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Abstract—In this paper, we address the robust source and relay
matrices design for the multiple-input multiple-output (MIMO)
relaying broadcast channels (BC) with imperfect channel state
information at the transmitter (CSIT). Our objective is to
maximize the minimum achievable rate among all users, which
dominates the quality of service (QoS) performance of the system.
In the proposed scheme, we first set up an equivalent problem,
and then relax the constraints of the new problem to decouple it
into three tractable subproblems. Finally, an iterative algorithm
is proposed to jointly optimize the source and relay matrices. The
advantage of the proposed scheme is demonstrated by numerical
experiments.

Index Terms—Source and relay matrices design; MIMO;
relaying broadcast channels; QoS; imperfect CSIT.

I. INTRODUCTION

Recently, MIMO relaying broadcast channel (BC) has at-
tracted much research interest. For a MIMO relaying BC,
there are two independent channel links between source
and receivers; i.e., source-relay-receivers links, and source-
receivers direct links (DLs). Many works have investigated
the linear strategy for MIMO relaying BC with perfect CSIT.
In [1], an strategy with a Tomlinson-Harashima precoder at
source and a linear beamformer at relay is presented. In [2], a
joint source and relay design to minimize the weighted sum-
power consumption under the QoS-constraints is presented.
In [3], a singular value decomposition (SVD) combining zero
forcing (ZF) scheme is presented. In [4], the authors propose
to use the quadratic programming to joint source and relay
precoding design to maximize the system capacity. In [5], the
authors propose a scheme based on duality of MIMO MAC
and BC to maximize the system capacity. All these works
are assumed that the source have perfect CSIT and did not
consider the DLs.

Recently, Phuyal et al. in [6] has considered a ZF scheme
with DLs contribution to deal with the power control problem
under the perfect CSIT assumption. In our previous works [7]
[8], we also consider the DLs in design but only consider
the scenario with perfect CSIT to maximize the sum-rate. In
practical scenarios, the DLs’ contribution in spatial diversity to
MIMO relaying BC should not be ignored, and, furthermore,
perfect CSIT may not be available at source due to many
practical factors such as quantization error, limited feedback
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Fig. 1. The MIMO relaying broadcast channel with one base station (source),
one fixed relay station, and K mobile users.

and so on. In [9] [10], the authors have considered the
beamforming design with imperfect CSIT to minimize the sum
MSE (or maximize the sum rate) of the system, but, both
works ignored the DLs contribution. In practical systems, the
minimum of the achievable rate (or maximum of the MSE)
among all users is a key factor for determining QoS of the
system.

In this paper, we study the robust linear source precoding
matrix (PM) and relay beamforming matrix (BM) design to
maximize the minimum of the achievable rate among all
users with imperfect CSIT. Based on alternating optimization
method, a robust joint source and relay linear precoding
scheme is proposed.

Notations: E(·), Tr(·), (·)−1, (·)T , (·)∗, (·)†, and det(·)
denote expectation, trace, inverse, transpose, conjugate, con-
jugate transpose, and determinant, respectively. i.i.d. stands for
independent and identically distributed. I is the identity matrix
with appropriate dimensions. diag() is a diagonal matrix. log
is of base 2. CM×N represents the set of M×N matrices over
complex field, and ∼ CN (x, y) means satisfying a circularly
symmetric complex Gaussian distribution with mean x and
covariance y.

II. SYSTEM MODEL

We consider a MIMO relaying broadcast channel with a
base station (BS), a fixed relay station (RS) and K single-
antenna mobile users as Fig. 1. It is assumed that both BS
and RS are equipped with M (K ≤ M) antennas to serve K
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single-antenna users simultaneously. We consider a two-phase
scheme with a non-regenerative and half-duplex RS.

Let P , [p1, · · · ,pK ] denote the source PM where
pk ∈ CM×1 is a precoding vector acting on the transforming
symbol sk ∼ CN (0, 1) for user k, and the symbols for
different users be independent from each other. During the
first phase, BS broadcasts the precoded data streams to RS and
users by applying a linear PM P. During the second phase, RS
forwards the received signal vector to users after a linear BM
F. Then, the received signal vector at user k can be expressed
in matrix-form as[

y1k
y2k

]
︸ ︷︷ ︸

y[k]

=

[
hkb

hkrFHrb

]
︸ ︷︷ ︸

Hk

pksk +

[
n1k

hkrFnr + n2k

]
︸ ︷︷ ︸

Gk

+

K∑
i=1,i̸=k

[
hkb

hkrFHrb

]
pisi, (1)

where yik is the received signal during the ith phase at user k,
vector hij (or matrix Hij) represents the channel coefficient
from the transmitter j to receiver i, and ni ∼ CN (0, 1) (i =
1k, 2k and r) are the Gaussian noise signals at user k during
the first and second phase, and at relay, respectively. The power
constraints at BS and RS can be expressed, respectively, as

