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Abstract—When data symbols modulate a signature waveform
to move across a channel in the presence of disturbance,
the adaptive real/complex signature that maximizes the signal-
to-interference-plus-noise ratio (SINR) at the output of the
maximum-SINR filter is the minimum-eigenvalue eigenvector of
the disturbance autocovariance matrix. In digital communication
systems the signature alphabet is finite and digital signature
optimization is NP-hard. In this paper, we propose a new adap-
tive binary signature assignment for CDMA systems based on
improved Fincke-Pohst (FP) algorithm that achieve the optimal
exhaustive search performance with low complexity. Then, we
extend and propose the optimal adaptive signature assignment
algorithm with quaternary signature sets. Simulation studies
included herein offer performance comparisons with known
adaptive signature designs and the theoretical upper bound of
the complex/real eigenvector maximizer.

Index Terms—code-division multiplexing, spread-spectrum
communications, signature sets, signal-to-interference-plus-noise
ratio (SINR).

I. INTRODUCTION

In recent years, there has been renewed interest in op-
timal signature sets for the growing number of code-
division multiplexing applications. In the theoretical context
of complex/real-valued signature sets, the early work of Welch
[1] on total-squared-correlation (TSC) bounds was followed up
by direct minimum-TSC design proposals [2]-[3] and iterative
distributed optimization algorithms [4]-[6]. Minimum-mean-
square-error (MMSE) minimization is used for the design of
signature sets for multiuser systems over multipath channels
in [7]. Recently, new bounds on the TSC of binary signature
sets were found [8] that led to minimum-TSC optimal binary
signature set designs for almost all signature lengths and set
sizes [8]-[10]. New bounds and optimal designs for minimum
TSC quaternary signature sets are derived in [12].

Instead of previous static binary/quaternary signature de-
sign, we consider the NP-hard problem of finding the adaptive
binary/quaternary signature in the code division multiplexing
system with interference and multipath fading channels, that
maximizes the SINR at the output of the maximum-SINR
filter. Direct binary quantization of the minimum-eigenvalue
eigenvector is proposed in [13]. The rank-2-optimal pro-
posal that constructs binary signature based on two smallest-
eigenvalue eigenvectors is described in [14]. The slowest
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descent method (SDM) based adaptive binary signature as-
signment is presented in [15].

In this paper, we propose a new adaptive binary signature
assignments based on improved Fincke-Pohst (FP) algorithm.
Instead of exhaustive searching, FP algorithm [16] enumerates
all vectors lie in a suitable ellipsoid, with complexity of
polynomial order in the searching dimension. FP algorithm
has been modified and first applied to communication prob-
lems of lattice code decoder in [17], then used for MIMO
and space-time codes decoder in [18], generally known as
sphere decoding algorithm. In this work, we improve and
apply FP algorithm in our adaptive finite-alphabet signature
design problem. In addition, we extend our proposed adaptive
binary signature assignment to adaptive quaternary signature
assignment. We prove that, in general, the adaptive quaternary
signature assignment with length L can be equivalent to an
adaptive binary signature assignment with length 2L.

II. SYSTEM MODEL

We consider a multiuser CDMA-type environment with
processing gain/signature length L, where K signals/users
transmit simultaneously in frequency and time. Each user
transmits over N resolvable multipath fading channels. As-
suming synchronization with the signal of user k, upon carrier
demodulation, chip matched-filtering and sampling at the chip
rate over a presumed multipath extended data bit period of
L+N − 1 chips, we obtain the received vector

r(m) =
√

Ek bk(m)Hksk+zk+ ik+n, m = 0, 1, . . . , (1)

where bk(m) ∈ {±1}, m = 0, 1, 2, . . . is the mth data bit; Ek

represents transmitted energy per bit period; sk is the signature
assigned to user k, for binary alphabet sk ∈ {±1}L and for
quaternary alphabet sk ∈ {±1,±j}L where j

△
=

√
−1.

Hk ∈ C(L+N−1)×L is the user k channel matrix of the form

Hk
△
=



hk,1 0 . . . 0
hk,2 hk,1 . . . 0

...
...

