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Abstract—In this paper, we consider the problem of polar
coding for block fading channels without any instantaneous
channel state information (CSI). We first decompose a block
fading channel of Tc symbols per coherent interval into Tc

binary-input sub-channels in a mutual-information-preserving
way, and then design a multilevel (MLC) polar coding scheme
for them. The proposed scheme achieves the ergodic mutual
information of binary-input block fading channels with only
channel distribution information (CDI). Simulations results are
presented to compare the performance of the proposed MLC
scheme and polar codes designed for i.i.d. fading channels with
interleaving, which can provide some guidance for practical
designs.

I. INTRODUCTION

The fading channel is a widely adopted time-varying model
for real-world wireless communications. In this model, the
channel gain changes over time satisfying a certain distribu-
tion, called the channel distribution information (CDI). In a
block fading channel model, the channel gain is assumed to
be constant over a fixed time interval Tc, known as the coher-
ent time, and change to a new independent value afterwards.
In many of today’s communication systems, channel estima-
tion is performed in the first place to obtain the instantaneous
channel state information (CSI), and then data transmission
follows. However, in many scenarios, the coherence time
is very short (e.g., only a few symbol intervals). In this
case, channel estimation may significantly lower the overall
data rate. Besides, the estimation precision is quite limited.
Consequently, communication without instantaneous CSI (or
noncoherent communication) is preferable.

Polar codes are the first family of codes that provably
achieves the capacity of any binary-input discrete memo-
ryless channels (B-DMC) with low encoding and decoding
complexity [1]. There have been studies on polar coding for
fading channels under various CSI assumptions. In [2], polar
coding for quasi-static fading channels with two states was
studied. Polar coding for block fading channels with full CSI
and i.i.d. fading channels with CDI was considered in [3]. For
block fading binary symmetric and additive exponential noise
channels with CSI at the receiver (CSI-R), a hierarchical
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polar coding scheme was proposed in [4], which achieves
capacity, but only works for block fading channels with
finite states. A simple method for construction of polar
codes for Rayleigh fading channel was presented in [5].
Polar codes and polar lattices for i.i.d. fading channels with
CSI-R were constructed in [6], which achieve the ergodic
capacity through single-stage polarization. An adaptive polar
coding scheme for block fading channels with CSI at the
transmitter (CSI-T) was proposed in [7], [8], which can
provide better performance than conventional polar BICM
schemes and LDPC codes. All of the aforementioned polar
coding schemes for block fading channels require either
some CSI or very large coherent time. As far as we know,
polar coding for block fading channels with only CDI and
small/medium coherent time has not been investigated in
literature yet.

In this paper, we aim to design mutual-information-
achieving polar codes for binary-input block fading channels
with only CDI. By viewing the transmitted symbols in one
coherent block as a supersymbol, we can decompose a block
fading channel of coherent time Tc into Tc parallel sub-
channels. The input of the jth (j ∈ [Tc]) sub-channel is the
jth input bit in each coherent block, while the outputs of
the jth sub-channel are the outputs of each coherent block
together with the previous j − 1 input bits. It can be shown
that such a decomposition preserves the mutual information
of the block fading channel. Thus, to achieve the ergodic
mutual information, one simply needs to design a symmetric-
capacity-achieving polar code for each sub-channel. Such an
approach is also known as multilevel coding (MLC) [9], [10],
which has been studied in the area of polar coded modulation
[11]. We compare the performance of our proposed MLC
scheme with interleaved polar codes designed for i.i.d. fading
channels (which we refer to as the BICM scheme) by
simulations. Although the MLC scheme can achieve a higher
rate asymptotically, simulation result shows that it requires a
very large code-length to outperform the BICM scheme. This
can provide some guidance for practical polar code designs
for noncoherent block fading channels – the MLC scheme is
more suitable for delay-tolerant scenarios, while the BICM
scheme can provide better performance at short and medium
code-lengths.

The rest of this paper is organized as follows. Section
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II provides some related knowledge on polar codes. In
Section III we introduce the block fading channel model
and describe the main idea of our scheme. Details of our
proposed scheme are presented in Section IV. Section V
presents some simulation results to show the performance of
our proposed scheme. Section VI concludes this paper with
some discussions.

