q(·) is the complementary cumu-
lative distribution function of the standard Gaussian variable.

Proof: The proof is Based on [15, Eq. (4),(5),(6)],

C. Energy Efficient Policy with Delay Constraint
Based on the energy efficient thresholds γ∗

n, we can formu-

late the energy efficient optimization problem as

max fee,
s.t. W̄ = φ(γ̄) � W0,

γ̄ � γ̄max,
γ̄ � γ̄min,

(34)

where γ̄min and γ̄max are the minimum required SNR from

theorem 1 and the maximum average received SNR, and W̄
is corresponding to (24). Our objective is to determine the

optimal prescribed average received SNR γ̄opt(W0) at the

physical layer that maximizes the fee, which corresponds to

the energy efficient transmission policy based on the queue

state and the traffic state as well as the delay demand.
The nonlinear function of fee is complex, (34) can be

numerically solved by Golden-Section method [16]. Then, we

can get the energy efficient solution γ̄opt(W0) = argmax fee
with delay constraint W0. Hence, for given traffic F, the

energy efficient transmission policy with delay constraint can

be determined as

μopt = μ(γ∗
n, γ̄

opt(W0)).

The energy efficient average transmission power ẽopt can also

be determined based on (29).
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Fig. 1. Energy efficiency versus average SNR with MSRE and EEP.

V. NUMERICAL RESULTS AND DISCUSSION

A. System Parameters

Unless specified otherwise, for all simulations, we assume

that number of traffic, channel and queue states are K = 2,

N = 7 and M + 1 = 51 respectively. The packet size L =
1080, the maximum retransmission times of packet is Nmax

r =
6. Maximum number of packet arrivals A = 15, average arrival

rate, λ1 = 1 packets/time-unit and λ2 = 2 packets/time-unit.

The symbol rate Rs = 100KHz; The Nakagami parameter

m = 1; Doppler frequency fd = 10 Hz. We assume that

block (also called frame) length Tu = 2 ms.

B. Performance of the analysis

Fig. 1 shows the average energy efficiency, we can see that

the method of EEP can offer better energy efficiency than that

of MSRE, although the gap of the energy efficiency is very

small at some SNRs. The energy efficiency is increasing when

increasing the average arrival rate. However, when the average

SNR is increasing greatly, there is no increasing in energy

efficiency of both the MSRE and EEP for the small average

arrival rate. The blue curve shows the energy efficiency

without adaptive modulation (W/O-AM) with average traffic

arrival λ̄ = 2 packets/time-unit, which performs much worse

than the cross-layer policy with adaptive modulation.

Ensure the energy efficient transmission, we can also ob-

serve from the figure that the average SNR should be as

large as possible when the average arrival rate is large, i.e.,

λ̄ = 2 packets/time-unit, which means that the probability

of choosing large transmission rate should be increased. With

regard to the delay, we can see from Fig. 2 that the delay is

decreasing when increasing the SNR. Thus, the SNR should

be increased when the delay demand is more strict. Therefore,

there exists an optimum energy efficient transmission policy

under different delay constraints. Based on Fig. 1 and Fig. 2,
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Fig. 2. Average delay versus average SNR.
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Fig. 3. Optimal energy efficiency versus the delay constraint W0.

the energy efficient SNR for the small average arrival rate

is decreasing when the delay demand is increasing, i.e.,

λ̄ = 1 packets/time-unit. Consequently, when the delay is more

tolerant, the energy efficient transmission policy for the small

average arrival traffic is that the probability of choosing small

transmission rate is larger. On the other hand, when the delay is

more sensitive, the energy efficient transmission policy for the

small average arrival traffic is that the probability of choosing

large transmission rate is larger. However, the energy efficient

transmission policy for the large average arrival traffic is the

same no matter what the delay demand is.

Fig. 3 shows the optimal energy efficiency versus the delay

W0 for different arrival rates, we use EEP for AMC transmis-

sion. We can observe from the curve that the energy efficiency

is increasing when increasing W0 at the regime of small W0.

At the regime of large W0, the optimal energy efficiency

converges to a stable value. Therefore, the optimal energy

efficient transmission policy at large delay region is almost

the same irrespective of delay and arrival rate variations.

VI. CONCLUSION

In this paper, we present a cross-layer framework that

determines the energy efficient transmission policy based on

both the physical layer and the upper-layer information. We

derive the closed form expression of delay considering joint

effects of the general traffic arrival model and queuing states as

well as the general channel model. With regard to the physical

layer transmission, we propose an energy efficient partition

method to achieve the AMC transmission. Our numerical

results show that the energy efficiency performs better than the

existing partition methods with the energy efficient partition.

At last, we get the energy efficient transmission policy for

different delay-aware services.
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