K∑
k=1

Tr(pkp
†
k) = Tr(PP†) ≤ Pb ( BS ), (2a)

Tr(FHrbPP†H†
rbF

† + FF†) ≤ Pr ( RS ). (2b)

For the CSIT, each user is assumed to has perfect CSI, but,
the BS has only imperfect CSI due to limited feedback from
users. We consider [11]

hkb = ĥkb + σe,kbh̃kb, (3a)

hkr = ĥkr + σe,krh̃kr, (3b)

Hrb = Ĥrb + σe,rbH̃rb, (3c)

where Xx, X̂x, and X̃x represent the true channel vector,
the estimated channel vector and the estimation error vector,
respectively. Moreover, both Xx and X̃x are assumed to
have i.i.d. complex Gaussian elements and each element ∼
CN (0, σ2

x). σe,x denotes the CSI error factor which is known
to the BS. Then, the BS PM and RS BM need to be designed
based on the imperfect CSI knowledge. Hence, assuming
Gaussian signaling for source, the achievable rate for the kth
user during two phases is given as

Rk = log det
(
I+Hkpkp

†
kH

†
kR

−1
k̄

)
, (4)

where Rk̄ =
∑K

i=1,i̸=k Hkpip
†
iH

†
k +GkG

†
k.

The main objective of this paper is to design the PM P
and and BM F to maximize the minimum of the achievable
rate based on the imperfect CSIT. Therefore, the optimization
problem can be formulated as

[P,F] = argmax
P,F

min
k∈{1,··· ,K}

R̂k = E
[
Rk

∣∣∣X̂x, σ
2
e,x

]
,(5a)

s.t. : (2a) and (2b). (5b)

Let

Πk , pkp
†
k,

ĤT
k ,

[
ĥT
kb

(
ĥkrFĤrb

)T]
,

Dk , diag
(
σ2
e,kbσ

2
kbTr(Πk),

σ2
e,krσ

2
krTr

(
F
(
HrbΠkH

†
rb + σ2

e,rbσ
2
rbTr(Πk)I

)
F†
))

,

R̂k̄ ,
∑
i̸=k

(
ĤkΠiĤ

†
k +Di

)
+

diag
(
1, 1 + ĥkrFF

†ĥ†
kr + σ2

e,krσ
2
krTr

(
FF†)) .

Then, we have

R̂k = log det
(
I+

(
ĤkΠkĤ

†
k +Dk

)
R̂−1

k̄

)
,

Note that, we have here used the following property:

E
[
h̃xAA†h̃†

x

]
= σ2

xTr(AA†) I,
(
h̃x = h̃kb, h̃kr

)
. (6)

Obviously, the optimization problem in (5) is a non-linear and
non-convex problem, and it is difficult to directly obtain the
optimum closed-form solution. Therefore, we first find a tight
lower bound of the R̂k, and then set up another optimization
problem based on the tight lower bound of the R̂k to move
forward. To find a tight lower bound of the R̂k, we have the
following inequalities

R̂k ≥ log det
(
I+ ĤkΠkĤ

†
kR̂

−1
k̄

)
a
= log

(
1 + p†

kĤ
†
kR̂

−1
k̄

Ĥkpk

)
b
= − log

(
1− p†

kĤ
†
k

(
R̂k̄ + ĤkΠkĤ

†
k

)−1

Ĥkpk

)
c
≥ − log

(
1− p†

kĤ
†
kR̂

−1
Σ Ĥkpk

)
, − log êk, (7)

where R̂Σ = R̂k̄ + ĤkΠkĤ
†
k + Dk. (a) comes from

the fact that det(I + AB) = det(I + BA), (b) follows
from the Woodbury identity (A+UBV)

−1
= A−1 −

A−1U
(
B−1 +VA−1U

)−1
VA−1, and (c) is due to Dk ≥ 0.

Since the differences generated in the first inequality and (c)
depends on Dk, which will be small when σ2

e,x ≪ 1, the
lower bound is tight. Specifically, R̂k = − log êk, if σ2

e,x = 0,
(x = kb, kr and rb). Therefore, based on (7), the optimization
problem based on lower bound can be expressed as following

min
P,F

max
k∈{1,2,··· ,K}

{ log êk } , (8a)

s.t. : (2a) and (2b). (8b)

To solve this min-max optimization problem, we need the
following theorem.
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Theorem 1: The optimal solution for the following problem
is also the solution for the min-max problem formulated in (8):

min
P,F

K∑
k=1

êk, (9a)

s.t. : ê1 = · · · = êK , (9b)
(2a) and (2b). (9c)

Proof: If the Popt and Fopt are the optimal matrices for
problem in (8), they must make sue that ê1 = · · · = êK is the
smallest achievable value. Therefore, they are also the optimal
matrices for the problem in (9), and vice versa.

