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Abstract—Hybrid precoding provides a tradeoff between spec-
tral efficiency and power consumption in millimeter wave
(mmWave) multiple-input multiple-output (MIMO) systems. In
this paper, we investigate the partially-connected hybrid pre-
coding design for mmWave MIMO broadcast channels with
finite alphabet inputs. To enhance the spectral efficiency, a new
algorithm is proposed to dynamically optimize the mapping
strategy from radio frequency (RF) chains to transmit antennas
such that the weighted sum of channel gains is maximized. Then
we adopt the inexact alternating minimization method to design
hybrid precoding matrices with given optimal mapping strategy
and finite-alphabet inputs. Simulation results demonstrate the
good performance of our proposed algorithm.

I. INTRODUCTION

Millimeter wave (mmWave) multiple-input multiple-output
(MIMO) communication is a promising technique for future
generation wireless communication systems. To mitigate the
prohibitive power consumption of radio frequency (RF) chains
at mmWave frequencies, hybrid precoding is proposed, which
divides the processing needed for precoding between analog
and digital domains to reduce the number of RF chains [1].

Based on the connecting strategies from RF chains to anten-
nas, hybrid precoding are typically realized by two structures,
i.e., fully- and sub-connected structures. While the former
enjoys the full precoding gain with each RF chain connected to
all the antennas, the latter has drawn much attention recently
due to its lower power consumption and lower hardware
complexity. In particular, compared to the fully-connected
structure, each RF chain in the sub-connected structure is
connected to only a subset of the antennas. Thus the total
number of phase shifters in the sub-connected structure is
reduced by a factor of the RF chain number. Due to the
limited number of phase shifters, there will be non-negligible
degradation in the sub-connected structure. Therefore, it is
of importance to develop effective design methodologies for
hybrid precoding with limited phase shifters.

There exist a few studies on hybrid precoding in the sub-
connected structure [2]–[5]. In [2], an iterative hybrid precod-
ing algorithm based on successive interference cancellation
was proposed for single user mmWave MIMO systems. The
work in [3] formulated the hybrid precoding design as a

matrix factorization problem, and then adopted the alternating
minimization method to solve this problem. Recently, [4]
developed a novel technique that dynamically constructs the
sub-connected structure for MIMO-OFDM systems, and the
proposed dynamic subarray structure outperforms the fixed
subarray structure. Finally, reference [5] proposed a modified
k-means algorithm for sub-connected hybrid precoding with
dynamic double phase shifters implementation.

Most existing works on hybrid precoding assume Gaussian
inputs, which cannot be realized in practice. It is well known
that practical systems utilize finite-alphabet inputs, such as
phase-shift keying (PSK) or quadrature amplitude modula-
tion (QAM). Furthermore, precoding designs under Gaussian
inputs are quite suboptimal for systems with finite-alphabet
inputs [6]–[10]. Therefore, the precoding design with finite-
alphabet inputs has drawn increasing research interest in recent
years.

In this paper, we study the hybrid precoding design for
mmWave MIMO broadcast channels with dynamic subarray
and finite-alphabet inputs. The contributions of this paper are
summarized as follows:

• We propose a simple algorithm to dynamically optimize
the mapping strategy from radio frequency (RF) chains to
transmit antennas such that the weighted sum of channel
gains is maximized.

• With the given optimal mapping strategy, we propose
a hybrid precoding algorithm to maximize the weight-
ed sum rate under finite-alphabet inputs. The proposed
algorithm has about 2.5dB performance gain over the
successive interference cancelation (SIC)-based hybrid
precoding [2].

Notations: Boldface lowercase letters, boldface uppercase
letters, and calligraphic letters are used to denote vectors,
matrices and sets, respectively. The real and complex number
fields are denoted by R and C, respectively. The superscripts
(·)T, (·)∗ and (·)H stand for transpose, conjugate, and con-
jugate transpose operations, respectively. tr(·) is the trace
of a matrix; ∥ · ∥ denotes the Euclidean norm of a vector;
∥ · ∥F represents the Frobenius norm of a matrix; Exxx(·)
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represents the statistical expectation with respect to xxx; III and
0 denote an identity matrix and a zero matrix, respectively,
with appropriate dimensions; ⊙ denotes the Hadamard matrix
products; I(·) represents the mutual information; ℜ and ℑ are
the real and image parts of a complex value; log(·) is used for
the base two logarithm.