...
hk,N hk,N−1 0
0 hk,N hk,1

...
...

...
0 0 . . . hk,N


(2)

with entries hk,n, n = 1, . . . , N , complex Gaussian random
variables to model fading phenomena; zk ∈ CL+N−1 rep-
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resents comprehensively multiple-access-interference (MAI)
to user k by the other K − 1 users, i.e. zk

△
=∑K

i=1 i ̸=k

√
Ei bi(m)Hisi; ik ∈ CL+N−1 denotes multipath

induced inter-symbol-interference (ISI) to user k by its own
signal; and n is a zero-mean additive Gaussian noise vector
with autocorrelation matrix σ2IL+N−1.

Information bit detection of user k is achieved via linear
minimum-mean-square-error (MMSE) filtering (or, equiva-
lently, max-SINR filtering) as follows

b̂k = sgn
(
Re
{
wH

MMSE,kr
})

(3)

where wMMSE,k = cR−1Hksk ∈ CL+N−1, R
△
= E{r rH},

c > 0, {·}H is the Hermitian operator, Re{·} denotes the
real part of a complex number, and E{·} represents statistical
expectation. The output SINR of the filter wMMSE,k is given
by

SINRMMSE,k(sk) =

E

{∣∣∣wH
MMSE,k

(√
EkbkHksk

)∣∣∣2}
E

{∣∣∣wH
MMSE,k (zk + ik + n)

∣∣∣2}
= Eks

H
k HH

k R̃−1
k Hksk (4)

where R̃k
△
= E

{
(zk + ik + n) (zk + ik + n)

H
}

is the au-
tocorrelation matrix of combined channel disturbance. For
mathematical convenience we disregard the ISI component in
R̃k and approximate R̃k by Rk

△
= E

{
(zk + n) (zk + n)

H
}

.
For notational simplicity we define the L× L matrix

Qk
△
= HH

k R−1
k Hk. (5)

Then, the output SINR in (4) can be rewritten as

SINRMMSE,k(sk) = Eks
H
k Qksk. (6)

Our objective is to find the signature sk that optimizes (maxi-
mizes) SINRMMSE,k of (6), in binary alphabet sk ∈ {±1}L
and quaternary alphabet sk ∈ {±1,±j}L respectively.

For the case of binary alphabet sk ∈ {±1}L, let QkR

denote the real part of the complex matrix Qk, i.e. QkR
△
=

Re{Qk}. The binary signature sk ∈ {±1}L that maximizes
SINRMMSE,k of (6) is equivalent to

s
(b)
k,opt = arg max

sk∈{±1}L
sTkQksk

= arg max
sk∈{±1}L

sTkQkRsk. (7)

The superscript (b) indicates that s(b)k,opt is binary; {·}T is the
transpose operator.

The quaternary signature sk ∈ {±1,±j}L that maximizes
SINRMMSE,k of (6) is given by

s
(q)
k,opt = arg max

sk∈{±1,±j}L
sHk Qksk, (8)

the superscript (q) indicates that s(q)k,opt is quaternary.

III. OPTIMAL BINARY SIGNATURE ASSIGNMENT

Regarding the binary optimization in (7), we first do the
follow transformation

s
(b)
k,opt = arg max

s∈{±1}L
sTQkRs

= arg min
s∈{±1}L

sT (αI−QkR) s, (9)

where α is a parameter greater than the maximum eigenvalue
of the matrix QkR and let

W
△
= αI−QkR. (10)

By definition, matrix W is Hermitian positive definite.
The Cholesky’s factorization of matrix W yields W =

BTB, where B is an upper triangular matrix. Then equation
(9) will lead to

s
(b)
k,opt = arg min

s∈{±1}L
sTWs

= arg min
s∈{±1}L

||B s||2F , (11)

where || · ||F denotes the Frobenius norm.
The original Finche-Pohst (FP) algorithm [16] searches

through the discrete points s in the L-dimensional Euclidean
space which make the corresponding vectors z

△
= Bs inside

a sphere of given radius
√
C centered at the origin point,

i.e. ||Bs||2F = ||z||2F ≤ C. This guarantees that only the
points that make the corresponding vectors z within the square
distance C from the origin point are considered in the metric
minimization.

