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2blog (M)+1c. Then, we have counted the number of flops that a stan-
dard 1-D search algorithm require to locate the maxima abscissas and
the number of flops required by Newton’s method based on Horner’s
synthetic division [6, section 9.5]. They, respectively, required 3000
and 1788 real flops. (A real flop is the cost of computing a real sum
or a real product.) These values are only approximate given that in the
standard search algorithm, only the flops required to evaluate (8) were
accounted for.

VIII. CONCLUSIONS

We have presented an efficient method to compute the Spectral and
Root MUSIC estimations based on a conformal transformation. They
can be calculated from the real roots of a real (2M � 2)-degree poly-
nomial that lie inside the [�1; 1] range in Spectral MUSIC and from
the complex conjugate roots of a real (2M � 2)-degree polynomial
in (Unitary) Root MUSIC. The calculation of the polynomial coeffi-
cients in both cases roughly requires 4M2K real flops plus 2K times
the computational cost of the convolution of twoM -length vectors. For
(Unitary) Root MUSIC, given that the resulting polynomial is real, the
computational burden of the polynomial rooting step has been reduced.
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Estimate of Aliasing Error for Non-Smooth Signals
Prefiltered by Quasi-Projections Into

Shift-Invariant Spaces

Wen Chen, Member, IEEE, Bin Han, and Rong-Qing Jia

Abstract—An ideal analog-to-digital (A/D) converter prefilters a signal
by an ideal lowpass filter. Recent research on A/D conversion based on shift-
invariant spaces reveals that prefiltering signals by quasiprojections into
shift-invariant spaces provides more flexible choices in designing an A/D
conversion system of high accuracy. This paper focuses on the accuracy
of such prefiltering, in which the aliasing error is found to behave like

= ( ) with respect to the dilation of the underlying shift-
invariant space, provided that the input signal is Lipschitz- continuous.
A formula to calculate the coefficient of the decay rate is also figured out in
this paper.

Index Terms—A/D conversion, aliasing error, lowpass filter, prefiltering,
quasiprojection, sampling, shift-invariant spaces, Strang–Fix condition,
Wiener amalgam spaces.

I. INTRODUCTION

In digital signal processing and digital communications, an analog
signal is converted to a digital signal by an A/D (analog-to-digital) con-
verter. An analog signal f is of finite energy if kfk2 < 1, where
kfk2 is the square norm of f defined by kfk2 = ( jf(t)j2dt)1=2.
We also denote by L2( ) the signal space of finite energy, that is,
L2( ) = ff : kfk2 < 1g. f is said to be bandlimited if f̂(!) = 0
whenever j!j > � for some � > 0, where f̂ is the Fourier transform of
f defined by f̂(!) = f(t)e�i!tdt. In this case, f is called a �-band
signal. An ideal A/D converter prefilters a signal of finite energy by an
ideal lowpass filter (see Fig. 1). Then, the difference between the pre-
filtered signal and the original signal is referred to as the aliasing error.
To reduce the aliasing error, one has to increase the bandwidth of the
lowpass filter.
For a � � 1, the shift-invariant space V�(') generated by the gen-

erator ' 2 L2( ) is defined as [3], [18]

V�(') =
k2

ck'(� � �k) :
k2

jckj
2 <1 � L2( ) (1)

where � is called the dilation of the shift-invariant space V�('). Let
sin c t = sin�t=�t. Then, V�(sin c) is exactly the ��-band signal
space of finite energy, and hence, the ideal A/D conversion for a signal
of finite energy is formulated as the A/D conversion based on V�(sin c)
[2], [5], [7], [9], [10], [29], [30]. To prefilter an analog signal of fi-
nite energy by an ideal lowpass filter is then equivalent to making a
quasiprojection P �

sin c : L2( ) ! V�(sin c), that is, P �
sin c(f) =

� k2 hf; sin c(� � �k)i sin c(� � �k) for f 2 L2( ), where h�; �i is
the inner product in L2( ) defined by hf; gi = f(t)g(t)dt. Hence,
the aliasing error is e�f = f � P �

sin c(f), which can be made arbi-
trarily small by increasing the dilation � of the shift-invariant space
V�(sin c), i.e., the bandwidth of the ideal lowpass filter. This obser-
vation is very essential in the establishment of the sampling theory in
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Fig. 1. Ideal A/D converter prefilters a signal fof finite energy by an ideal
lowpass filter of bandwidth ��. The output of the system is a ��-band signal
P �
sin c(f) 2 V�(sin c).

