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Optimal Upward Scaling of Minimum-TSC Binary Signature Sets
Lili Wei, Member, IEEE, and Wen Chen, Senior Member, IEEE

Abstract—We consider upward scaling an overloaded min-
TSC binary signature set and propose an optimal solution based
on improved sphere decoding algorithm. Instead of previous
suboptimal approach, we are guaranteed to find the optimal
maximum-likelihood (ML) searching result with low complexity.

Index Terms—Binary sequences, code-division multiple-access
(CDMA), signal design, total squared correlation, Welch bound.

I. INTRODUCTION

IN multiuser communication systems that follow the code-
division multiplexing paradigm, multiple signals are trans-

mitted simultaneously in time and frequency. Each signal,
potentially associated with a distinct user, is assigned an
individual signature (spreading code). A fundamental measure
of the quality of the code-division communication link is the
total squared correlation (TSC) [1] over the set of assigned
signatures. For a 𝐾-signal system with signature length 𝐿,
if the signature set is denoted by 𝑆 = {s1, s2, ⋅ ⋅ ⋅ , s𝐾},
∥s𝑖∥2 = 𝐿, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝐾 , then the TSC of the signature
set 𝑆 is defined as the sum of the squared magnitudes of all
inner products between signatures,

𝑇𝑆𝐶(𝑆)
△
=

𝐾∑
𝑖=1

𝐾∑
𝑗=1

∣s𝐻𝑖 s𝑗 ∣2, (1)

where (⋅)𝐻 denotes the conjugate transpose operation. For
real/complex-valued signature sets, TSC is bounded from the
“Welch Bound” 𝑇𝑆𝐶(𝑆) ≥ 𝐾𝐿max{𝐾,𝐿} and signature
sets that satisfy this bound with equality are called Welch-
bound-equlity (WBE) sets [1] [2]. Algorithms and studies for
the design of complex or real WBE signature sets can be found
in [3]-[6].

In digital transmission systems, it is necessary to have
finite-alphabet signature sets. Although the Welch bound is
always achievable for real/complex-valued signature sets, this
is not the case in general for binary antipodal signature sets.
Hence, findings in [1]-[6] constitute only pertinent perfor-
mance bounds for digital communication systems with digital
signatures. In [7], new bounds on the TSC of binary signature
sets were presented that lead to minimum-TSC optimal binary
signature set designs for almost all signature lengths and
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set sizes [7]-[9]. The user capacity of minimum and non-
minimum-TSC binary sets was identified and compared in
[10]. A procedure to find minimum-TSC binary signature sets
with low cross-correlation spectrum was presented in [11].

The technical problem we consider in this manuscript is
upward scaling of an overloaded (𝐾 > 𝐿) min-TSC binary
set. Subsets of underloaded (𝐾 ≤ 𝐿) signatures maintain
TSC optimality and signatures can be returned and reassigned
without loss of optimality. This is not the case unfortunately,
in general, given a min-TSC overloaded set (𝐾,𝐿) by [7].
Addition of a signature, for example, may require complete
redesign/reassignment of the (𝐾 + 1, 𝐿) set to maintain TSC
optimality. Previous suboptimal solution on this problem has
been approached in [12] based on slowest decent method.

In this manuscript, we are relocating this problem with
improved sphere decoding (SD) algorithm. The original SD
algorithm was proposed in [13] as Fincke-Pohst method, first
applied to communication system of lattice code decoder in
[14] and then used for space-time decoding in [15]. Instead
of exhaustive maximum-likelihood (ML) searching, SD algo-
rithm, with complexity of polynomial order in the processing
gain 𝐿 [13], considers only a small set of vectors within a
given sphere rather than all possible transmitted signal vectors.
With a proper initial searching radius setting, our proposed
improved SD algorithm is guaranteed to find the optimal ML
result with low complexity instead of previous suboptimal
solutions.