Compared with the original FP algorithm in [16], we
have two main modifications: (i) The original FP algorithm
are searching for integer points, i.e. s ∈ ZL, while our
searching alphabet is antipodal binary, i.e. s ∈ {±1}L. Hence,
the bounds to calculate each entry are modified, or further
tightened to make the algorithm work faster; (ii) According to
the binary signature vector obtained by applying the direct sign
operator [13] on the real maximum-eigenvalue eigenvector of
QkR, denoted as “Quantized Binary” or s(b)quant, we can have
a very proper square distance setting as

C = s
(b)
quant

T
W s

(b)
quant, (12)

such that the searching sphere radius is big enough to have
at least one signature point fall inside, while in the meantime
small enough to have only a few signature points within.

Let bij , i = 1, 2, · · · , L, j = 1, 2, · · · , L denote the entries
of the upper triangular matrix B; let si, i = 1, 2, · · · , L denote
the entries of searching signature s. According to (11), the
signature points that make the corresponding vectors z = Bs
inside the given radius

√
C can be expressed as
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sTWs = ||B s||2F =

L∑
i=1

biisi +

L∑
j=i+1

bijsj

2

=
L∑

i=1

gii

si +
L∑

j=i+1

gijsj

2

=

L∑
i=k

gii

si +

L∑
j=i+1

gijsj

2

+

k−1∑
i=1

gii

si +

L∑
j=i+1

gijsj

2

≤ C (13)

where gii = b2ii and gij = bij/bii for i = 1, 2, · · · , L, j = i+
1, · · · , L. Obviously the second term of (13) is non-negative,
hence, to satisfy (13), it is equivalent to consider for every
k = L,L− 1, · · · , 1,

L∑
i=k

gii

si +
L∑

j=i+1

gijsj

2

≤ C. (14)

Then, we can start work backwards to find the bounds for
signature entries sL, sL−1, · · · , s1 one by one.

To evaluate the element sk of the signature vector s,
referring to (14) we will have

L∑
i=k

gii

si +

L∑
j=i+1

gijsj

2

≤ C, (15)

that leads to⌈
−

√
1

gkk

(
C −

∑L
i=k+1 gii

(
si +

∑L
j=i+1 gijsj

)2)
−
∑L

j=k+1 gkjsj

⌉

≤ sk ≤

⌊ √
1

gkk

(
C −

∑L
i=k+1 gii

(
si +

∑L
j=i+1 gijsj

)2)
−
∑L

j=k+1 gkjsj

⌋
.(16)

If we denote

∆k =

L∑
j=k+1

gkjsj , (17)

Ck = C −
L∑

i=k+1

gii

si +

L∑
j=i+1

gijsj

2

= Ck+1 − gk+1,k+1 (∆k+1 + sk+1)
2
, (18)

and take consideration of sk ∈ {±1}, the bounds for sk can
be expressed as

LBk ≤ sk ≤ UBk, (19)

where

UBk = min

(⌊ √
Ck

gkk
−∆k

⌋
, 1

)
,

LBk = max

(⌈
−

√
Ck

gkk
−∆k

⌉
,−1

)
. (20)

Note that for given radius
√
C and the matrix W, the

bounds for sk only depends on the previous evaluated
sk+1, sk+2, · · · , sL.

The entries sL, sL−1, · · · , s1 are chosen as follows: for a
chosen sL, we can choose a candidate for sL−1 satisfying its
bounds requirements as in (19) for k = L− 1. If a candidate
for sL−1 does not exist, we go back to choose other sL. Then
search for sL−1 that meets the bounds requirement for this
new sL. We follow the same procedure to choose sL−2, and
so on. When a set of sL, sL−1, · · · , s1 is chosen, one signature
candidate vector s = [s1, s2, · · · , sL]T is obtained. We record
all the candidate signature vectors such that the entries satisfy
their bounds requirements, and choose the one that gives the
smallest sTWs metric.

