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A Sampling Theorem for Shift-Invariant Subspace Our purpose in this correspondence is to find a weaker constraint
o on the generating functiop(¢) such that a formula similar to (1) [or
Wen Chen and Shuichi Itoh (2) with interpolating generating functiofi(t) instead of(¢)] holds

for any functionf(¢) in the shift-invariant subspacés (). In fact,
we find a condition for (1) that is sufficient and necessary. In this

Abstract—A sampling theorem for regular sampling in shift invariant P - :
subspaces is established. The sufficient-necessary condition for which it\,Nay' we are able to remove the continuity and regularity constraints

holds is found. Then, the theorem is modified to the shift sampling in shift- IMPosed on the generating functigrt) by Walter [18] or imposed
invariant subspaces by using the Zak transform. Finally, some examples on its Fourier transforng(w) by Aldroubi and Unser [3]. We also

are presented to show the generality of the theorem. make a case to show the generality of our result in Section I
Index Terms—Fourier transform, generating function, sampling, shift- We now introduce some notations used in this correspondence. For
invariant subspace, Zak transform. a measurable subsé&t C R, |E| denotes the measure &. For a

measurable functiorf (t), we write

I. INTRODUCTION AND NOTATIONS F@®)|lo = sup ﬁnfp | £ ()] 3)
A fundamental question in signal processing is how to represent a mi=0
signal in terms of a discrete sequence. Shannon’s popular sampling 1F Bl = \}};I\lio ;EIZ 7] “)
theorem states that finite energy band-limited signals are completely 1 ¢ EE
characterized by their samples values. Realizing that the Shannon x(t) :{0 otherwise. ®)
interpolating function sin@) = sin(¢)/t is in fact a scaling function
of an MRA, Walter [18] found a sampling theorem for a class of II. SAMPLING THEOREM

wavelet subspaces.

Supposep(t) is a continuous orthonormal scaling function of al
MRA {V,.}mez such that|o(t)] < O((1 + |t))~'~=) for some
£>0.Letg™(w) =3, @(n)e™ . Walter showed that there is an
S(t) € Vo such that

Suppose anL?*(R) function ¢(t) is such that the sampling
n{(,o(n)}n makes sense andy(n)}, € [*. Then, the series
>, p(n)e™™ converges to anL?’[0, 2x] function $*(w) in
L?[0, 27] sense. Let us now consider tisift-invariant subspace
sequence{V;(¢)}; generated byp(t)

)= fm)St—n) @

nez Vi(e) = {Z cep(2t = k): {en i € 12} CL*B).
holds for anyf(¢t) € Vi if $"(w) # 0. Following Walter's [18] k
work, Janssen [11] studied the shift sampling case by using thgr ¢(+) = 2oncep(t—k) € Vo(p), we letf(n) =37, cep(n—k).
Zak-transform. Xia and Zhang [21] discussed the so-called sampliftien { £(n)}, (€1>) is well defined sinccy }x and {x(k)}, are
property ((#) = (t)). Walter [19], Xia [20], and Chen-Itoh [8], [9] poth 12 sequences. In factf(n) as the Fourier coefficients of the
studied the more general case “oversampling.” Ckeal. [5], [7],  L'[0, 27 function 4" (w) 3, cxe™** tends to O at infinity by the
Chen and Itoh [6], Liu [12], and Liu and Walter [13] even studie®Rjemann-Lebesgue Lemma. Generafly;(t — &)}« may not be a

irregular sampling in wa_lvelet subspaces. _ Riesz basis of; (). It is shown that{¢(# — &)}, is a Riesz basis
Furthermore, Aldroubi and Unser [1]3], [15] studied the samyf y; (. if and only if
y

pling procedure in shift invariant subspaces (see Section Il). The

established a more comprehensive sampling theory for shift-invariant 0 < [|Go(@)llo £ |Go(w)]los < 00 @)
subspaces. One of their important result states that when (€

L*(R)) is a generating function, the orthogonal projectigyit) of holds, whereG..(w) = (3, |#(w + 2k)|*)'/?, and ¢(w) is the
a function g(t) € L*(R) on the shift-invariant subspadé, () is ~Fourier transform of,(t) defined byg(w) = [, @(t)e™" " dt. If

given by @(t) satisfies (7), it is called generating functior(see [3]).
, Theorem 1: Supposex(t) (€L*(R)) is a generating function such
gp(t) = Y (g(), (- = n))p(t —n) (2) that the samplind¢(n)}, makes sense, ando(n)}.. € I°. Then,
nez there is anS(t) € Vu(y¢) such that
where {¢(t — n)}, is the biorthogonal basis ofo(t — n)}, in _ , _ s
Vo), and{-, -) is the L*(R)-inner product. They then found that 1) = 721 FS(t=n), for f() € Vo(e) ®)

the ¢(t) can be replaced by an interpolating generating func$ion

if o(t) € L'(R) N L*(R), ., ¢(w + 2kw) # 0, and the Fourier holds in theL?(R) sense if and only if