II. PRELIMINARIES ON POLAR CODES

For N = 2n with n being an arbitrary integer, let X1:N

be N consecutive channel inputs to a B-DMC W (Y |X), and
U1:N = X1:NGN , where GN = BNF⊗n is the generator
matrix of polar codes, with BN being the bit-reversal matrix

and F =

[
1 0
1 1

]
. It is shown that as N goes to infinity, U1:N

polarizes in the sense that conditioned on Y 1:N , U i (i ∈ [N ])
becomes either almost independent of U1:i−1 and uniformly
distributed, or almost determined by U1:i−1 [12]. Based on
this phenomenon, for δN = 2−N

β

with β ∈ (0, 1/2), we
define the reliable bit set as

I = {i ∈ [N ] : Z(U i|Y 1:N , U1:i−1) ≤ δN}, (1)

where

Z(X|Y ) = 2
∑
y∈Y

PY (y)
√
PX|Y (0|y)PX|Y (1|y), (2)

is the Bhattacharyya parameter of a random variable pair
(X,Y ) with X being binary and Y being defined on an
arbitrary discrete alphabet. It is shown that

lim
N→∞

1

N
|I| = I(X;Y ), (3)

where I(X;Y ) is the symmetric capacity of W .
To construct a polar code for W , define F = IC , where

IC denotes the complement set of I. Assign {ui}i∈I with
information bits, and {ui}i∈F with some fixed value known
by both sides, known as frozen bits. Then codewords are
generated by x1:N = u1:NGN since GN = G−1N .

Upon receiving y1:N , the receiver uses a successive can-
cellation (SC) decoder to decode:

ūi =


ui, if i ∈ F
arg maxu∈{0,1} PUi|Y 1:NU1:i−1(u|y1:N , u1:i−1),

if i ∈ I
.

(4)
The block error probability of such a scheme can be upper

bounded by

Pe ≤
∑
i∈I

Z(U i|Y 1:N , U1:i−1) = O(2−N
β

). (5)

III. PROBLEM STATEMENT

A block fading channel with coherent interval Tc is defined
as follows. At time interval i (i = 1, 2, ...), the channel is
modeled as

yi = hixi + wi, (6)

where hi ∈ R is the channel gain at time interval i,
xi = [xi1, x

i
2, ..., x

i
Tc

]T ∈ {−1, 1}Tc is the binary input signal

after BPSK modulation, yi = [yi1, y
i
2, ..., y

i
Tc

]T ∈ RTc is the
channel output, and wi = [wi

1, w
i
2, ..., w

i
Tc

]T ∈ RTc is the
white Gaussian noise, with wi

j ∼ N (0, σ2) for every j ∈ [Tc].
We study the case when both the transmitter and the

receiver only have the CDI of the channel. Consider a
series of transmissions over N fading blocks. In this paper,
we call the N consecutive coded blocks a frame. Denote
X = [x1, ...,xN ] and Y = [y1, ...,yN ], and let zj (j ∈ [Tc])
denote the jth row vector of X. Then the mutual information
of a transmission frame can be expanded as

I(X;Y) =

Tc∑
j=1

I(zj ;Y|z1:j−1), (7)

where z1:j−1 is short for {z1, ..., zj−1}. Similar abbreviations
will be used throughout this paper. Note that

lim
N→∞

1

N
I(zj ;Y|z1:j−1) = I(Xj ;Y1:Tc |X1:j−1)

= I(Xj ;Y1:Tc , X1:j−1),

which is the symmetric capacity of a binary-input channel

W (j)(y, x1:j−1|xj) : {−1, 1} → RTc × {−1, 1}j−1, (8)

with transition probability density function (PDF)

p(y, x1:j−1|xj) =
∑

xj+1:Tc

p(x1:j−1, xj+1:Tc)p(y|x), (9)

where p(y|x) is the joint transition PDF of a coherent block
without instantaneous CSI.

Based on the expansion of (7), we can use an MLC-based
approach to design polar codes for block fading channels
with only CDI. The encoding of a frame consists of Tc
component polar codes, designed for each of the Tc sub-
channels respectively. When an encoded frame is generated,
the sender transmits it block by block. Having received
a signal frame, the receiver uses a multistage decoder to
decode the component polar codes one by one. At stage
j (j ∈ [Tc]), it decodes the jth sub-channel based on
the received frame together with the estimates of previous
stages. If the component polar codes are symmetric-capacity-
achieving, the ergodic mutual information of the binary-
input block fading channel under the CDI assumption is also
achievable with this scheme.

As an example, we assume h follows the Rayleigh distri-
bution with PDF

f(h) =
h

σ2
h

e
− h2

2σ2
h . (10)

Then

p(y|x) =

∫ ∞
0

( Tc∏
j=1

1√
2πσ2

e−
(yj−hxj)

2

2σ2
) h
σ2
h

e
− h2

2σ2
h dh.

