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2Uos2(M)+1] Then, we have counted the number of flops that a stan-
dard 1-D search algorithm require to locate the maxima abscissas and
the number of flops required by Newton’s method based on Horner’s
synthetic division [6, section 9.5]. They, respectively, required 3000
and 1788 real flops. (A real flop is the cost of computing a real sum
or a real product.) These values are only approximate given that in the
standard search algorithm, only the flops required to evaluate (8) were
accounted for.

VIII. CONCLUSIONS

We have presented an efficient method to compute the Spectral and
Root MUSIC estimations based on a conformal transformation. They
can be calculated from the real roots of a real (234 — 2)-degree poly-
nomial that lie inside the [—1, 1] range in Spectral MUSIC and from
the complex conjugate roots of a real (2M — 2)-degree polynomial
in (Unitary) Root MUSIC. The calculation of the polynomial coeffi-
cients in both cases roughly requires 4342 K real flops plus 2 times
the computational cost of the convolution of two M -length vectors. For
(Unitary) Root MUSIC, given that the resulting polynomial is real, the
computational burden of the polynomial rooting step has been reduced.
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Estimate of Aliasing Error for Non-Smooth Signals
Prefiltered by Quasi-Projections Into
Shift-Invariant Spaces

Wen Chen, Member, IEEE, Bin Han, and Rong-Qing Jia

Abstract—An ideal analog-to-digital (A/D) converter prefilters a signal
by an ideal lowpass filter. Recent research on A/D conversion based on shift-
invariant spaces reveals that prefiltering signals by quasiprojections into
shift-invariant spaces provides more flexible choices in designing an A/D

conversion system of high accuracy. This paper focuses on the accuracy

of such prefiltering, in which the aliasing error e; is found to behave like

||e; [|l2 = O(X™=) with respect to the dilation A of the underlying shift-
invariant space, provided that the input signal f is Lipschitz-o continuous.
A formula to calculate the coefficient of the decay rate is also figured out in
this paper.

Index Terms—A/D conversion, aliasing error, lowpass filter, prefiltering,

quasiprojection, sampling, shift-invariant spaces, Strang-Fix condition,
Wiener amalgam spaces.

I. INTRODUCTION

In digital signal processing and digital communications, an analog
signal is converted to a digital signal by an A/D (analog-to-digital) con-
verter. An analog signal f is of finite energy if ||f]]2 < oo, where
[I£1|2 is the square norm of f defined by [|f]l. = (g [f (&) [2de)'/2.
We also denote by L?(R) the signal space of finite energy, that is,
L*(R) = {f : ||f]l2 < oo}. f is said to be bandlimited if f(w) = 0
whenever |w| > ¢ for some o > 0, where f is the Fourier transform of
f defined by f(w) = fR f(t)e™"™*'dt. Inthis case, f is called a 0 -band
signal. An ideal A/D converter prefilters a signal of finite energy by an
ideal lowpass filter (see Fig. 1). Then, the difference between the pre-
filtered signal and the original signal is referred to as the aliasing error.
To reduce the aliasing error, one has to increase the bandwidth of the
lowpass filter.

For a A > 1, the shift-invariant space V() generated by the gen-
erator ¢ € L*(R) is defined as [3], [18]

Valyp) = {ZCW(A. —k) Y ler]? < oo} CL*R) ()

kez kez

where ) is called the dilation of the shift-invariant space V) (y). Let
sinc ¢ = sinwt/wt. Then, Vi(sinc) is exactly the mA-band signal
space of finite energy, and hence, the ideal A/D conversion for a signal
of finite energy is formulated as the A/D conversion based on V), (sin ¢)
[2], [51, [71, [9], [10], [29], [30]. To prefilter an analog signal of fi-
nite energy by an ideal lowpass filter is then equivalent to making a
quasiprojection PA.. : L*(R) — Vi(sinc), that is, P;\im(f) =
A ez(fisine(X- —k))sinc(X- —k) for f € L*(R), where (-, -) is
the inner product in L*(R) defined by (f. g) = [ f(t)g(t)dt. Hence,
the aliasing error is c? = f — P23, .(f), which can be made arbi-
trarily small by increasing the dilation A of the shift-invariant space
Va(sinc), i.e., the bandwidth of the ideal lowpass filter. This obser-
vation is very essential in the establishment of the sampling theory in
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Fig. 1. Ideal A/D converter prefilters a signal fof finite energy by an ideal
lowpass filter of bandwidth 7. The output of the system is a 7 A-band signal

Ps/}n c ( f) € ‘Y)\ ( sin (').

f—-—P;:

Fig. 2. Prefiltering a signal fof finite energy by a quasiprojection into
shift-invariant space V(). The output of the system is P,;,\ (f) € \(p).
If ¢ = sinc, it is the conventional prefiltering by an ideal lowpass filter of
bandwidth 7 A.