II. SYSTEM MODEL

We consider a code division multiplexing system with
code length 𝐿 and 𝐾 ≥ 𝐿 signals (overloaded). The 𝐾
signals utilize a minimum TSC optimal binary signature set 𝑆
designed according to [7], 𝑆 = {s1, s2, ⋅ ⋅ ⋅ , s𝐾}, s𝑖 ∈ {±1}𝐿,
𝑖 = 1, ⋅ ⋅ ⋅ ,𝐾 . The TSC lower bound of this binary antipodal
signature sets for overloaded (𝐾 ≥ 𝐿) systems are given in
Table II in [7].

When a new signal enters this system with signature
s𝐾+1 ∈ {±1}𝐿, the TSC of the 𝐾 + 1 signatures, given the
signatures of the 𝐾 preexisting signals, is

𝑇𝑆𝐶𝐾+1∣𝐾 =

𝐾+1∑
𝑖=1

𝐾+1∑
𝑗=1

∣s𝑇𝑖 s𝑗∣2

=

𝐾∑
𝑖=1

𝐾∑
𝑗=1

∣s𝑇𝑖 s𝑗∣2 + ∣s𝑇𝐾+1s𝐾+1∣2 + 2

𝐾∑
𝑖=1

∣s𝑇𝐾+1s𝑖∣2

= 𝑇𝑆𝐶𝐾 + 𝐿2 + 2s𝑇𝐾+1

(
𝐾∑
𝑖=1

s𝑖s
𝑇
𝑖

)
s𝐾+1, (2)

where 𝑇𝑆𝐶𝐾 denotes the TSC of the 𝐾 preexisting signals
in the system that utilizes a minimum TSC binary signature
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set. If we denote the autocorrelation matrix of the preexisting
𝐾 signatures by

R𝐾 =

𝐾∑
𝑖=1

s𝑖s
𝑇
𝑖 , (3)

Equation (2) shows that conditional minimization of
𝑇𝑆𝐶𝐾+1∣𝐾 with respect to s𝐾+1 for fixed (min-TSC-valued)
𝑇𝑆𝐶𝐾 reduces to

s𝐾+1 = 𝑎𝑟𝑔 min
s∈{±1}𝐿

s𝑇R𝐾s. (4)

The optimal ML solution by exhaustive search over all
2𝐿 vectors in {±1}𝐿 to find the one that minimizes (4) is,
of course, unacceptable computationally even for moderate
values of 𝐿. The work of [12] has proposed a suboptimal
solution based on slowest decent method. In the following
section, we are going to solve this problem with improved
SD algorithm which gives us the optimal ML solution with
low complexity.

III. OPTIMAL SIGNATURE ASSIGNMENT

Let the Cholesky’s factorization of the autocorrelation ma-
trix R𝐾 yields R𝐾 = U𝑇U, where U is an upper triangular
matrix. Then

s𝐾+1 = 𝑎𝑟𝑔 min
s∈{±1}𝐿

s𝑇R𝐾s = 𝑎𝑟𝑔 min
s∈{±1}𝐿

∣∣U s∣∣2𝐹 , (5)

where ∣∣ ⋅ ∣∣𝐹 denotes the Frobenius norm.
The original SD decoding algorithm [13]-[14] searches

through the discrete points s in the 𝐿-dimensional Euclidean

space which make the corresponding vectors z
△
= Us inside

a sphere of given radius
√
𝐶 centered at the origin point,

i.e. ∣∣Us∣∣2𝐹 = ∣∣z∣∣2𝐹 ≤ 𝐶. This guarantees that only the
points that make the corresponding vectors z within the square
distance 𝐶 from the origin point are considered in the metric
minimization.