(11)
Fig. 1 shows a comparison of achievable rates of binary-

input AWGN channel, binary-input Rayleigh fading channel
with CSI-R, and binary-input block Rayleigh fading channels
of different coherent time with only CDI. We can see that
as the coherent time increases, the achievable rate with only
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Fig. 1. Achievable rates of binary-input block Rayleigh fading channels.
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Fig. 2. Symmetric capacity of sub-channels of a block Rayleigh fading
channel with coherent time Tc = 5.

CDI gets closer and closer to that with CSI-R. It has been
shown for several cases (e.g., [13], [14]) that the noncoherent
capacity of a block fading channel will approach the coherent
capacity as Tc → ∞. In the considered SNR region (-0.6
db to 0 db), a binary-input block Rayleigh fading channel
with 5 symbols per coherent interval has a performance gain
about 0.25 db over the i.i.d. fading channel under the CDI
assumption, and a performance loss about 0.5 db compared
with the CSI-R curve.

Fig. 2 shows the symmetric capacity of the five sub-
channels of a block Rayleigh fading channel of coherent
time Tc = 5, compared with that of the original channel
and the CSI-R rate. We can see that the achievable rate of a
sub-channel increases with its index. This can be intuitively
explained as follows. After decoding a sub-channel, the
decoder gains more knowledge about the CSI (although not
explicitly shown), and the achievable rates of the following
sub-channels become larger. Thus, our proposed CDI scheme

can be seen as a realization of the joint channel estimation
and data transmission paradigm in noncoherent communica-
tions.

IV. DETAILS OF THE PROPOSED SCHEME

For the jth (j ∈ [Tc]) sub-channel W (j)(y, x1:j−1|xj), let
uj = zjGN . Define the reliable bit set by

Ij , {i ∈ [N ] : Z(U i
j |Y 1:N

1:Tc , U
1:N
1:j−1, U

1:i−1
j ) ≤ δN}, (12)

with U1:N
1:0 = ∅, and the frozen bit set by Fj , ICj . The

multilevel encoding procedure goes as follows.

• For the jth (j ∈ [Tc]) sub-channel, insert information
bits to {uij}i∈Ij and frozen bits to {uij}i∈Frj .

• Compute zj = ujGN for each j ∈ [Tc] and generate
the final coded frame by X =

(
z1; ...; zTc

)
.

• The sender transmits X column by column.

Having received Y, the receiver performs multistage de-
coding as follows. In the jth (1 ≤ j ≤ Tc) stage, the decoder
decodes uj with the aid of the estimates in previous stages:

ūij =


uij , if i ∈ Fj

arg maxu∈{0,1} PUij |Y 1:N
1:Tc

U1:N
1:j−1U

1:i−1
j

(u|y1:N1:Tc
,

ū1:N1:j−1, u
1:i−1
j ), if i ∈ Ij

(13)
where ū1:N1:0 = ∅.

The block error probability of the jth component polar
code provided that the previous component codes are cor-
rectly decoded can be upper bounded by

P (j)
e ≤

∑
i∈Ij

Z(U i
j |Y 1:N

1:Tc , U
1:N
1:j−1, U

1:i−1
j ) = O(2−N

β

) (14)

according to the definition of the information bit set. Thus,
the overall frame error probability can be upper bounded by

Pe ≤
Tc∑
j=1

P (j)
e = TcO(2−N

β

). (15)

The asymptotic rate of the jth (j ∈ [Tc]) component polar
code is

lim
N→∞

Rj = lim
N→∞

|Ij |
N

= I(Xj ;Y1:Tc |X1:j−1). (16)

Thus, the asymptotic rate of the scheme is

lim
N→∞

R = lim
N→∞

1

Tc

Tc∑
j=1

Rj =
1

Tc
I(X1:Tc ;Y1:Tc), (17)

which equals the ergodic mutual information of the block
fading channel.

From (15) and (17) we can claim that our proposed polar
coding scheme achieves the ergodic mutual information of
binary-input block fading channels with only CDI.



TABLE I
RATES OF SUB-CODES FOR THE BLER THRESHOLD OF 0.01.