Quasi-projection —= P (1)
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Fig. 3. Prefiltering and samEling: A signal fof finite energy is prefiltered
by a quasi-interpolation P, into a shift-invariant space Vx(p). The
prefiltered signal Pé (f) is sampled by passing it through the unit pulse train
>4 8(- = k/X). The prefiltered signal P ( f) can be perfectly reconstructed
from the samples {P: (f)(k/X\)} by Theorem 2. When ¢ = sin ¢, this is
the prefiltering by an ideal lowpass filter and sampling by Nyquist sampling
theorem.

shift-invariant spaces [2], [5], [71, [9], [10], [29], [30], and the pre-
filtering theory based on shift-invariant spaces [4], [5], [28], which
will be also addressed in this paper. Therefore, one can consider pre-
filtering a signal by quasiprojections into various shift-invariant spaces
(see Figs. 2 and 3), that is, to project a signal of finite energy to a
shift-invariant space by a quasiprojection P2 : L*(R) — Vi(y) de-
fined by P2(f) = A Xy cq (f. 2 (X =k))p(X - =k) for f € L*(R).

In real-world applications, such an extension of prefiltering is useful
and necessary, e.g., to perform nonideal prefiltering [25], to avoid the
Gibbs phenomenon in the fast Fourier transform (FFT) [12], to use the
impulse response of fast decay [23], to take into account real acqui-
sition and reconstruction devices [29], to consider an arbitrary band
signal [16], to obtain smoother frequency cutoff, or for numerical im-
plementation [1], [2], [28], [32]. This is formulated by choosing an
appropriate function ¢ with some desirable shape corresponding to a
particular “impulse response” of a device, such as a compactly sup-
ported function, a function with polynomial or exponential decay, or
a function ¢ with smooth cut-off frequency (. Then, one prefilters a
signal by a quasiprojection into a shift-invariant space V() and ap-
plying sampling theorem to the signals in Vi (¢) [2], [5], [7], [9], [10],
[28], and [30].

Our objective in this paper is to estimate the aliasing error e? =
f- P;,\ (f) forasignal f of finite energy prefiltered by a quasiprojection
into some shift-invariant space V(). We will prove that the aliasing
error behaves like [le}|]a < Ca.p,sA™" with respect to the dilation A
of the underlying shift-invariant space V (), provided that ¢ satisfies
the Strang-Fix condition, and f is Lipschitz-o continuous for some
a € (0,1]. Moreover, we will figure out a formula to calculate the
coefficient C'y,, r of the decay rate, which is, however, unknown so
far, even for smooth signals. We will also make a comparison with the
conventional prefiltering by an ideal lowpass filter.

For a smooth signal, some kind of investigation has been done [4],
[20], [21], [27]. In this paper, we focus, however, on the Lipschitz-o
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continuous signal space Lipf) for some positive number o« < 1 andp >
1, which consists of all the measurable functions f for which the norm
IfllLipe = supser(llf = f(- = s)llp/Is|*) < oo, where the norm

I - |l is defined by [|fll, = ([ [£(£)[?dt)"/?. In a practical sense,
this is an appropriate signal space since a practical signal is usually
not smooth. Theoretically, however, a straightforward extension of our
estimate can be applied to smooth signals as well.

II. ALIASING ERROR FOR PREFILTERING BY QUASI-PROJECTIONS INTO
SHIFT-INVARIANT SPACES

In this section, we will estimate the aliasing error for prefiltering by a
quasi-projection into shift-invariant space, which has been introduced
in the introduction. Our analysis is performed in the the framework of
Wiener amalgam spaces and the Strang—Fix condition. We will also
briefly perform sampling in shift-invariant spaces and give a numerical
result.

A. Wiener Amalgam Spaces and Weighted Wiener Amalgam Spaces

The Wiener amalgam space W, which is commonly used
in sampling theory for shift-invariant spaces [5], [14], [15],
consists of all measurable functions ¢, for which the norm

lellw = 3¢ subep 1 lp(t — k)| < oo. The weighted Wiener
amalgam space W, for r > 0 consists of all measurable functions ¢,
for which the norm ||¢||w, = ||(L4]|-])"¢||lw < oo. In the remainder

of this section, we assume that a continuous generator ¢ € W, which
means that the generator decays appropriately.