Compared with the original SD algorithm, we have two
main modifications: (i) The original SD algorithm are search-
ing for integer points, i.e. s ∈ ℤ

𝐿, while our signature
searching alphabet is antipodal binary, i.e. s ∈ {±1}𝐿. Hence,
the bounds to calculate each entry of the optimal signature
are modified, or further tightened, according to our binary
searching alphabet to make the algorithm work faster; (ii)
According to the binary signature vector obtained by applying
the direct sign operator on the real minimum-eigenvalue
eigenvector of R𝐾 , denoted as s

(𝑏)
𝑞𝑢𝑎𝑛𝑡, we can have a very

proper square distance setting as

𝐶 = s
(𝑏)
𝑞𝑢𝑎𝑛𝑡

𝑇
R𝐾 s

(𝑏)
𝑞𝑢𝑎𝑛𝑡, (6)

such that the searching sphere radius is big enough to have at
least one signature point fall inside, while in the meantime
small enough to have only a few signature points within.
As we can have this appropriate radius setting, we calculate
the s𝑇R𝐾s metric for every candidate vector s that satisfies
∣∣Us∣∣2𝐹 ≤ 𝐶, such that the optimal signature assignment with
minimum s𝑇R𝐾s metric is obtained from the improved SD
algorithm directly.

Since the radius is fixed for our improved SD algorithm, the
complexity uncertainty due to the radius update, which means

that the radius need to be expanded if no points found in the
sphere and the radius need to be reduced if too many points
within the sphere, is not a question in this optimization.

Let 𝑢𝑖𝑗 , 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐿, denote the entries of matrix U in
(5). Then we are searching among s ∈ {±1}𝐿 such that

s𝑇R𝐾s = ∣∣Us∣∣2𝐹 =

𝐿∑
𝑖=1

⎛
⎝𝑢𝑖𝑖𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑢𝑖𝑗𝑠𝑗

⎞
⎠

2

=
𝐿∑

𝑖=1

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2

≤ 𝐶 (7)

where s = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝐿]𝑇 , 𝑞𝑖𝑖 = 𝑢2
𝑖𝑖 for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 and

𝑞𝑖𝑗 = 𝑢𝑖𝑗/𝑢𝑖𝑖 for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑗 = 𝑖+ 1, ⋅ ⋅ ⋅ , 𝐿.
We can start work backwards to find the entries

𝑠𝐿, 𝑠𝐿−1, ⋅ ⋅ ⋅ , 𝑠1 one by one.
Step 1: We begin to evaluate the last integer element 𝑠𝐿.
Referring to (7) and consider 𝑞𝐿𝐿𝑠

2
𝐿 ≤ 𝐶. For 𝑠𝐿 ∈ {±1},

𝑠𝐿 can be chosen arbitrarily.
Step 2: Referring to (7) again, a candidate value for 𝑠𝐿−1 is
chosen satisfying the following

𝑞𝐿𝐿𝑠
2
𝐿 + 𝑞𝐿−1,𝐿−1 (𝑠𝐿−1 + 𝑞𝐿−1,𝐿𝑠𝐿)

2 ≤ 𝐶 (8)

which lead to⌈
−
√

𝐶 − 𝑞𝐿𝐿𝑠2𝐿
𝑞𝐿−1,𝐿−1

− 𝑞𝐿−1,𝐿𝑠𝐿

⌉
≤ 𝑠𝐿−1 ≤

⌊ √
𝐶 − 𝑞𝐿𝐿𝑠2𝐿
𝑞𝐿−1,𝐿−1

− 𝑞𝐿−1,𝐿𝑠𝐿

⌋
,

(9)

where ⌈𝑥⌉ is the smallest integer greater than 𝑥 and
⌊𝑥⌋ is the greatest integer smaller than 𝑥. If we denote
Δ𝐿−1 = 𝑞𝐿−1,𝐿𝑠𝐿 and 𝐶𝐿−1 = 𝐶 − 𝑞𝐿𝐿𝑠

2
𝐿, and consider

𝑠𝐿−1 ∈ {±1}, the bounds for 𝑠𝐿−1 can be expressed as
𝐿𝐵𝐿−1 ≤ 𝑠𝐿−1 ≤ 𝑈𝐵𝐿−1, (10)