transformy(w) of ¢ (¢) satisfied@(w)| < O((1+|w]) ") for some 1

e > 0 (see [3, Prop 7]). In fact, these constraints are related to those of —— € L*[0, 2x] 9)
Walter sampling theorem due to the fgct, ¢(w+2k7) = & (—w) ¢ (w)

in some sense (see the Appendix). holds. In this caseﬁ(w) = $(w)/¢*(w) holds for a.ew € R.
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holds in theL?[0, 2x] sense. LefF (w) = ¢(w)/$*(w). Then Since S(w) € L*(R) [due to S(w) € L2(R)], we derive
_ (W) A . 2
/ |F(w)]” = / () s P ;|P(w+2k7r)|
. ‘ > : = -
e Dl + 2nm)? ~ /R ¢*(w) /0 |¢=(w)I?
= L 27 1 2
/0 ER®E > 162 () lo / )
Y 27 1 0 ¥ (“‘))
<G [ o
o lPiw From (7) and (23), we conclude thaf$*(w) € L*[0, 2x] holds.
It is easy to seé’(w) € L*(R) due to (7). Hence, we can take theThis completes the proof. _ o
Fourier inverse off'(w) in L*(R) denoted byS(t), i.e., we derive If ¢(t) satisfies the conditions of the Walter sampling theorem
R 5(0) or the proposition of Aldroubi and Unser, there must be a constant
S(w) =+ 5 (11) C > 1 such thatC™' < |¢*(w)| < C. Obviously, 1/3*(w)

v L*>[0, 2x] C L*[0, 27]. Therefore, the Walter sampling theorem and
. . - the Aldroubi and Unser proposition can be obtained as a corollary
p(w) =5(w)e™ (). (12)  of our theorem (refer to Examples 1-3). A related problem is the
Take inverse Fourier transform on both sides of (11) and refer to (18j!dy of truncation error and aliasing error. We do not estimate them
here and refer to Walter, Unser and Daubechies [16] and Chen and

S(t) = cxplt — k). (13) itoh [8], [9].
k As done by Janssen [11] for Walter's sampling theorem, Gl
Formula (13) impliesS(¢) € Vo(¢) [due to the fact thaf (¢t — &)} [7] for the irregular sampling theorem, and Chen and Itoh [8] for the
is a Riesz basis ofix(¢)]. For any f(t) € Vu(y¢), there is a oversampling theorem, the shift-sampling theorem for shift-invariant

or

{ar}x € I* such thatf(t) = > are(t — k). Then subspace can be obtained by using the Zak transform. Supiose
S ik (€ L*(R)) is such that the samplinfiz(s +n)},, makes sense, and
flw)=d(w) 3 axe (14) {p(c +n)}. € I* for somes € [0, 1). Then, the Zak transform

k

= (ﬁ*(u) Z akeikw>5(w). (15)

k

Z (o, w) of p(t) is defined by

Zo(o, w) = Z o(n +a)e™" ™. (24)

Therefore,f(t) = >, f(k)S(t — k).
Step 2—NeceSS|t¥On che contrary, if there is afi(t) € Vo(¢) A generating functiony(t) may not satisfyl/¢*(w) € L*[0, 2]
such that (8) holds in thé”(R) sense, then but may satisfyl /7, (¢, w) € L?[0, 2x] for somes € [0, 1). Then,

o(t) = Z e(n)S(t —n) (16) it can be dealt with by the shift-sampling theorem (see Example 4).

~ We now present the shift-sampling theorem without proof (since it

. 9 . . is very close to the previous).
holds in theL*(R) sense. By taking the Fourier transform on both Theorem 2: Supposex(t) (€ L*(R)) is a generating function

sides of (16), we obtain R such that the samplinfp(n+0)},, makes sense, afeb(n+0)}., €
P(w) = " (w)S(w). (17) 1? for somes € [0, 1). Then, there is ai¥, (t) € Va(¢) such that

Equation (17) implies that sugiw) C supps*(w) holds for a.e.

w € R, i.e., suppi(w+ 2kn) C suppj” (w) holds for allk € Z and F@) =3 flnta)Sa(t—mn).  for f(t) € Vo(w)  (25)
for a.e.w € R becausep™(w) is 27 periodic. Meanwhile
U suppj(w + 2kw) = R (18) holds in theL*(R) sense if and only if
k
holds except for a zero measure subsefRofOtherwise, there is a 7 L € L*[0, 2x] (26)
measurable subsétwith measurgé| # 0 such that w0, @)
§CRO U suppa(w + 2km). (19)  holds. In this caseS(w) = ¢(w)/Z, (0, w) holds for a.ew € R.
k
Then,@(w+2kx) = 0 holds for anyw € 6 and for allk € Z. Hence Il SOME EXAMPLES
1/2 . . . . .
Since the Haar function is not continuous and Shannon’s sinc
Golw) = (Z |G (e + 2km)] ) =0 (20) function is not regular enough, they can not be covered by Walter's