Note that this searching procedure will return all candidates
that satisfy sTWs ≤ C and gives the one with minimum
value. There is at least one candidate vector s(b)quant satisfying
all the bounds requirements, since that is how we set C in
(12). On the other hand, the optimal exhaustive binary search
result s(b)exhaustive will also fall inside the search bounds, since

s
(b)
exhaustive

T
Ws

(b)
exhaustive ≤ s

(b)
quant

T
W s

(b)
quant = C. (21)

Hence, we are guaranteed to find the optimal exhaustive binary
search result by the proposed improved FP algorithm.

Algorithm 1 FP Based Binary Signature Design Algorithm

For the binary signature optimization of s
(b)
k,opt =

argmaxs∈{±1}L sTQkRs:
Step 1: Let qk,1 be the real maximum-eigenvalue eigenvector
of QkR with eigenvalue λk,1. Apply the direct sign operator
on qk,1 and obtain s

(b)
quant = sgn(qk,1). Then construct matrix

W as
W

△
= αI−QkR,

where α is a parameter set greater than the maximum eigen-
value of the matrix QkR, i.e. α > λk,1. Set the square distance

as C = s
(b)
quant

T
Ws

(b)
quant.

Step 2: Operate Cholesky’s factorization of matrix W yields
W = BTB, where B is an upper triangular matrix. Let bij ,
i = 1, 2, · · · , L, j = 1, 2, · · · , L denote the entries of matrix
B. Construct a new upper triangular matrix G where gii = b2ii,
gij = bij/bii, for i = 1, 2, · · · , L, j = i+ 1, · · · , L.
Step 3: Search the candidate vector s with entries s1, · · · , sL
according to the following procedure.
Input: Matrix W, Matrix G and the radius

√
C obtained by

Step 1 and Step 2.
Output: The vector smin ∈ {±1}L satisfies sTWs ≤ C and
gives the minimum sTWs metric.
(i) Start from ∆L = 0, CL = C, metric = C, smin =

s
(b)
quant and k = L.

(ii) Set the upper bound UBk and the lower bound LBk as
follows

UBk = min

(⌊ √
Ck

gkk
−∆k

⌋
, 1

)
,

LBk = max

(⌈
−

√
Ck

gkk
−∆k

⌉
,−1

)
,
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and sk = LBk − 1.
(iii) Set sk = sk + 1. If sk = 0, set sk = 1. For sk ≤ UBk,

go to (v); else go to (iv).
(iv) If k = L, terminate and output smin; else set k = k + 1

and go to (iii).
(v) For k = 1, go to (vi); else set k = k − 1, and

∆k =
L∑

j=k+1

gkjsj , Ck = Ck+1 − gk+1,k+1 (∆k+1 + sk+1)
2

then go to (ii).
(vi) We get a candidate vector s that satisfies all the bounds

requirements. If sTWs ≤ metric, then update smin = s
and metric = sTWs. Go to (iii).

Step 4: Once we get the optimal smin from Step 3 that returns
the minimum sTWs metric, the optimal adaptive binary
signature that maximizes the SINR at the output of MMSE
filter is s

(b)
k,opt = smin. Note that the solution obtained through

this algorithm is guaranteed to be optimal, which means the
same as exhaustive searching.

IV. OPTIMAL QUATERNARY SIGNATURE
ASSIGNMENT

For the quaternary signature optimization of (8), a heuristic
approach will be direct quantization signature vector obtained
by applying the sign operator on real part and imaginary
part of the complex maximum-eigenvalue eigenvector of Qk.
However, this is a suboptimal approach and the performance
is inferior as shown in simulation section.

For a quaternary signature s ∈ {±1,±j}L, a transform is
made as

s =
1

2
(1− j)c, (22)

such that c ∈ {−1− j,−1+ j, 1− j, 1+ j}L. Note that if the
real part and imaginary part of vector c are denoted as cR =
Re{c} and cI = Im{c}, the transform will lead to cR ∈
{±1}L and cI ∈ {±1}L, two binary antipodal sequences.