II. PROBLEM FORMULATION

A. System Model

We consider a multiuser downlink channel with one base
station (BS) and K noncooperative mobile stations (MSs).
The BS is equipped with nT antennas and nRF ≤ nT radio
frequency (RF) chains. The kth MS is equipped with nRk

antennas. The total number of receive antennas is defined to be
nR =

∑
k nRk. We will use the notation {nR1, ..., nRK}×nT×

nRF to represent such a channel. For example, a {2, 2, 2}×64×6
channel has a 64-antenna BS with 6 RF chains and three 2-
antenna MSs.

The BS sends independent data vectors {xxxk}K
k=1 to K MSs,

where xxxk ∈Cdk×1 is the data vector intended for the kth MS.
Without loss of generality, we assume that {xxxk}K

k=1 are zero-
mean vectors with the same covariance matrix III . In the hybrid
precoding architecture, each data vector xxxk is first precoded
by a digital precoding matrix BBBk ∈ CnRF×dk . After passing
through RF chains, the baseband signal

∑
k BBBkxxxk is furthered

precoded in the analog-domain by an analog precoding matrix
FFF ∈CnT×nRF . Then the received signal yyyk ∈CnRk×1 at the kth
MS in a narrowband system can be represented as

yyyk = HHHkFFFBBBkxxxk+
K∑

j=1
j ̸=k

HHHkFFFBBBjxxxj +nnnk, k = 1, ..., K (1)

where HHHk ∈CnRk×nT is the channel matrix from the BS to the
kth MS, and nnnk ∈CnRk×1 is the independent and identically
distributed (i.i.d.) complex Gaussian noise with zero-mean and
covariance σ2

k III .
In this paper, the analog precoding matrix FFF is implemented

by a dynamic phase shifter subarray, where each RF chain is
connected to a subset of the antennas. We denote Sj by the
collection of BS antennas connected to jth RF chain. Then we
need to partition nT BS antennas into nRF subsets {Sj}nRF

j=1
satisfying

nRF∪
j=1

Sj =
{
1, 2, ..., nT

}
Sj ∩ Sℓ =∅, ∀j ̸=ℓ

(2)

From (2), we conclude that if i ∈ Sj (the ith BS antenna is
connected to the jth RF chain), the (i, j)th entry of FFF has unit
modulus, otherwise it is zero. Therefore, the constraints on FFF
can be expressed by

|FFFij |=1Sj (i), ∀(i, j) (3)

where 1Sj
(i) is the indicator function:

1Sj (i)=

{
1 if i∈Sj

0 otherwise.
(4)

The transmitted signal at the BS is restricted by a total
power constraint P :

E
∣∣∣∣∣∣ ∑

k

FFFBBBkxxxk

∣∣∣∣∣∣2 =
K∑

k=1

tr
(
BBBH

k FFFHFFFBBBk

)
≤P. (5)

To eliminate the effect of FFF on (5) and make our problem more
tractable, we consider the following change of variables:

F̄FF =FFF (FFFHFFF )− 1
2 , B̄BBk =(FFFHFFF )

1
2BBBk. (6)

Then the power constraint in (5) becomes

K∑
k=1

tr
(
B̄BB

H
k B̄BBk

)
≤P (7)

and the constraints on F̄FF can be expressed as

|F̄FFij |=
1√
|Sj |

1Sj
(i), ∀(i, j). (8)

Furthermore, plugging F̄FF and B̄BBk into the system model in (1),
we have

yyyk = H̄HHkB̄BBkxxxk+
K∑

j=1
j ̸=k

H̄HHkB̄BBjxxxj +nnnk, k = 1, ..., K (9)

where H̄HHk = HHHkF̄FF . From (7) and (9), we observe that H̄HHk

and B̄BBk can be regarded as the effective channel matrix
and precoding matrix for typical MIMO Gaussian broadcast
channels, respectively. Therefore, the role of F̄FF is to increase
the gain of the effective channels {H̄HHk}K

k=1, and this is the
motivation of our problem formulation in the subsection D.