Fig. 2. Prefiltering a signal fof finite energy by a quasiprojection into
shift-invariant space V�('). The output of the system is P �

' (f) 2 V�(').
If ' = sin c, it is the conventional prefiltering by an ideal lowpass filter of
bandwidth ��.

Fig. 3. Prefiltering and sampling: A signal fof finite energy is prefiltered
by a quasi-interpolation P �

' into a shift-invariant space V�('). The
prefiltered signal P �

' (f) is sampled by passing it through the unit pulse train

k �(� � k=�). The prefiltered signal P �
' (f) can be perfectly reconstructed

from the samples fP�
' (f)(k=�)gk by Theorem 2. When ' = sin c, this is

the prefiltering by an ideal lowpass filter and sampling by Nyquist sampling
theorem.

shift-invariant spaces [2], [5], [7], [9], [10], [29], [30], and the pre-
filtering theory based on shift-invariant spaces [4], [5], [28], which
will be also addressed in this paper. Therefore, one can consider pre-
filtering a signal by quasiprojections into various shift-invariant spaces
(see Figs. 2 and 3), that is, to project a signal of finite energy to a
shift-invariant space by a quasiprojection P �

' : L2( ) ! V�(') de-
fined by P �

' (f) = � k2 hf; '(� � �k)i'(� � �k) for f 2 L2( ).
In real-world applications, such an extension of prefiltering is useful

and necessary, e.g., to perform nonideal prefiltering [25], to avoid the
Gibbs phenomenon in the fast Fourier transform (FFT) [12], to use the
impulse response of fast decay [23], to take into account real acqui-
sition and reconstruction devices [29], to consider an arbitrary band
signal [16], to obtain smoother frequency cutoff, or for numerical im-
plementation [1], [2], [28], [32]. This is formulated by choosing an
appropriate function ' with some desirable shape corresponding to a
particular “impulse response” of a device, such as a compactly sup-
ported function, a function with polynomial or exponential decay, or
a function ' with smooth cut-off frequency '̂. Then, one prefilters a
signal by a quasiprojection into a shift-invariant space V�(') and ap-
plying sampling theorem to the signals in V�(') [2], [5], [7], [9], [10],
[28], and [30].

Our objective in this paper is to estimate the aliasing error e�f =
f�P�

' (f) for a signal f of finite energy prefiltered by a quasiprojection
into some shift-invariant space V�('). We will prove that the aliasing
error behaves like ke�fk2 � C�;';f�

�� with respect to the dilation �
of the underlying shift-invariant space V�('), provided that ' satisfies
the Strang-Fix condition, and f is Lipschitz-� continuous for some
� 2 (0; 1]. Moreover, we will figure out a formula to calculate the
coefficient C�;';f of the decay rate, which is, however, unknown so
far, even for smooth signals. We will also make a comparison with the
conventional prefiltering by an ideal lowpass filter.

For a smooth signal, some kind of investigation has been done [4],
[20], [21], [27]. In this paper, we focus, however, on the Lipschitz-�

continuous signal space Lip�p for some positive number � � 1 and p �
1, which consists of all the measurable functions f for which the norm
kfkLip = sups2 (kf � f(� � s)kp=jsj

�) < 1, where the norm

k � kp is defined by kfkp = ( jf(t)jpdt)1=p. In a practical sense,
this is an appropriate signal space since a practical signal is usually
not smooth. Theoretically, however, a straightforward extension of our
estimate can be applied to smooth signals as well.