N R1 R2 R3 R4 R5 R6 R7 R8

64 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
128 0.2813 0.2813 0.2813 0.2813 0.2813 0.2813 0.2813 0.2813
256 0.2968 0.3008 0.3008 0.3047 0.3047 0.3047 0.3047 0.3047
512 0.3203 0.3223 0.3223 0.3242 0.3242 0.3242 0.3262 0.3262
1024 0.3428 0.3448 0.3457 0.3467 0.3486 0.3496 0.3496 0.3506

V. SIMULATION RESULTS

A. Code rates of sub-channels

We first use the Monte-Carlo approach to construct our
polar codes for a Rayleigh block fading channel of coherent
time Tc = 8. The design SNR is 0 dB, and the block error
rate (BLER) threshold for determining the information bit
set for each sub-channel is 0.01. The code rates of the 8
sub-channels for different code-lengths are shown in Table
I. It can be seen that for short code-lengths, the rates of
all sub-channels are the same due to the finite block-length
effect. However, as the code-length increases, sub-channels
with larger indices will have larger rates. This confirms the
theoretical analysis in Section III that the symmetric capacity
of a sub-channel increases with its index.

B. Error Performance

Next, we demonstrate the performance of our proposed
MLC scheme by simulations. As a comparison, we also show
the performance of polar codes designed for i.i.d. fading
channels with and without random interleaving (respectively
denoted by BICM and iid in Fig. 3 and Fig. 4). We still
consider a Rayleigh block fading channel of coherent time
Tc = 8. The code-length N of the sub-codes ranges from
64 to 1024, and the overall code rate is set to 3/8. Details
of the sub-code rates are listed in Table II. To be fair, the
code-length of the i.i.d. fading polar codes are Tc × N .
For comparison purpose, we only adopt the traditional SC
decoding algorithm in the simulations. The performance can
be further improved by using more powerful decoders (such
as the SC-list decoder [15], [16]).

Fig. 3 and Fig. 4 respectively show the frame error rate
(FER) and bit error rate (BER) comparison. It can be seen
that polar codes designed for i.i.d. fading channels with
random interleaving give the best error performance, while
those without interleaving perform quite bad. Theoretically
speaking, the BICM scheme can only achieve the noncoher-
ent capacity of the i.i.d fading channel, which is smaller than
that of the block fading channel. The reason why the MLC
scheme performs worse than the BICM scheme is that the
considered code-lengths are quite short, thus the detrimental
effect of the short code-length on the error performance
prevails over the limited achievable rate increase. Observe
that the performance gap between the MLC scheme and the
BICM scheme diminishes as the code-length increases. We
can expect that the gap will disappear at some code-length
and the MLC scheme will outperform the BICM scheme
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Fig. 3. FER performance comparison.

thereafter. This result shows that the proposed scheme may
be more suitable for delay-tolerant scenarios, since it requires
a large code-length to offer good performance.

TABLE II
INFORMATION BIT SET SIZE OF THE SUB-CODES IN THE SIMULATION.

Sub-code-length Size of the information bit sets
64 [24 24 24 24 24 24 24 24]

128 [48 48 48 48 48 48 48 48]
256 [94 94 95 96 96 97 98 98]
512 [189 190 191 192 192 193 194 195]
1024 [381 382 383 384 384 385 386 387]

VI. DISCUSSION

In this paper, we take a MLC approach to solve the
problem of coding for noncoherent block fading channels.
Another approach to deal with this problem is the multiple
access channel (MAC) approach, which views a block fading
channel of coherent time Tc as a Tc-user MAC. We will
briefly explain the connection between this approach and
ours. From the MAC perspective, code design will be based
on MAC polar codes (e.g., [17]). Our proposed MLC-based
scheme can be seen as a special case of the MAC-based
scheme, i.e., it is equivalent to a MAC polar code designed
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to achieve a corner point of the achievable rate region of
the Tc-user MAC. By using other permutations for MAC
polarization, one can allocate rates for different ”users” more
flexibly. However, although this connection is valid, the MAC
approach looks unnecessarily complicated for our problem.
In the end, it’s the chain rule, not the MAC, that matters for
our problem.

We have only presented a basic scheme for the noncoherent
block fading channels in this paper. Further improvements
can be made on it. For example, when the coherent time is
moderately long so that the traditional paradigm of channel
estimation before data transmission is not so efficient, while
the MLC scheme is a bit too complicated (as it involves
many stages of coding and the computation for the LLRs of
the sub-channels becomes complex), we can design a hybrid
scheme that takes advantage of both the MLC scheme and the
BICM scheme. We simply need to partition the sub-channels
into several groups and apply the BICM scheme inside a
group and the MLC scheme across different groups. We can
also design a joint channel estimation and data transmission
scheme by applying the MLC scheme only for the first few
sub-channels and using the decoding result to do channel
estimation. Then we can apply the scheme of [6] together
with interleaving for the rest sub-channels. We will leave
these for future research.
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