B. Channel Model

Due to the high free space omnidirectional path loss and
signal attenuation in the mmWave frequency bands, the scat-
tering is limited such that there might be only a small number
of paths over which the signals from the BS can reach the kth
MS. This allows to use a multipath channel model, where the
channel matrix is given by

HHHk =
√

nRknT

Lk

Lk∑
ℓ=1

αk,ℓaaa(θMS
k,ℓ )aaa(θBS

k,ℓ)
H . (10)

Here, Lk denotes the number of physical propagation paths
between the BS and the kth MS. Each path l is described
by three parameters: complex gain αk,ℓ, angle of arrival θMS

k,ℓ ,
and angle of departure θBS

k,ℓ. The angles {θMS
k,ℓ }k,ℓ and {θBS

k,ℓ}k,ℓ

are i.i.d. uniformly distributed over [0, 2π), and the complex
gains {αk,ℓ}k,ℓ are i.i.d. complex Gaussian distributed with
zero-mean and unit-variance. The array steering vectors of the
antenna arrays deployed at the BS and MS are denoted by
aaa(θBS

k,ℓ) and aaa(θMS
k,ℓ ), respectively. In this paper, the BS and



MSs adopt uniform linear arrays, whose array steering vector
aaa(θ) is given by

aaa(θ)=
1√
N

[
1, e−j 2π

λ dS sin θ, ..., e−j 2π
λ dS(N−1) sin θ

]T

(11)

where N is the number of antenna element, λ is the wave-
length of the carrier frequency and dS = 1

2λ is the antenna
spacing.

C. System Performance Metric

Throughout the paper, we assume that the BS has the
knowledge of all MSs’ channels {HHHk}K

k=1, and the kth MS
only knows its own channel matrix HHHk. In addition, each entry
of the data vectors {xxxk}K

k=1 is drawn from a equiprobable
constellation set A =

{
a1, a2, ..., aM

}
with cardinality M ,

i.e., xxxk ∈ Adk×1, k = 1, ..., K. Under these assumptions, the
mutual information between xxxk and yyyk, denoted by I(xxxk;yyyk),
can be used to characterize the data rate from the BS to
the kth MS. However, since {xxxk}K

k=1 are drawn from a
discrete constellation set, the computational complexity for
evaluating I(xxxk;yyyk) grows exponentially with respect to the
total number of data streams d. To address this issue, we
apply the finite-alphabet signal Gaussian interference (FASGI)
approximation proposed in [9]. The key idea behind the FASGI
approximation is to model the sum interference as a Gaussian
distributed signal with the same covariance matrix. Consider
the equivalent system model in (9)

yyyk = H̄HHkB̄BBkxxxk+
K∑

j=1
j ̸=k

H̄HHkB̄BBjxxxj +nnnk, k = 1, ..., K. (12)

According to the central limit theorem, when K is large, the
sum interference plus noise

∑
j ̸=k H̄HHkB̄BBjxxxj +nnnk tends toward

the Gaussian distribution with the covariance matrix

CCCk =σ2
k III+

K∑
j ̸=k

H̄HHkB̄BBjB̄BB
H
j H̄HH

H
k . (13)

Based on the FAGSI approximation, the system model in
(12) is reduced to

CCC
− 1

2
k yyyk =CCC

− 1
2

k H̄HHkB̄BBkxxxk+zzzk (14)

where zzzk ∼CN (000, III) is the normalized sum interference plus
noise. The corresponding constellation-constrained mutual in-
formation is given by

I
(
xxxk;CCC− 1

2
k yyyk

)
=log Nk− 1

Nk

Nk∑
m=1

Ezzzk

{
log

Nk∑
n=1

exp
(
−||CCC− 1

2
k H̄HHkB̄BBkeee

(k)
mn+zzzk||2−||zzzk||2

)}
(15)

where Nk=Mdk and eee
(k)
mn ∈ Cdk×1 is the difference of two

possible transmit signals from Adk×1.
The constellation-constrained mutual information as well

as its gradient is difficult to compute directly because
they have no closed form expressions. In order to estimate