II. ALIASING ERROR FOR PREFILTERING BY QUASI-PROJECTIONS INTO
SHIFT-INVARIANT SPACES

In this section, we will estimate the aliasing error for prefiltering by a
quasi-projection into shift-invariant space, which has been introduced
in the introduction. Our analysis is performed in the the framework of
Wiener amalgam spaces and the Strang–Fix condition. We will also
briefly perform sampling in shift-invariant spaces and give a numerical
result.

A. Wiener Amalgam Spaces and Weighted Wiener Amalgam Spaces

The Wiener amalgam space W , which is commonly used
in sampling theory for shift-invariant spaces [5], [14], [15],
consists of all measurable functions ', for which the norm
k'kW = k supt2[0;1] j'(t � k)j < 1. The weighted Wiener
amalgam spaceWr for r > 0 consists of all measurable functions ',
for which the norm k'kW = k(1+ j � j)r'kW <1. In the remainder
of this section, we assume that a continuous generator ' 2W1, which
means that the generator decays appropriately.

B. Strang–Fix Condition

We also need the Strang–Fix condition, which has been widely used
in approximation by shift-invariant spaces [20], [21], [26]. A contin-
uous generator ' 2 L2( ) is said to satisfy the Strang–Fix condition
if '̂(2k�) = �(k) for k 2 , where � is the Dirac sequence, which
takes 1 at k = 0 and 0 at k 6= 0. Onemay think that the Strang–Fix con-
dition is too strong. However, it is, in fact, a necessary condition for the
aliasing error to decay with some order [20], [21]. By Poisson summa-
tion formula [7], one has k '(t� k) = k '̂(2k�)e

�i2k�t. There-
fore, the Strang–Fix condition is equivalent to k '(� � k) = 1. Ob-
viously, any refinable function satisfies the Strang–Fix condition [11].

C. Prefiltering by Quasi-Projections Into Shift-invariant Spaces

For a continuous generator' 2W1 that satisfies the Strang–Fix con-
dition, the prefiltering P �

' by a quasi-projection into a shift-invariant
space V�(') has been defined in the introduction. Since ' 2W1, one
can extend P �

' to the mapping L2( ) [ L1( ) ! V�(') [ L1( ).
Since ' satisfies the Strang–Fix condition, for any constant c 2 , we
have c = k c'(� � k), and hence, � khc; '(� � �k)i'(� � �k) =
c'̂(0) k '(� � �k) = c. It shows that P (c) = c.

D. Aliasing Error for Prefiltering

In this subsection, we are going to estimate the aliasing error for
a Lipschitz continuous signal prefiltered by a quasi-projection into a
shift-invariant space. This is the main contribution of this paper. We at
first derive an error estimate for a differentiable signal of finite energy.
Then, we use it to obtain an error estimate for a Lipschitz continuous
signal. Let K(s; t) = k '(s � k)'(t � k). Since ' 2 W1, K is
well defined. Then, we have the following estimate, the proof of which
is presented in Appendix A.
Lemma 1: Suppose that a differentiable signal f of finite energy is

prefiltered by a quasiprojection into a shift-invariant space V�('). If
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Fig. 4. (a) Input signal f , which is the characteristic function of the interval [0,2] and, hence, has singularities at t = 0, 2. (b) Sinc function, which is an
everlasting function and decays by the rate O(1=t). (c) B-spline of degree 2, �2, which is supported on [0,2]. (d) Aliasing errors for prefiltering by a lowpass
filter of bandwidth �� and by a quasiprojection into V�(�

2) for dilation � = 10 . . . 20.

the continuous generator ' 2 W1 satisfies the Strang–Fix condition,
then the aliasing error behaves like

e�f
2
� ��3

1

0

dt j(s� t)K(s; t)j ds

�
1

0 `

f 0
t

�
+

�(s� t)

�
� `

�

2

d�

2

:

Now, we use the lemma to estimate the aliasing error for a Lips-
chitz continuous signal of finite energy. Let L� = � ��[0;1](��), where
�[0;1] is the characteristic function of the closed interval [0,1] defined
as �[0;1](t), which takes 1 for t 2 [0; 1] and takes 0 elsewhere. For
a Lipschitz-� continuous signal f 2 L2( ), we define the signal f�
as f� = f � L� � L�, where � is the convolution operator defined by
f �g = f(s)g(��s)ds. SinceL� is supported on [0; 1=�], we have
f�(t) = �

1=�

0
L��f(t�s)ds = �� t�1=�

t
L��f(y)dy, which im-

plies that f is differentiable and that f 0� = �[L� �f�L��f(��1=�)].
Define the autocorrelation filter G' = k j'̂(� + 2k�)j2. Applying
Lemma 1 to f�, we can derive the following estimate, the proof of
which is presented in Appendix B.

Theorem 1: Suppose that a Lipschitz-� continuous signal f of finite
energy is prefiltered by a quasiprojection into a shift-invariant space
V�('). If the continuous generator ' 2 W1 satisfies the Strang–Fix
condition, then the aliasing error behaves like ke�fk2 � C�;';f�

��,
where the coefficient C�;';f = (((1 + kG'k1)(2�+2 � 1)=(� +
1)(�+ 2))+k'k2W )kfkLip .

Since � 2 (0; 1], it is easy to see that the decreasing function
(2�+2 � 1)=((� + 1)(� + 2)) � 3=2. Therefore, the coeffi-
cient C�;';f can be calculated by an inferior but simple formula
C1
�;';f = ((3=2)(1 + kG'k1) + k'k2W )kfkLip . Consider a

signal f that is prefiltered by a lowpass filter of bandwidth ��. Let
I� = �[���;��]. Then, the frequency response of the prefiltered signal

is P �
sin c(f) = f̂�I . By the Parseval identity, the aliasing error is

e�f
2
= f�P�

sin c(f)
2
=

1p
2�

f̂�P �
sin c(f)

2

=
1

2�
f̂�f̂�I

2
=

1p
2�

j!j>��

f̂(!)
2

d! : (2)

If f is a Lipschitz-� continuous signal for some � 2 (1=2;1], one can
obtain an estimate for (2) as ke�fk2 � (kfkLip =2

p
2�� 1)���+1=2

(see Appendix C). Then, aliasing error for the ideal lowpass prefiltering
decays by the order O(���+1=2), which is obviously slower than the
orderO(���), which is the decay rate of aliasing error for prefiltering
by a quasi-projection into an appropriate shift-invariant space.

E. Sampling in Shift-invariant Spaces

An A/D conversion includes the consecutive processes of pre-
filtering, sampling, and quantization. Since quantization is beyond
the scope of this paper, the discussion will be omitted (see Fig. 4).
See our recent manuscript [5] for details. For a signal prefiltered
by an ideal lowpass filter, one can apply Nyquist sampling the-
orem to conduct sampling. Then, the prefiltered signal P �

sin c(f)
can be perfectly reconstructed from the samples fP�

sin c(f)(k=�)gk
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by P �
sin c(f) =

k
P �
sin c(f)(k=�) sin c(� � �k). Similarly, one

can extend Nyquist sampling theorem to the signals in shift-in-
variant spaces [2], [7], [8], [31], [32]. Denote the discrete time
Fourier transfrom (DTFT) of the samples f'(k)gk of ' by
'̂�(!) =

k
'(k)e�ik! . It has been shown that there is an ad-

missible reconstruction filter S' 2 W1 determined by Ŝ' = '̂='̂�,
such that g =

k
g(k)S'(� � k) for g 2 V1('), provided

that '̂� 6= 0. For any g 2 V�('), we have g(�=�) 2 V1(').
Therefore, g(�=�) =

k
g(k=�)S'(� � k). Consequently,

g =
k
g(k=�)S'(� � �k). Applying this result to the prefiltered

signal P �
' (f), we have the sampling theorem for the shift-invariant

space V�(') as follows.
Theorem 2: Suppose that a signal f of finite energy is prefiltered by

a quasi-projection P �
' into a shift-invariant space V�('). If the contin-

uous generator ' 2 W1 such that '̂� 6= 0, then the prefiltered signal
can be perfectly reconstructed by P �

' (f) =
k
P �
' (f)(k=�)S'(� �

�k).
Since sin c

�

= 1, this result coincides with the conventional Nyquist
sampling theorem. Sampling theorem for shift-invariant spaces has
been also extended to the nonuniform sampling in various cases.
See the investigations in [1], [5], [6], [9], [10], [22], and [28]. Since
sinc function slowly decays as time goes to infinity, the conventional
reconstruction is very sensitive to noise. However, one can choose
a generator ' such that Ŝ' decays rapidly. In some extreme cases,
one can design a compactly supported Ŝ' (see the next subsection).
Therefore, reconstruction by Theorem 2 will not be sensitive to noise
and converge rapidly, which will meanwhile reduce the computational
complexity. This is another advantage of prefiltering a signal by a
quasi-projection into a shift-invariant space.

F. Numerical Results

We give a numerical example to demonstrate the prefiltering and
sampling based on theB-spline shift-invariant space. A B-spline of de-
gree N is defined by �N = �[0;1] � � � � � �[0;1], which is the N -times
convolution of the characteristic function �[0;1]. Then, �N = (1 �
e�i!=i!)N , which obviously satisfies the Strang–Fix condition. Sup-
pose that a Lipschitz-� continuous signal f is prefiltered by a quasi-
projection P �

�
into the shift-invariant space V�(�N ). By Theorem 1,

the aliasing error satisfies ke�fk2 � C�;� ;f�
��, where C�;� ;f =

(((1+kG� k1)(2�+2�1)=((�+1)(�+2)))+k�Nk2W )kfkLip .
Consider the input signal f(t) = �[0;2]. Obviously, f has singular-
ities at 0 and 2 [see Fig. 4(a)]. Since f 2 Lip0:52 , it is deduced that
ke�fk2 � O(��0:5). For simplicity, we consider the B-spline of de-
gree 2, �2, the graph of which is shown in Fig. 4(c). By Matlab, we
find kG� k1 = 3 and k'kW = 2. Then, the aliasing error sat-
isfies ke�fk2 � 6��0:5. Fig. 4(d) shows the actual aliasing error for
� = 10; . . . ; 20. The actual aliasing error is lower than the estimate,
which implies that our estimate is not optimal. We also put the aliasing
error for the ideal lowpass prefiltering in Fig. 4(d). Since f 2 Lip11,
the theoretical estimate of aliasing error for ideal lowpass prefiltering
also behaves like O(��0:5), but Fig. 4(d) tells us that the actual ac-
curacy of prefiltering P �

� is superior to that of P �
sin c, even if their

theoretical estimates are in the same order. Visually, we will see that
prefiltering by a quasi-projection into V�(�2) provides good approxi-
mation. In Fig. 5, the ideal lowpass prefiltering P �

sin c introduces small
ripples in the smooth part of f and big ripples at the singularities t = 0,
2. However, P �

� (f) approximates f very well. For this special signal,
f 2 Lip0:52 \Lip11. However, in most cases, f 2 Lip�2 \Lip�1 for some
� 2 (0; 1], e.g., f 2 Lip11 \Lip12 if f is smooth. Hence, prefiltering by
quasi-projection into shift-invariant space provides higher accuracy.

One the other hand, since �̂2
�

(!) = e�i! , by Theorem 2,
S� = �2(� + 1). Since �2 is compactly supported, computing for

Fig. 5. Ideal lowpass prefiltering P �
sin c and the prefiltering P �

� by a

quasi-projection into V�(�
2) for � = 20. This graph is based on the same

computational complexity. Visually, P �
� (f) provides better approximation to

f than P �
sin c does, since P �

sin c(f) introduces small ripples in the smooth part
of fand big ripples at the singularities of f .

finite terms by Theorem 2 will perfectly reconstruct P �
� (f) for any

signal f of finite energy. Since sinc function is an everlasting function
[see Fig. 4(b)], one has to compute for infinite terms to perfectly
reconstruct P �

sin c(f). This reduces the computational complexity in
reconstruction.