𝑈𝐵𝐿−1 = min

(⌊√
𝐶𝐿−1

𝑞𝐿−1,𝐿−1
−Δ𝐿−1

⌋
, 1

)
(11)

𝐿𝐵𝐿−1 = max

(⌈
−
√

𝐶𝐿−1

𝑞𝐿−1,𝐿−1
−Δ𝐿−1

⌉
,−1

)
. (12)

We can see that given radius
√
𝐶 and the matrix R𝐾 , the

bounds for 𝑠𝐿−1 only depends on the previous evaluated 𝑠𝐿,
and is not correlated with 𝑠𝐿−2, 𝑠𝐿−3, ⋅ ⋅ ⋅ , 𝑠1.

In a similar fashion, we can proceed for 𝑠𝐿−2, and so on.
Step L-k+1: For the component of 𝑠𝑘, referring to (7) and
consider

𝐿∑
𝑖=𝑘

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2

≤ 𝐶 (13)

will lead to⎡
⎢⎢⎢⎢⎢
−

√√√√√⎷ 1

𝑞𝑘𝑘

⎛
⎜⎝𝐶 −

𝐿∑
𝑖=𝑘+1

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2
⎞
⎟⎠−

𝐿∑
𝑗=𝑘+1

𝑞𝑘𝑗𝑠𝑗

⎤
⎥⎥⎥⎥⎥

≤ 𝑠𝑘 ≤

⎢⎢⎢⎢⎢⎣
√√√√√⎷ 1

𝑞𝑘𝑘

⎛
⎜⎝𝐶 −

𝐿∑
𝑖=𝑘+1

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2
⎞
⎟⎠−

𝐿∑
𝑗=𝑘+1

𝑞𝑘𝑗𝑠𝑗

⎥⎥⎥⎥⎥⎦ . (14)

If we denote
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Δ𝑘 =

𝐿∑
𝑗=𝑘+1

𝑞𝑘𝑗𝑠𝑗 , 𝐶𝑘 = 𝐶 −
𝐿∑

𝑖=𝑘+1

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2

(15)

and take consideration of 𝑠𝑘 ∈ {±1}, the bounds for 𝑠𝑘 can
be expressed as

𝐿𝐵𝑘 ≤ 𝑠𝑘 ≤ 𝑈𝐵𝑘, (16)

𝑈𝐵𝑘 = min

(⌊√
𝐶𝑘

𝑞𝑘𝑘
−Δ𝑘

⌋
, 1

)
, (17)

𝐿𝐵𝑘 = max

(⌈
−
√

𝐶𝑘

𝑞𝑘𝑘
−Δ𝑘

⌉
,−1

)
. (18)

Note that for given radius
√
𝐶 and the matrix R𝐾 , the

bounds for 𝑠𝑘 only depends on the previous evaluated
𝑠𝑘+1, 𝑠𝑘+2, ⋅ ⋅ ⋅ , 𝑠𝐿.
Step L: To evaluate the range of integer component 𝑠1, refer-
ring to (7) and consider

𝐿∑
𝑖=1

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2

≤ 𝐶 (19)

will lead to⎡
⎢⎢⎢⎢⎢
−

√√√√√⎷ 1

𝑞11

⎛
⎜⎝𝐶 −

𝐿∑
𝑖=2

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2
⎞
⎟⎠−

𝐿∑
𝑗=2

𝑞1𝑗𝑠𝑗

⎤
⎥⎥⎥⎥⎥

≤ 𝑠1 ≤

⎢⎢⎢⎢⎢⎣
√√√√√⎷ 1

𝑞11

⎛
⎜⎝𝐶 −

𝐿∑
𝑖=2

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2
⎞
⎟⎠−

𝐿∑
𝑗=2

𝑞1𝑗𝑠𝑗

⎥⎥⎥⎥⎥⎦ . (20)