I(xxxk;CCC− 1
2

k yyyk) and its gradient, we need to use monte carlo
methods, whose complexity is prohibitively high especially
when Nk is large. This issue can be mitigated by using an
approximation of I(xxxk;CCC− 1

2
k yyyk) derived in [8]

Îk(F̄FF , {B̄BBk})=log Nk− 1
Nk

Nk∑
m=1

log
Nk∑
n=1

exp
(
ζ(k)
mn

)
(16)

where ζ
(k)
mn is given by

ζ(k)
mn =−1

2
(
eee(k)

mn

)H
B̄BB

H
k F̄FF

H
HHHH

k CCC−1
k HHHkF̄FFB̄BBkeee

(k)
mn. (17)

This approximation is accurate for arbitrary channel and pre-
coding matrices, and its computational complexity is several
orders of magnitude lower than that of the original mutual
information in (15).

D. Hybrid Precoding Design

Using the approximated mutual information in (16), the
hybrid precoding problem, which maximizes the weighted sum
rate under the power constraint, is formulated as

maximize
F̄FF ,{B̄BBk},{Sj}

K∑
k=1

wkÎk(F̄FF , {B̄BBk})

subject to
K∑

k=1

tr
(
B̄BB

H
k B̄BBk

)
≤P

|F̄FFij |= |Sj |−
1
2 1Sj

(i), ∀(i, j)
{Sj}nRF

j=1 satisfies (2)

(18)

where wk ≥ 0 with
∑K

k=1 wk = 1. To make the structure of
problem (18) more clear, we rewrite it as follows

maximize
{Sj}

R({Sj})

subject to {Sj}nRF
j=1 satisfies (2)

(19)

where R({Sj}) is the optimal value to problem (18) with given
partition of subsets, i.e.,

R({Sj})=maximize
F̄FF ,{B̄BBk}

K∑
k=1

wkÎk(F̄FF , {B̄BBk})

subject to
K∑

k=1

tr
(
B̄BB

H
k B̄BBk

)
≤P

|F̄FFij |= |Sj |−
1
2 1Sj

(i), ∀(i, j).

(20)

Problem (19) is a combinatorial optimization problem for
which finding the optimal solution requires an exhaustive
search over all possible partition of subsets. Let

{
S(ℓ)

j

}nRF

j=1
denotes the ℓth given partition of subsets satisfying (2), and
KS denotes the total number of ways to partition nT antennas
into nRF nonempty subsets:

KS =
1

nRF!

nRF∑
k=0

(−1)nRF−k

(
nT

k

)
knT . (21)



Then we can rewrite problem (19) as

maximize
ℓ∈{1,...,KS}

R
(
S(ℓ)

1 , ..., S(ℓ)
nRF

)
. (22)

Although (22) provides a theoretically possible way for
solving the hybrid precoding problem (18), its computational
complexity is prohibitive even for a small number of antennas
and RF chains. For example, when nT = 16 and nRF = 4,
KS is equal to 1.718 × 108, which means that we need to
solve problem (20) over ten million times to obtain the optimal
analog and digital precoding matrices.

We propose a new formulation to reduce the computational
burden of problem (22). Recall that the role of F̄FF is to increase
the gain of the effective channel matrices. Therefore, instead
of maximizing the weighted sum rate, we design F̄FF and{
S(ℓ)

j

}nRF

j=1 such that the weighted sum of the effective channel

gains
∑

k wktr(H̄HHH
k H̄HHk) is maximized. The dynamic subarray

partitioning problem is then formulated as

maximize
F̄FF ,{Sj}

K∑
k=1

wktr
(
F̄FF

H
WWWF̄FF

)
subject to |F̄FFij |= |Sj |−

1
2 1Sj (i), ∀(i, j)

{Sj}nRF
j=1 satisfies (2)

(23)

where WWW =
∑

k wkHHH
H
k HHHk.