III. SOURCE AND RELAY MATRICES DESIGN

To find the optimal source and relay matrices for the
aforementioned problem, we first relax the constraints of the
new optimization problem, and then decouple it into three
tractable optimization sub-problem. Finally, we summarize a
general iterative algorithm for source PM and relay BM. We
first relax the constraints of the problem formulated in (9) as
following

min
P,F

K∑
k=1

êk, (10a)

s.t. : Tr(pkp
†
k) = ck, k ∈ {1, 2, · · · ,K} (10b)

(2b), (10c)

where c , {ck}Kk=1 is a predetermined constant vector which
should be chosen to satisfy the power budget constraint.

Remark 1: Due to the fact that êk(c
′
k) < êk(ck) for all

c′k > ck with the optimal beamforming struct of the problem
in (10), we can adjust the predetermined constant vector c to
meet the equivalent condition in (9b) by an iterative method.
To solve the relaxed optimization problem in (10), we need
the following theorem.

Theorem 2: Let ξk , 1− akĤkpk − p†
kĤ

†
ka

†
k + akR̂Σa

†
k,

where ak is a row vector variable. Then, the optimal solution
for the following problem is also the solution for the relaxed
problem formulated in (10):

min
{P,F,A,{ak}K

k=1}

K∑
k=1

ξk, (11a)

s.t. : (10b) and (2b). (11b)

Proof: For any P and F, it can readily find the op-
timal ak which is equal to p†

kĤ
†
kR̂

−1
Σ . Then, substituting

ak = p†
kĤ

†
kR̂

−1
Σ into ξk, we can obtain the êk = ξk.

The problem formulated in (11) is also a non-linear prob-
lem, and its closed-form solution is still intractable. However,
for fixed two of the three matrices (i.e., P,F and A), the rest
one can be optimized [8]. In fact, in the proof of Theorem 2,
given the P and F, the optimal ak is

ak = p†
kĤ

†
kR̂

−1
Σ . (12)

Secondly, for fixed A and F, the optimization problem
in (11) with respect to (w.r.t.) P can be adjusted as following

min
P

K∑
k=1

(
1− akĤkpk − p†

kĤ
†
ka

†
k + akR̂Σa

†
k

)
, (13a)

s.t. : (10b) and (2b). (13b)

This optimization problem can be transformed into a convex
quadratically constrained quadratic program (QCQP) problem
which can be efficiently solved by using the available software
package [12] [13]. However, if we fix F and ignore the power
change at relay due to the change of the source precoder,
we can obtain a serial independent optimization subproblems,
and each of the subproblems is only w.r.t. one column vector
of the P, i.e., pk, which can be solved by KKT conditions
method. Note that this method is simpler than solving the
QCQP problem with software package. Hence, we set up
the following optimization subproblems w.r.t. each column
vector of P from (13) by eliminating the power constraint
at relay for a fixed F. The optimization subproblem for the
pk (k = 1, 2, · · · ,K) can be written as

min
pk

1− akĤkpk − p†
kĤ

†
ka

†
k +

K∑
i=1

aiR̂Σa
†
i , (14a)

s.t. : Tr(pkp
†
k) = ck. (14b)

It is very easy to verify that the optimization problem in (14)
is a convex problem which can be solved by KKT conditions
method. Thus, we can readily obtain the Lagrangian function
of (14) as

L(pk) = −akĤkpk − p†
kĤ

†
ka

†
k +

K∑
i=1

aiĤipkp
†
kĤ

†
ia

†
i+

λ
(
Tr
(
pkp

†
k

)
− ck

)
.

Then, the first-order necessary condition of L w.r.t. p∗
k yields

pk(λ) =

(
K∑
i=1

Ĥ†
ia

†
iaiĤi + λI

)−1

Ĥ†
ka

†
k, (15)

where λ ≥ 0 is the Lagrangian multiplier which should
satisfy the KKT complementarity conditions for power budget
constraint, i.e., Tr

(
pk(λ)p

†
k(λ)

)
= ck, k = 1, 2, · · · ,K.