B. Strang-Fix Condition

We also need the Strang—Fix condition, which has been widely used
in approximation by shift-invariant spaces [20], [21], [26]. A contin-
uous generator ¢ € L?(R) is said to satisfy the Strang—Fix condition
if 9(2kw) = 6(k) for k € Z, where 6 is the Dirac sequence, which
takes 1 at k = 0 and O at k # 0. One may think that the Strang—Fix con-
dition is too strong. However, it is, in fact, a necessary condition for the
aliasing error to decay with some order [20], [21]. By Poisson summa-
tion formula [7], one has 3", ¢(t — k) = 3, $(2km)e "2+ There-
fore, the Strang—Fix condition is equivalent to ), (- — k) = 1. Ob-
viously, any refinable function satisfies the Strang—Fix condition [11].

C. Prefiltering by Quasi-Projections Into Shift-invariant Spaces

For a continuous generator ¢ € W, that satisfies the Strang—Fix con-
dition, the prefiltering Pé by a quasi-projection into a shift-invariant
space Vi () has been defined in the introduction. Since ¢ € Wi, one
can extend P} to the mapping L*(R) U L>=(R) — Vi(¢) U L=(R).
Since ¢ satisfies the Strang—Fix condition, for any constant ¢ € R, we
have ¢ = ), cp(- — k), and hence, A >, (¢, (A - —k))o(A- —k) =
c(0) >, ¢(A- —k) = c. It shows that P(c¢) = c.

D. Aliasing Error for Prefiltering

In this subsection, we are going to estimate the aliasing error for
a Lipschitz continuous signal prefiltered by a quasi-projection into a
shift-invariant space. This is the main contribution of this paper. We at
first derive an error estimate for a differentiable signal of finite energy.
Then, we use it to obtain an error estimate for a Lipschitz continuous
signal. Let K'(s,t) = >, (s — k)o(t — k). Since o € W1, K is
well defined. Then, we have the following estimate, the proof of which
is presented in Appendix A.

Lemma 1: Suppose that a differentiable signal f of finite energy is
prefiltered by a quasiprojection into a shift-invariant space Vy(¢). If
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Fig. 4. (a) Input signal f, which is the characteristic function of the interval [O 2] and, hence, has singularities at ¢ = 0, 2. (b) Sinc function, which is an

everlasting function and decays by the rate O(1/t). (c) B- splme of degree 2, 8 , which is supported on [0,2]. (d) Aliasing errors for prefiltering by a lowpass
filter of bandwidth 7\ and by a quasiprojection into V (/3?) for dilation A = 10 . 20.

the continuous generator ¢ € W,
then the aliasing error behaves like
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Now, we use the lemma to estimate the aliasing error for a Lips-
chitz continuous signal of finite energy. Let Ly = X- x[0,1](\-), where
X[0,1] is the characteristic function of the closed interval [0,1] defined
as Xjo,1](t), which takes 1 for ¢ € [0, 1] and takes O elsewhere. For
a Lipschitz-« continuous signal f € L*(R), we define the signal f
as fa = f x Ly x Ly, where * is the convolution operator defined by
fxg= [4 f(s)g(-—s)ds.Since L is supported on [0, 1/A], we have
) =X [ Dasflt—s)ds = =X [/ Lyx f(y)dy, which im-
plies that £ is differentiable and that fy = A[Lx*f—Lxxf(-—1/X)].
Define the autocorrelation filter G, = Y, |¢(- + 2km)|*. Applying
Lemma 1 to f1, we can derive the following estimate, the proof of
which is presented in Appendix B.