The complete procedure of our proposed hybrid precoding
design is summarized as follows. First, solve problem (23) to
obtain its optimal solution F̄FF

⋆
init and {S⋆

j }nRF
j=1 . Second, insert

{S⋆
j }nRF

j=1 into problem (20) and then solve problem (20) to
obtain the optimal F̄FF

⋆ and {B̄BB⋆
k }K

k=1. Note that F̄FF
⋆

init serves
as a good initial point for solving (20). Third, recover the
corresponding analog and digital precoding matrices FFF ⋆ and
{BBB⋆

k }K
k=1 from F̄FF

⋆ and {B̄BB⋆
k }K

k=1.

III. DYNAMIC SUBARRAY PARTITIONING DESIGN

In this section, we propose a low complexity algorithm to
solve problem (23). Plugging F̄FF =FFF (FFFHFFF )− 1

2 into problem
(23), we obtain

maximize
FFF∈F

tr
[
(FFFHFFF )− 1

2FFFHWWWFFF (FFFHFFF )− 1
2

]
(24)

where the feasible set F is given by

F =
{
FFF

∣∣|FFFij |=1Sj
(i), ∀(i, j); {Sj}nRF

j=1 satisfies (2)
}
. (25)

The main difficulty of problem (24) lies in the fact that the
constraints in F depend on {Sj}nRF

j=1 . The following proposi-
tion address this issue by providing a set of new constraints
to characterize F .

Proposition 1: The feasible set F of problem (24) can be
characterized by

|FFFij |∈{0, 1}, ∀(i, j)
||FFFi•||0 =1, ∀i

(26)

where FFFi• denotes the ith row of FFF , and || · ||0 measures the
number of nonzero elements in a vector.

Proof: We start with the necessary condition, i.e., if
FFF ∈ F , then FFF satisfies (26). Since |FFFij | = 1Sj

(i), we must
have |FFFij |∈{0, 1}. In addition, based on equations (2), the ith
antenna belongs to exactly one subset, thus ||FFFi•||0 =1.

Next, we prove the sufficient condition, i.e., if FFF satisfies
(26), then FFF ∈ F . Let Sj denotes the collection of nonzero
entries in the jth column of FFF . Then FFF can be expressed as

|FFFij |=

{
1 if i∈Sj

0 otherwise.
(27)

Since ||FFFi•||0 =1 for all i∈{1, 2, ..., nT}, we must have

nRF∪
j=1

Sj =
{
1, 2, ..., nT

}
(28)

Sj ∩ Sℓ =∅, ∀j ̸=ℓ. (29)

Therefore, {Sj}nRF
j=1 satisfies (2) and this completes the proof.

According to proposition 1, we rewrite problem (24) as

maximize
FFF

tr
[
(FFFHFFF )− 1

2FFFHWWWFFF (FFFHFFF )− 1
2

]
subject to |FFFij |∈{0, 1}, ∀(i, j)

||FFFi•||0 =1, ∀i.

(30)

Problem (30) is intractable due the discrete constraints |FFFij |∈
{0, 1} and ||FFFi•||0 =1. Therefore, we first drop the constraints
of problem (30) and consider the unconstrained problem

maximize
FFF

tr
[
(FFFHFFF )− 1

2FFFHWWWFFF (FFFHFFF )− 1
2

]
(31)

Problem (31) is a generalized eigenvalue problem, and its
optimal solution is given below.

Proposition 2: Let UUUWWW ∈CnT×nRF be the eigenvectors of
WWW corresponding to the largest nRF eigenvalues. For any
unitary matrix RRR∈CnRF×nRF , FFF =UUUWWWRRR is a globally optimal
solution of problem (31).

Proof: The proof is omitted due to space limits.
In general, there does not exist RRR such that the uncon-

strained solution UUUWWWRRR is feasible to problem (30). However,
we can use UUUWWWRRR to find a nearby feasible solution. Specifi-
cally, consider the following minimization problem

minimize
FFF,RRR∈U

||FFF − UUUWWWRRR||2F

subject to |FFFij |∈{0, 1}, ∀(i, j)
||FFFi•||0 =1, ∀i

(32)

where U denotes the set of unitary matrices. Since the op-
timization variables FFF and RRR are separate, we adopt the
alternating minimization approach to solve problem (32).