By definition, Qk in (8) is Hermitian positive definite. So
we can operate on the matrix of Qk Cholesky decomposition

Qk = UHU, (23)

where U is an upper triangular matrix. Then

sHQks =

(
1

2
(1− j)c

)H

Qk

(
1

2
(1− j)c

)
=

1

2
||Uc||2F .

(24)
Define y

△
= Uc and let yR = Re{y} and yI = Im{y},

UR = Re{U} and UI = Im{U}. Then, it is easy to obtain
the following equation[

yR

yI

]
=

[
UR −UI

UI UR

] [
cR
cI

]
. (25)

Hence, combining equations (24) and (25) will lead to

sHQks =
1

2

∣∣∣∣∣∣∣∣[ UR −UI

UI UR

] [
cR
cI

]∣∣∣∣∣∣∣∣2
F

=

[
cR
cI

]T
︸ ︷︷ ︸

c̄T

1

2

[
UR −UI

UI UR

]T [
UR −UI

UI UR

]
︸ ︷︷ ︸

Q̄kR

[
cR
cI

]
︸ ︷︷ ︸

c̄

, (26)

where c̄
△
=

[
cR
cI

]
∈ {±1}2L is a binary signature with length

2L. Note that c = cR + jcI is complex signature with length
L.

Now, as shown in (26), the quaternary signature optimiza-
tion with length L in (8) is transformed into the following
binary signature optimization problem with length 2L

c̄
(b)
opt = arg max

c̄∈{±1}2L
c̄T Q̄kRc̄. (27)

After we get the optimal binary sequence c̄
(b)
opt of length 2L,

split c̄
(b)
opt into c̄

(b)
opt =

[
c
(b)
R,opt

c
(b)
I,opt

]
, where c

(b)
R,opt and c

(b)
I,opt

are binary sequences in length L, i.e. c
(b)
R,opt ∈ {±1}L and

c
(b)
I,opt ∈ {±1}L. Then, the optimal quaternary signature can

be constructed as

s
(q)
opt =

1

2
(1− j)

(
c
(b)
R,opt + jc

(b)
I,opt

)
. (28)

We summarize the quaternary optimization problem of (8)
and propose the following algorithm.

Algorithm 2
FP Based Quaternary Signature Design Algorithm

For the quaternary signature optimization of s
(q)
k,opt =

argmaxs∈{±1,±j}L sHQks:
Step 1: We operate on the complex matrix of Qk Cholesky
decomposition

Qk = UHU.

Let UR = Re{U} and UI = Im{U}. Construct real matrix
Q̄kR as follows

Q̄kR =
1

2

[
UR −UI

UI UR

]T [
UR −UI

UI UR

]
.

Step 2: Solve the following binary signature optimization
problem with signature length 2L based on FP Based Binary
Signature Design Algorithm

c̄
(b)
opt = arg max

c̄∈{±1}2L
c̄T Q̄kRc̄.

Step 3: Split c̄(b)opt =

[
c
(b)
R,opt

c
(b)
I,opt

]
, where c

(b)
R,opt and c

(b)
I,opt are

binary sequences in length L. Then, the optimal quaternary
signature can be constructed as

s
(q)
opt =

1

2
(1− j)

(
c
(b)
R,opt + jc

(b)
I,opt

)
.

According to the same analysis as in the previous section,
FP Based Quaternary Signature Design Algorithm is also
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guaranteed to find the optimal exhaustive searching result with
complexity order of polynomial in the signature length L.

We note that by using the same quaternary binary equiv-
alence procedure, we can also extend our previous proposed
SDM Based Binary Signature Design Algorithm in [15] to
solve the quaternary signature optimization of (8). We denote it
as SDM Based Quaternary Signature Design Algorithm which
performance comparisons will follow in the simulation studies
section.