III. CONCLUSION

In this paper, we introduce a novel method of prefiltering a signal of
finite energy by a quasi-projection into some shift-invariant spaces. In
such a prefiltering, we find that the aliasing error behaves likeO(���)
if the input signal is Lipschitz-� continuous. An explicit formula to
calculate the coefficient of the decay rate is figured out. Meanwhile,
we make comparison with the ideal lowpass prefiltering theoretically
and numerically. Therefore, it provides various choices for one to de-
sign an A/D conversion system of high accuracy, low computational
complexity (by choosing some compactly supported '), efficient re-
construction for sampling (by choosing some ' such that S' is com-
pactly supported or of fast decay). Future applications include being
suitable for nonideal prefiltering (by choosing some ' such that '̂ has
smooth cut off); being suitable for an arbitrary band signal (by choosing
some ' such that '̂ matches the practical bands); and designing an op-
timal prefiltering (by choosing some ' such that kG'k1 and k'kW
are both small).

APPENDIX A
PROOF OF LEMMA 1

By Taylor’s theorem, we have f(s) = f(t) +
1

0
f 0(t + �(s �

t))(s � t)d�. For any ` 2 , by the definition of prefiltering, we
have P �

' (f)(t � `=�) = �
k
hf; '(� � �k)i'(�(t � `=�) � k)=

�
k
hf;'(� � +` � k)i'(�t � k)= �

k
hf(� � `=�); '(� �

�k)i'(�t � k). Notice f(t � `=�) = �
k
hf(t � `=�); '(� �

�k)i'(�t � k). We have

P �
' (f) t�

`

�
� f t�

`

�

= �
k

'(�t� k) f s�
`

�
� f t�

`

�

� '(�s� k)ds
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= �
k

'(�t� k) '(�s� k)ds

�

1

0

f 0 t�
`

�
+ �(s� t) (s� t)d�

=
k

'(�t� k) '(s� k)ds

�

1

0

f 0 t�
`

�
+ �

s

�
� t

s

�
� t d�:

Let x = t=� + �(s� t)=�. Then

P �
' (f)� f

2

2

=

0 `

P �
' (f) t�

`

�
� f t�

`

�

2

dt

= ��1

1

0 `

P �
' (f)

t

�
�

`

�
� f

t

�
�

`

�

2

dt

= ��3

1

0

dt
`

(s� t)K(s; t)ds

1

0

f 0 x�
`

�
d�

2

� ��3

1

0

dt j(s� t)K(s; t)j ds �

1

0

d�

�
`

f 0
t

�
+

�(s� t)

�
�

`

�

2
2

:

APPENDIX B
PROOF OF THEOREM 1

Since f 0� = �[L� � f � L� � f(� � 1=�)], we have

f 0�(t)
2
= �

0

f(t�s)�f t�
1

�
�s L�(s)ds

2

��2

0

f(t�s)�f t�
1

�
�s

2

ds �

0

jL�(s)j
2 ds

=�3

0

f(t�s)�f t�s�
1

�

2

ds �

1

0

�[0;1]ds

=�3

0

f(t�s)�f t�s�
1

�

2

ds:

Since f 2 Lip�2 , it shows that

`

f 0� t+
`

�

2

� �3

` 0

f t+
`

�
�s �f t+

`

�
�s�

1

�

2

(3)

= �3

`

f(t� s)� f t� s�
1

�

2

ds

= �3 f(t� �)� f t�
1

�
� �

2

2

� �3�2�kfk2Lip : (4)

By Lemma 1 and (4), we have kf� � P �
' (f�)k

2
2�

��2�kfk2Lip sups2 ( j(s � t)K(s; t)jdt)2. On the other
hand, we also have

j(s� t)K(s; t)j dt

=
k

j(s� t� k + k)'(s� k)'(t� k)j dt

�
k

(1 + js� kj) (1 + jt � kj) j'(s� k)'(t� k)j dt

� k'k2W : (5)