If we denote

Δ1 =

𝐿∑
𝑗=2

𝑞1𝑗𝑠𝑗 , 𝐶1 = 𝐶 −
𝐿∑

𝑖=2

𝑞𝑖𝑖

⎛
⎝𝑠𝑖 +

𝐿∑
𝑗=𝑖+1

𝑞𝑖𝑗𝑠𝑗

⎞
⎠

2

, (21)

and take consideration of 𝑠1 ∈ {±1}, the bounds for 𝑠1 can
be expressed as

𝐿𝐵1 ≤ 𝑠1 ≤ 𝑈𝐵1, (22)

𝑈𝐵1 = min

(⌊√
𝐶1

𝑞11
−Δ1

⌋
, 1

)
, (23)

𝐿𝐵1 = max

(⌈
−
√

𝐶1

𝑞11
−Δ1

⌉
,−1

)
. (24)

In practice, 𝐶𝐿−1, ⋅ ⋅ ⋅ , 𝐶1 can be updated recursively by
the following equations with initial settings Δ𝐿 = 0, 𝐶𝐿 = 𝐶,{

Δ𝑘 =
∑𝐿

𝑗=𝑘+1 𝑞𝑘𝑗𝑠𝑗 ,

𝐶𝑘−1 = 𝐶𝑘 − 𝑞𝑘𝑘 (Δ𝑘 + 𝑠𝑘)
2
.

(25)

The entries 𝑠𝐿, 𝑠𝐿−1, ⋅ ⋅ ⋅ , 𝑠1 are chosen as follows: for a
chosen 𝑠𝐿, we can choose a candidate for 𝑠𝐿−1 satisfying the
bounds (10)-(12). If such 𝑠𝐿−1 does not exist, we go back
and choose other 𝑠𝐿. Then search for 𝑠𝐿−1 that meets the
bounds (10)-(12) for the given 𝑠𝐿. If 𝑠𝐿 and 𝑠𝐿−1 are chosen,
we follow the same procedure to choose 𝑠𝐿−2, and so on.
When a set of 𝑠𝐿, 𝑠𝐿−1, ⋅ ⋅ ⋅ , 𝑠1 is chosen and satisfies all
corresponding bounds requirements, one signature candidate

vector s = [𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝐿]𝑇 is obtained. We choose the one
among all candidates that gives the smallest s𝑇R𝐾s metric.

Note that this searching procedure will go through all
candidates that satisfy s𝑇R𝐾s ≤ 𝐶 and gives the one with
minimum value. There is at least one candidate vector s(𝑏)𝑞𝑢𝑎𝑛𝑡

such that its entries satisfy all the bounds requirements, since
that is how we set the radius value in (6). On the other hand,
the ML exhaustive binary search result s(𝑏)𝑀𝐿 that returns the
minimum metric will also fall inside the search bounds, since

s
(𝑏)
𝑀𝐿

𝑇
R𝐾s

(𝑏)
𝑀𝐿 ≤ s

(𝑏)
𝑞𝑢𝑎𝑛𝑡

𝑇
R𝐾 s

(𝑏)
𝑞𝑢𝑎𝑛𝑡 = 𝐶. (26)

Hence, we are guaranteed to find the optimal ML exhaustive
binary search result by the proposed improved SD algorithm.

Regarding the computational cost for the proposed im-
proved SD based algorithm, first, eigen-decomposition needed
for parameter setting of the square distance 𝐶 in (6), will
have complexity cost 𝑂(𝐿3). In addition, for the improved
SD algorithm with fixed square distance 𝐶, [13] gives a
complexity analysis and shows that the number of arithmetic
operations is at most