Thirdly, for fixed A and P, the optimization problem in (11)
w.r.t. F can be adjusted as following

min
F

K∑
k=1

(
−akĤkpk − p†

kĤ
†
ka

†
k + akR̂Σa

†
k

)
, (16a)

s.t. : (2b). (16b)

This optimization problem is easy to be verified to be a convex
problem. Thus, the Lagrangian function for F is given as

L(F) =
K∑

k=1

(
1− akĤkpk − p†

kĤ
†
ka

†
k + akR̂Σa

†
k

)
+µ
(
Tr(FĤrbPP†Ĥ†

rbF
† + FF†)− Pr

)
. (17)
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Before dealing with the KKT conditions, we first substitute

ak , [a1k a2k] and Ĥk ,
[

ĥkb

ĥkrFĤrb

]
into (17) to get a

function w.r.t. F. Then, the first-order necessary condition of
L w.r.t. F∗ yields

F =

(
K∑

k=1

Θk + µI

)−1( K∑
k=1

−∆k

)
(Ω+ I)−1, (18)

where

Ω , ĤrbPP†Ĥ†
rb,

Θk , ĥ†
kra

∗
2ka2kĥkr,

∆k , ĥ†
kra

∗
2ka1kĥkbPP†Ĥ†

rb − ĥ†
kra

∗
2kp

†
kĤ

†
rb.

µ is the Lagrangian multiplier which can also be solved
by a 1-D search method since Tr(F(µ)(Ω + I)F(µ)†) is
monotonically decreasing function of µ.

A. An Iterative Design Algorithm

In summary, an iterative design algorithm for PM P and
BM F can be summarized as following algorithm diagram.

Algorithm 1 : A General Iterative Design Algorithm
1: Initialize: ck = Pb/K,P =

√
ckI, F = ρI, ak uses (12)

with P =
√
ckI and F = ρI, where ρ satisfies the power

constraint, k = 1, 2, · · · ,K.
2: Repeat:
3: Update pk using (15) for fixed A and F,
4: Update the c by using the following steps: ci = ci− △,

and cj = cj+ △, where i = argmin{i=1,...,K} êi, j =

argmax{j=1,...,K} êj , and △= (1− Kêi∑K
k=1 êk

)ci.
5: Update all ak using (12) for fixed P and F;
6: Update F using (18) for fixed A and P;
7: Until: The termination criterion is satisfied.

Based on the steps (3)-(6), the largest êk is decreased in
each iteration, while, there is a lower bounded for êk (k =
1, · · · ,K) under the power constraints (2a) and (2b). Hence,
the proposed algorithm is convergent. Fig. 2 shows the conver-
gence in simulation. One can also refer to the block coordinate
descent algorithm in [14] for the convergence analysis. In
addition, the computational complexity of this algorithm is
O(M3), where M is the number of antenna at BS.

IV. NUMERICAL RESULTS

This section presents numerical results to evaluate the
proposed scheme. For fair comparison, the other schemes for
comparison are also considering the DLs contributions, which
are:

1) SVD-RZF in [10],
2) RZF-ZF&RZF in [7],
3) ZF-ZF&ZF in [6].
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Fig. 2. Convergence property for 1 (randomly selected) channel realization
with Pb = Pr(SNR = 28dB), where M = 4,K = 4, BS is at 0 point,
relay is at 0.5 point, all users are at 1.0 point. σe,kb = σe,kr = σe,rb = σe.

All these schemes are adjusted to suitable for max-min achiev-
able rate among all users case for fair comparison. The channel
gains are set to be the combination of large scale fading
and small scale fading, i.e., all channel vectors (or matrix)
have i.i.d. CN (0, 1

ℓτ ) entries, where ℓ is the distance between
two nodes, and τ = 3 is the path loss exponent. In these
simulations, we consider that BS and relay are deployed in a
line with users, where all the users are deployed at the same
point.

Fig. 3 shows the achievable sum-rates and the achievable
minimum rate among all users of the difference schemes.
Fig. 4 shows the average sum-rate and the average minimum
rate over 2000 random channel realizations versus the RS’s
position. From Fig. 3 and Fig. 4, we can see that the sum-rate
and the minimum-rate of the proposed scheme is higher than
those of the other linear schemes at all error factor regime and
all RS’s position. This is because that the DLs contributions
of SVD-RZF scheme are approximately equal to zero, and
the ZF-ZF&ZF and RZF-ZF&RZF schemes will amplify noise
signal, especially at the case that the DLs gains are close to
zero. However, the proposed scheme can better deal with the
multi-user interferences and noise, and the relation between
DLs gains and source-relay-users channel gains. It can be
observed that the proposed scheme has better robustness.

V. CONCLUSION

In this paper, we propose a robust matrices design scheme
for the MIMO relaying BC with DLs based on imperfect CSIT
to maximize the minimum achievable rate among all users.
The proposed scheme is robust to the imperfect CSIT and takes
into account the effects of the DLs, relay links, interferences
and noise. Numerical results show that the proposed robust
scheme outperforms other linear schemes with or without
considering DLs in design.
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