sampling theorem. Since the Fourier transform of the Haar function is
holds for anyw € &. However,G.(w) # 0 holds for a.ew € R. It not regular enough and the Fourier transform of the Shannon function
forces (18) to hold for a.ev € R. Therefore is not continuous, they are covered by [3, prop. 7], although we should
5w 5 Uer) = note that there is no such restriction for the more general sampling
suppe () L;J Supp2 (e + 2k7) D) theorems presented in Aldroubi and Unser’s papers. Both functions
are covered by our sampling theorem (see Examples 1 and 2).
Example 1: Haar functione(t) = xo,1). The piecewise con-
. tinuity of (¢) implies that the samplingd¢(n)}, makes sense.
plw) _ S(w). (22) 1/¢"(w) =1 € L*[0. 2x] implies that our sampling theorem can
o*(w) be applied andS(t) = (0,1

holds for a.ew € R, i.e.,$*(w) # 0 for a.e.w € R. Formula (17)
is now rewritten to be
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Example 2: Shannon functione(¢) = sin wt/#t. The continuity In Aldroubi and Unser [3], we Iefogt) be the Fourier inverse of
of (¢) implies that the samplingy(n)}. makes sensd./¢"(w) = ¢(w), and letK(w) = $(w). Then, o(t) = ¢(t) in L*(R), and
1 € L*[0, 2x] implies that our sampling theorem can be applied, amh  o(w + 2nm) = $*(—w) in L?[0, 27]. However, thep(t) in

S(t) = sin wt/xt.
The following Example 3 shows that there exists a generating
function ¢(t) such thatp*(w) — 0 asw tends to a pointvy (a.e.),
butl/$*(w) € L*[0, 2x] holds. It implies that our sampling theorem
is substantially more general than Walter sampling theorem.
Example 3: For a positive numbes < 1/2, take ¢(t) as the
Fourier inverse of3(w) defined by

-1, wé€[—4r, —2m)

oo _ )1, wel[-2m0)

PI=0 0 e 2m) 27)
0, otherwise.

2s5\1/2 H [1]
Then, G, (w)X[o,20) = (2 + w?*)'/%. Obviously,

V2 < Gaw) < (24 (2m)%) 2

(2]
Therefore,p(t) is a generating function. The fagt(w) € L'(R)

implies thaty(z) is continuous. Then, the samplidg(n )}, makes
sense. Sincer*(w) = 3, ¢(w + 2kxw) in L*[0, 27] (see the
Appendix), we derivep™ (w)x[o,2-) = w”. However,$"(w) — 0
asw — 0T (a.e.). Hence, neither Walter's sampling theorem nor4j
Aldroubi and Unser’s Proposition can be applied to deal with the
©(t) [since both of them require the conditi6i™' < ¢*(w) < C for
someC > 1]. However,w ™ * € L?[0, 2«] implies that our sampling ]
theorem is available. Th&(w) is given by

w

(3]

(6]

—(w+4m)"°%, w € [—4r, —27)
aon_ ) (w+2m)7, we[-2m, 0) [71
Str=191. w € [0, 2m) @9

0, otherwise. (8]

The following Example 4 (taken by Janssen [11]) shows thqo]
usefulness of shift-sampling theorem. It is also very interesting to
find some works on centered spline interpolating in Aldroebal. (10]
[4] and Unseret al. [14].

11
Example 4: B-spline of order 2 scaling function -

2 6t —2t° — 3
Na(t) = % Xpo, 1) (1) + % X1, 2)(t) [12]
3-1)° 13
+ % X[z, (1) (29) (3]

[24]
N, (t) is a generating function (see Chui [10])5(w) = e (™ +
1)/2 implies that1/N; (w) = 2/¢™ (e’ + 1) is not anL?[0, 27]
function. However,1/Zx,(1/2, w) = 8/(1 + 6e™ + &**) ¢
L?[0, 2x] implies that the shift-sampling theorem is available. The
S1/2(w) is given by [16]

[15]

& 1- ’7“} ’ Tw 24w
[18]
APPENDIX

Claim—A Variation of Poission’'s Summation Formul&uppose (19]

a measurable functiofi’ () is such thad " K (x4 2nm) absolutely
converges inL?[0, 2x]. Then,Y" K(x + 2nw) = 3 K(n)e™*
in L2[0, 2x].

Proof: Obviously, >~ K(« + 2nw) absolutely converges in
L'[0, 27]. Hence, f,, |K (x)|du 02« Yo K (e + 2nm)|de <
oc, i.e., K(x) € L*(R). This implies thatf((wv) is continuous
[therefore,ﬁ'(n) is well defined]. Letg(x) = >, K(x + 2nn)
in L?[0, 27]. Then, g(z) = 3 en(g)e™" in L?[0, 27] with the
Fourier coefficientse,(g) = [" g(z)e ™" = K(n). Finally,
g(z) =3, K(n)e™* in L*[0, 2x]. This completes the proof.

[20]

[21]

Example 3 is exactly the Fourier inverse $fw).
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