V. SIMULATION STUDIES

We first compare performance of adaptive binary signature
assignment of the following benchmarks: (i) ”Real max-
EV”: The real maximum-eigenvalue eigenvector of QkR =
Re{Qk}; (ii) “Exhaustive Binary”: The binary signature as-
signed by exhaustive search; (iii) “Quantized Binary”: The
binary signature obtained by applying the sign operator on
the real maximum-eigenvalue eigenvector of QkR [13]; (iv)
“Rank2 Binary”: The adaptive rank-2 binary signature design
[14]; (v) “SDM Based Binary Algorithm”: The adaptive binary
signature assignment in [15] based on the top P ≥ 2 real
maximum-eigenvalue eigenvectors; (v) “FP Based Binary Al-
gorithm”: The optimal binary signature assignment proposed
in this paper.

We consider a code-division multiplexing multipath fad-
ing system model with L = 16 and N = 3. The sig-
nal power of the user of interest is set to E1 = 10dB,
while E2, E3, · · · , EK are uniformly spaced between 8dB
and 11dB. The interfering spreading signatures are randomly
generated. For comparison purposes, we evaluate the SINR
loss, the difference between SINR of the optimal real signature
(Real max-EV) and other adaptive binary signature assignment
algorithms. The results that we present are averages over 1000
randomly generated interferences and channel realizations.

In Fig. 1, we plot the SINR loss as a function of the number
of interferences. We observe that SDM based binary algorithm
and FP based binary algorithm offer superior performance than
direct quantized binary and rank 2 assignments. Furthermore,
FP based binary algorithm actually achieves exactly the opti-
mal exhaustive binary search assignment as we expected.

Then we investigate the multiuser binary signature as-
signment in a sequential user-after-user manner based on
various adaptive binary signature assignments. In such an
approach, each user’s spreading signature is updated one after
the other. Several multiuser adaptation cycles are carried out
until numerical convergence is observed. In Fig. 2, for a
total of K = 8 users, we plot the SINR loss of one user
of interest as a function of multiuser adaptation cycle. Still,
SDM based binary algorithm and FP based binary algorithm
offer superior performance than the direct quantized binary
and rank2 assignments. FP based binary algorithm achieves
exactly the optimal exhaustive binary search assignment.

We repeat our studies for adaptive quaternary signature
assignment algorithms: (i) ”Complex max-EV”: The com-
plex maximum-eigenvalue eigenvector of Qk; (ii) “Exhaustive
Quaternary”: The quaternary signature assigned by exhaustive
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Fig. 1. SINR Loss of various adaptive binary signature assignments versus
number of interferences (L=16).
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Fig. 2. SINR Loss of various adaptive binary signature assignments versus
multiuser adaptation cycle (L=16, K=8).

search; (iii) “Quantized Quaternary”: The quaternary signature
obtained by applying sign operator on real part and imaginary
part of the complex maximum-eigenvalue eigenvector of Qk,
mentioned in the beginning of section IV; (iv) “SDM Based
Quaternary Algorithm”: The SDM based quaternary signature
design based on the quaternary-binary equivalence procedure
and the application of SDM based binary signature assignment
in [15]; (v) “FP Based Quaternary Algorithm”: The quaternary
signature design algorithm proposed in this paper as FP Based
Quaternary Signature Design Algorithm. The SINR loss for
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Fig. 3. SINR Loss of various adaptive quaternary signature assignments
versus number of interferences (L=8).
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Fig. 4. SINR Loss of various adaptive quaternary signature assignments
versus multiuser adaptation cycle (L=8, K=4).

quaternary assignments are the difference between SINR of
the optimal complex signature (Complex max-EV) and other
adaptive quaternary assignment algorithms.

We plot the SINR loss as a function of the number of inter-
ferences in Fig. 3, and as a function of multiuser adaptation
cycle in Fig. 4. We obtain the same results as previous adaptive
binary simulations.

VI. CONCLUSIONS

We propose a new adaptive binary signature assignments
based on improved FP algorithm, that returns the optimal ex-

haustive searching result with low complexity. In addition, we
extend to adaptive quaternary signature assignments and prove
that, the adaptive quaternary signature assignment with length
L can be equivalent to an adaptive binary signature assignment
with length 2L. Simulation studies show the comparisons with
the optimal FP based binary/quaternary signature assignment
and previous existing signature assignments.
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