Given RRR, problem (32) is reduced to

minimize
FFF

||FFF − UUUWWWRRR||2F
subject to |FFFij |∈{0, 1}, ∀(i, j)

||FFFi•||0 =1, ∀i.

(33)



Let ℓ⋆(i)=argmax1≤ℓ≤nRF
|[UUUWWWRRR]iℓ|, then the optimal solu-

tion of problem (33) can be expressed as

FFFij =


[UUUWWWRRR]iℓ
|[UUUWWWRRR]iℓ|

if j =ℓ⋆(i)

0 otherwise.
(34)

Given FFF , problem (32) is reduced to an orthogonal pro-
crustes problem

minimize
RRR∈U

||FFF − UUUWWWRRR||2F . (35)

Denote the singular value decomposition of FFFHUUUWWW by

FFFHUUUWWW =ŨUUΣ̃ΣΣṼVV
H

(36)

then the optimal solution of problem (35) can be expressed as
[11]

RRR=ṼVV ŨUU
H

. (37)

Combining (34) and (37), we propose a simple algorithm for
problem (32), which is summarized in Algorithm 1.

Algorithm 1 Dynamic subarray partitioning

1. Given UUUWWW . Set initial unitary matrix RRR.
2. repeat

• Update FFF by (34).
• Update RRR by (37).
until a stopping criterion triggers.

3. Return F̄FF
⋆

init =FFF (FFFHFFF )− 1
2 and the corresponding {S⋆

j }.

Note that when F̄FF
⋆

init is determined, the corresponding
{S⋆

j }nRF
j=1 is given by

S⋆
j =

{
i
∣∣∣|[F̄FF ⋆

init]ij | ̸=0, ∀i
}

, j =1, ..., nRF. (38)

IV. HYBRID PRECODING WITH FINITE-ALPHABET INPUTS

In this section, we propose a hybrid precoding algorithm to
solve problem (20) with {S⋆

j }nRF
j=1 computed by Algorithm 1.

Note that the constraint |F̄FFij |= |S⋆
j |− 1

2 1Sj
(i) implies that only

the phase of nonzero |F̄FFij | can be changed. Therefore, instead
of using F̄FF as the optimization variable, it is more convenient
to optimize the phase of nonzero entries in |F̄FF |. Define a phase
matrix ΦΦΦ as

ΦΦΦij =

{
∠F̄FFij if |F̄FFij | ̸=0
0 otherwise

(39)

where ∠F̄FFij represents the phase of a nonzero F̄FFij . Then F̄FF can
be expressed as

F̄FFij = |S⋆
j |− 1

2 exp(ȷΦΦΦij)1S⋆
j
(i), ∀(i, j). (40)

Using ΦΦΦ as the optimization variable and rewriting F̄FF as F̄FF (ΦΦΦ),
we can rewrite problem (20) as the following problem

maximize
ΦΦΦ,{B̄BBk}

K∑
k=1

wkÎk(F̄FF (ΦΦΦ), {B̄BBk})

subject to
K∑

k=1

tr
(
B̄BB

H
k B̄BBk

)
≤P.

(41)

We propose an inexact alternating minimization algorithm to
solve problem (41). Based on the results in [12], the gradients
of Îk(F̄FF (ΦΦΦ), {B̄BBk}) with respect to φφφ and {B̄BBk}K

k=1 are

∇ΦΦΦÎk =2ℑ
(
∇F̄FF Îk⊙F̄FF

)
(42)

∇B̄BBℓ
Îk =

{
H̄HH

H
k GGGkEEEk if ℓ=k

−H̄HH
H
k GGGkEEEkGGG

H
k H̄HHkB̄BBℓ if ℓ ̸=k.