1

6

(
2𝐿3 + 3𝐿2 − 5𝐿

)
+

1

2

(
𝐿2 + 12𝐿− 7

)
×
((

2⌊
√
𝐶𝑡⌋+ 1

)( ⌊4𝐶𝑡⌋+ 𝐿− 1
⌊4𝐶𝑡⌋

)
+ 1

)
, (27)

where 𝑡−1 is the lower bound for the entries 𝑢2
11, 𝑢

2
22, ⋅ ⋅ ⋅ , 𝑢2

𝐿𝐿

of matrix U.
Hence, the total computational cost for the proposed im-

proved SD based algorithm still have polynomial complexity.
In the literature of [12], the binary signature assignment ob-
tained on slowest descent method (SDM) has been proposed.
Compared with SDM algorithm, the proposed improved SD
algorithm has additional computational cost of (27). However,
at the expense of this additional computational cost, the
proposed improved SD based algorithm is guaranteed to get
the optimal ML exhaustive searching result.

IV. EXPERIMENTAL STUDIES

We consider a code-division multiplexing system (𝐾 +
1, 𝐿 = 16) for 𝐾 = 16 up to 31 where each (𝐾,𝐿) signature
set is optimally min-TSC designed by [7]. We compare the
TSC performance of: (i) 𝑇𝑆𝐶𝑏𝑜𝑢𝑛𝑑: the (𝐾+1, 𝐿) TSC lower
bound of [7]; (ii) 𝑇𝑆𝐶𝑆𝐷𝑀 : the 𝐾 + 1 signature added by
the previous suboptimal approach of [12] based on slowest
descent method (SDM); (iii) 𝑇𝑆𝐶𝑆𝐷: the 𝐾 + 1 signature
added by proposed improved SD algorithm in this manuscript;
(iv) 𝑇𝑆𝐶𝑀𝐿: the 𝐾+1 signature added by the ML exhaustive
searching. For comparison purpose, we evaluate the TSC
difference with the lower bound of [7], i.e. 𝑇𝑆𝐶𝑆𝐷𝑀 −
𝑇𝑆𝐶𝑏𝑜𝑢𝑛𝑑, 𝑇𝑆𝐶𝑆𝐷 −𝑇𝑆𝐶𝑏𝑜𝑢𝑛𝑑, 𝑇𝑆𝐶𝑀𝐿−𝑇𝑆𝐶𝑏𝑜𝑢𝑛𝑑, and
plot in Fig. 1.

The comparison with theoretical minimum TSC bounds
is very favorable. Frequently, the resulting sequence set is
absolutely TSC optimal. From the detailed simulation data
analysis, we find that the results of the proposed improved
SD algorithm always reaches ML solution as we expected,
and is superior to the previous suboptimal SDM algorithm.
We demonstrate this in Table 1 with some typical simulation
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TABLE I
TSC COMPARISON OF SDM, SD AND ML

𝐾 + 1 TSC with SDM TSC with SD TSC with ML
19 6544 6400 6400
23 9104 9088 9088
27 12304 12288 12288
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Fig. 1. TSC Difference with the lower bound by starting from optimal
min-TSC set at all 𝐾 = 16, 17, ⋅ ⋅ ⋅ , 31.

results to show the difference in TSC among SDM, SD,
and ML methods. The most important contribution of the
proposed signature assignment in this manuscript is that it
always achieves the ML results.

In Fig. 2, we repeat the simulation in a different way.
Instead of always starting from an optimal min-TSC sig-
nature set (𝐾,𝐿 = 16), 𝐾 = 16, 17, ⋅ ⋅ ⋅ , 31 and only
adding one signature s𝐾+1 by the proposed algorithm, we
just initiate once from an optimal min-TSC signature set
(𝐾 = 16, 𝐿 = 16), and start upscaling signatures one-by-
one consecutively by the proposed algorithm, all the way to a
system of (𝐾 + 1 = 32, 𝐿 = 16). In other words, the initial
signature set at the intermediate steps is not necessarily min-
TSC. As we can see from Fig. 2, the results of the proposed
improved SD algorithm always reaches ML solution again, and
outperform the previous suboptimal SDM algorithm, which
demonstrates the effectiveness of our proposed algorithm for
any initial signature set.
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