It is deduced that kf� � P �
' (f�)k2 � kfkLip k'k2W ���. By

the definition of L�, we have L� � L� =
1=�

0
�L�(t � s)ds =

�
1

0
�[0;1](�t � s)ds, which implies that L� � L�(t)dt =

1

0
ds �L(�t � s)dt=

1

0
ds �[0;1](t)dt = 1. Since f 2 Lip�2 ,

we have

kf� � fk2 = [f(� � s)� f(�)] (L� � L�)(t)dt

2

= kf(� � t)� f(�)k2 j(L� � L�)(t)jdt

�kfkLip jtj� j(L� � L�)(t)jdt

= kfkLip jtj�dt

1

0

��j[0;1](�t� s)ds

=���kfkLip jtj�dt

1

0

�[0;1](t� s)ds: (6)

Since 1

0
�[0;1](t�s)ds= t�[0;1]+(2�t)�[1;2],we have kf��fk2 �

((2�+2�1=((�+1)(�+2)))���kfkLip . Finally, the aliasing error
is

e�f
2
�kf�f�k2+ f��P�

' (f�)
2
+ P �

' (f�)�P�
' (f)

2

����kfkLip
1+ P �

' 2
(2�+2�1)

(�+ 1)(�+ 2)
+k'k2W

where kP�
'k2 is the norm of the quasi-projection P �

' defined by
kP�

'k2 = supf2L ( )(kP
�
' (f)k2=kfk2). In order to prove Theorem
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1, we need to prove kP �
'k2 � kG'k1 only. By the Parseval identity,

we have

P �
' (f)

2

= �
k

hf; '(� � �k)i'(� � �k)
2

=
1p
2�

'̂
�
�

k

1

2��
f̂ �̂'

�
�

; e e�

2

=
1p
2�

2��

0

G'
!

�

�
k

f̂(! + 2k��)�̂'
!

�
+ 2k�

2

d!

� 1p
2�

kG'k1
2�

0 k

f̂(! + 2k�)
2

�
k

'̂
!

�
+ 2k�

2

d!

� 1p
2�

kG'k1kf̂k2
= kG'k1kfk2:

Therefore, kP�
'k2 � kG'k1. This completes the proof.

APPENDIX C
ALIASING ERROR FOR PREFILTERING BY AN IDEAL LOWPASS FILTER

OF BANDWIDTH ��

By the definition of the Fourier transform, for ! 6= 0, we have

f̂(!) = f(t)e�it!dt

= f t� �

!
e�i(t� )!dt

= � f t� �

!
e�it!dt:

Since f 2 Lip�1 , we have

2f̂(!) = f(t)� f t� �

!
e�i!tdt

� f � f � � �

! 1

�kfkLip
�

!

�

:

Therefore, the aliasing error satisfies

e�f
2

2
�
kfk2Lip �2�

8�
j!j>��

j!j�2�d!

=
kfk2Lip �2�

4�(2�� 1)
(��)�(2��1)

=
kfk2Lip
4(2�� 1)

��(2��1)

that is ke�fk2 � (kfkLip =2
p
2�� 1)��(��1=2).
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Robust Super-Exponential Methods for Deflationary Blind
Source Separation of Instantaneous Mixtures

Mitsuru Kawamoto, Member, IEEE,
Kiyotaka Kohno, Student Member, IEEE, and

Yujiro Inouye, Member, IEEE

Abstract—The so-called “super-exponential” methods (SEMs) are
attractive methods for solving blind signal processing problems. The
conventional SEMs, however, have such a drawback that they are very
sensitive to Gaussian noise. To overcome this drawback, we propose a
new SEM. While the conventional SEMs use the second- and higher order
cumulants of observations, the proposed SEM uses only the higher order
cumulants of observations. Since higher order cumulants are insensitive
to Gaussian noise, the proposed SEM is robust to Gaussian noise, which
is referred to as a robust super-exponential method (RSEM). To show the
validity of the proposed RSEM, some simulation results are presented.