(43)

where H̄HHk =HHHkF̄FF , GGGk =CCC−1
k H̄HHkB̄BBk,

EEEk =
1

2Nk

∑
m,n

ζ
(k)
mn∑

n ζ
(k)
mn

eee(k)
mn(eee(k)

mn)H (44)

∇F̄FF Îk =HHHH
k GGGkEEEk

[
III−GGGH

k HHHkF̄FF

K∑
j ̸=k

(
BBBjBBB

H
j

)]
. (45)

The inexact alternating minimization algorithm updates ΦΦΦ and
B̄BB =

[
BBBT

1 , ...,BBBT
K

]T
using gradient information. Given B̄BB, we

update ΦΦΦ by the following rule

ΦΦΦ:=ΦΦΦ+ρΦΦΦ

K∑
k=1

wk∇ΦΦΦÎk (46)

where ρΦΦΦ is the stepsize for ΦΦΦ. Then we fix ΦΦΦ and update B̄BB
according to the projected gradient method, i.e.,

B̄BB :=Proj
[
B̄BB+ρB̄BB

K∑
k=1

wk∇B̄BB Îk

]
(47)

where ∇B̄BB Îk =
[
(∇B̄BB1

Îk)T , ..., (∇B̄BBK
Îk)T

]T
, ρB̄BB is the stepsize

for B̄BB, and Proj[·] is defined as

Proj[XXX]=


XXX if ||XXX||2F ≤P

√
P

||XXX||F
XXX otherwise.

(48)

The details of our proposed hybrid precoding algorithm is
summarized in Algorithm 2.

Algorithm 2 Hybrid precoding algorithm

1. Given {S⋆
j }nRF

j=1 . Set initial Φ and B̄BB based on F̄FF
⋆

init.
2. repeat

• Compute ρΦΦΦ via backtracking line search [13].
• Update ΦΦΦ according to (46).
• Compute ρB̄BB via backtracking line search [13].
• Update B̄BB according to (47).
until a stopping criterion triggers.

3. Return F̄FF (ΦΦΦ) and {BBBk}K
k=1.

V. SIMULATION RESULTS

In this section, we provide numerical examples to evaluate
the performance of our proposed hybrid precoding algorithm.
We first consider a 2 × 64 × 2 point-to-point MIMO channel.
The number of physical propagation paths L is set as 12. The
input signal is drawn from QPSK modulation, and the signal-
to-noise ratio (SNR) is defined as SNR= P

σ2 , where σ2 is the
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Fig. 1: Average mutual information versus SNR for different methods in a 2 × 64 × 2
MIMO channel

noise power at the MS. Finally, the average mutual information
is plotted versus SNR over 500 channel realizations.

We set the optimal unconstrained precoding [7] as a bench-
mark, and then make comparison between our proposed hybrid
precoding with the SIC-based hybrid precoding proposed in
[2]. The results in Fig. 1 shows that our proposed hybrid
precoding algorithm has about 2.5dB performance gain over
the SIC-based hybrid precoding because 1) our proposed
algorithm is designed based on finite-alphabet inputs; 2) our
proposed algorithm utilizes the dynamic subarray while the
SIC-based precoding considers fixed subarray.

Then we consider a {2, 2, 2, 2} × 64 × 8 MIMO broadcast
channel. The number of physical propagation paths L is set
as 12, and the input signal is drawn from QPSK modulation.
Fig.2 depicts the comparison result with the fixed subarray
hybrid precoding, which utilize Algorithm 2 to solve problem
(20) with the following given {Sj}:

Sj =
{
(j − 1)q + 1, (j − 1)q + 2, ..., (j − 1)q + q

}
, ∀j

where q = nT
nRF

. The result in Fig. 2 shows that our proposed
(dynamic subarray) hybrid precoding has about 1.5dB perfor-
mance gain over the fixed subarray hybrid precoding in the
high SNR regime.

VI. CONCLUSION

This paper considers the hybrid precoding design for
mmWave MIMO broadcast channels with dynamic subarray
and finite-alphabet inputs. We first proposes a simple algorithm
to dynamically optimize the mapping strategy from RF chains
to transmit antennas such that the weighted sum of channel
gains is maximized. Then we design an inexact alternating
minimization based hybrid precoding algorithm to maximize
the weighted sum rate under finite-alphabet inputs. The good
performance of the proposed algorithm is demonstrated by
simulation results.
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