Index Terms—Blind source separation, deflationary approach, Gaussian
noise, instantaneous mixtures, super-exponential methods.

I. INTRODUCTION

This correspondence deals with the blind source separation (BSS)
problem of a static system driven by (or linear mixtures of) independent
source signals. To solve this problem, the ideas of the super-exponen-
tial methods (SEMs) in [1], [4], and [6] are used. Several researchers
(e.g., [1], [4]–[6], [10]) have so far proposed some SEMs for solving in-
dependent component analysis (ICA), blind deconvolution (BD), and
blind channel equalization (BCE). One of the attractive properties of
the SEMs is that they are computationally efficient and that they con-
verge to a desired solution at a super-exponential rate. However, almost
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all the conventional SEMs have the drawback that they are very sensi-
tive to Gaussian noise (this will be shown in Section IV) because they
utilize the second- and higher order cumulants of observations.
In this correspondence, we propose a new SEM that overcomes the

drawback. The proposed SEM utilizes only the higher order cumu-
lants of observations, and hence, the proposed SEM becomes robust
to Gaussian noise, which is referred to as a robust super-exponential
method (RSEM). Simulation results show that the proposed RSEM is
robust to Gaussian noise and can successfully achieve the BSS of static
systems (or linear mixtures of independent source signals).

II. PROBLEM FORMULATION

Throughout this correspondence, let us consider the following
MIMO static system with n inputs and m outputs:

yyy(t) = HsHsHs(t) + nnn(t) (1)

where yyy(t) represents anm-column output vector called the observed
signal, sss(t) represents an n-column input vector called the source
signal,HHH is anm� n matrix, and nnn(t) represents anm-column noise
vector. It can be regarded as a linear mixture model with additive noise.
To achieve the blind source separation (BSS) for the system (1), the

following n filters, which arem-input single-output (MISO) static sys-
tems driven by the observed signals, are used:

zl(t) = www
T
l yyy(t); l = 1; 2; � � � ; n (2)

where zl(t) is the lth output of the filter, and wwwl =
[wl1; wl2; � � � ; wlm]T is an m-column vector representing the
m coefficients of the filter. Substituting (1) into (2), we obtain

zl(t) =www
T
l HsHsHs(t) +www

T
l nnn(t)

=ggg
T
l sss(t) +www

T
l nnn(t); l = 1; 2; � � � ; n (3)

where gggl = [gl1; gl2; � � � ; gln]
T := HHH

T
wwwl is an n-column vector. The

BSS problem considered in this correspondence can be formulated as
follows: Find n filters wwwl’s denoted by ~wwwl’s satisfying the following
condition, without the knowledge ofHHH , even if the Gaussian noisennn(t)
is added to the observed signal yyy(t)

~gggl = HHH
T ~wwwl = ~���l; l = 1; 2; � � � ; n (4)

where ~���l is an n-column vector whose elements ~�lr (r = 1; 2; � � � ; n)
are equal to zero, expect for the �lth element, that is, ~�lr = cl�(r��l),
r = 1; 2; � � � ; n.
Here, �(t) is the Kronecker delta function, cl is a number standing

for a scale change, and �l is one of integers f1; 2; � � � ; ng such that the
set f�1; �2; � � � ; �ng is a permutation of the set f1; 2; � � � ; ng.
To solve the BSS problem, we put the following assumptions on the

system and the source signals.

A1) The matrix HHH in (1) is an m � n (m � n) matrix and has
full column rank.

A2) The input sequence fsss(t)g is a zero-mean, non-Gaussian
vector stationary process whose element processes fsi(t)g,
i = 1; 2; � � � ; n are mutually statistically independent and
have nonzero (p+ 1)st-order cumulants �i defined as

�i = cumfsi(t); si(t); � � � ; si(t)

p+1

g 6= 0 (5)

where i = 1; 2; � � � ; n, and p � 2.
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