Theorem 1: Suppose that a Lipschitz-« continuous signal f of finite
energy is prefiltered by a quasiprojection into a shift-invariant space
V(). If the continuous generator ¢ € W satisfies the Strang—Fix
condition, then the aliasing error behaves like ||(>j\||2 < Cayp t A%,
where the coefficient Co o f = (((1 4 [|Golloo)(2°T% = 1)/(a +
1)(a+2))+H el i ips - "

satisfies the Strang—Fix condition,

Since @ € (0,1], it is easy to see that the decreasing function
(272 — 1)/(( + 1)(a + 2)) < 3/2. Therefore, the coeffi-
cient Cq ¢ can be calculated by an inferior but simple formula
Choy = (3/201 + 1Gollo) + el Fllips - Consider a
signal f that is prefiltered by a lowpass filter of bandwidth 7. Let
I, = = X[-mamAl- Then, the frequency response of the prefiltered signal

is ij (f) = fxr, . By the Parseval 1dent1ty, the aliasing error is
]|, = = ||F-PL 0],
3
= L=y == Flo] dw @
T on XDy 2 \/2x '
Jw|>mX

If f is a Lipschitz-« continuous signal for some « € (1/2, 1], one can
obtain an estimate for (2) as ||(>’,L\ llz < (N fllLipe /2v 200 = T)A—ot1/2
(see Appendix C). Then, aliasing error for the ideal lowpass prefiltering
decays by the order O( A"9H1/2) which is obviously slower than the
order O(A™%), which is the decay rate of aliasing error for prefiltering
by a quasi-projection into an appropriate shift-invariant space.

E. Sampling in Shift-invariant Spaces

An A/D conversion includes the consecutive processes of pre-
filtering, sampling, and quantization. Since quantization is beyond
the scope of this paper, the discussion will be omitted (see Fig. 4).
See our recent manuscript [5] for details. For a signal prefiltered
by an ideal lowpass filter, one can apply Nyquist sampling the-
orem to conduct sampling. Then, the prefiltered signal Ph.(f)
can be perfectly reconstructed from the samples { P, . (f)(k/X)} i
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by Piue(f) = . Phnc(f)(k/N)sinc(X\ - —k). Similarly, one
can extend Nyquist sampling theorem to the signals in shift-in-
variant spaces [2], [7], [8], [31], [32]. Denote the discrete time
Fourier transfrom (DTFT) of the samples {¢(k)}r of ¢ by
¢*(w) = 3, @(k)e "™ It has been shown that there is an ad-
missible reconstruction filter S, € W determined by S, = ¢/¢",

such that ¢ = >, g(k)S,(- — k) for ¢ € Vi(y), provided
that ¢ # 0. For any ¢ € Vi(¢), we have g(-/\) € Vi(p).

Therefore, g(-/A) = >, 9(k/A\)S,(- — k). Consequently,
g = > 9(k/X)S,(X - —Fk). Applying this result to the prefiltered
signal P;\( f), we have the sampling theorem for the shift-invariant
space Vi () as follows.

Theorem 2: Suppose that a signal f of finite energy is prefiltered by
a quasi-projection P;,\ into a shift-invariant space V(). If the contin-
uous generator ¢ € Wy such that ™ # 0, then the prefiltered signal
can be perfectly reconstructed by P2 (f) = 3, P2(£)(k/N)S,(\ -
—k). ) [ |

Sincesinc = 1, this result coincides with the conventional Nyquist
sampling theorem. Sampling theorem for shift-invariant spaces has
been also extended to the nonuniform sampling in various cases.
See the investigations in [1], [5], [6], [9], [10], [22], and [28]. Since
sinc function slowly decays as time goes to infinity, the conventional
reconstruction is very sensitive to noise. However, one can choose
a generator ¢ such that S} decays rapidly. In some extreme cases,
one can design a compactly supported S,, (see the next subsection).
Therefore, reconstruction by Theorem 2 will not be sensitive to noise
and converge rapidly, which will meanwhile reduce the computational
complexity. This is another advantage of prefiltering a signal by a
quasi-projection into a shift-invariant space.

F. Numerical Results

We give a numerical example to demonstrate the prefiltering and
sampling based on the B-spline shift-invariant space. A B-spline of de-
gree IV is defined by BN = X[o0,1] * *** * X[0,1] Which is the N -times
convolution of the characteristic function x[o,1). Then, ﬁ = (1-
e™™ /iw)™, which obviously satisfies the Strang—Fix condition. Sup-
pose that a Lipschitz-a continuous signal f is prefiltered by a quasi-
projection PjN into the shift-invariant space V(3" ). By Theorem 1,
the aliasing error satisfies ||r’?||2 < Oy gn A, where O sn =
(LG lloe) 2742 = 1)/ (a4 D) (420D + 18V Bl Fllins -
Consider the input signal f(t) = X[o,2]. Obviously, f has singular-
ities at 0 and 2 [see Fig. 4(a)]. Since f € Lipy~®, it is deduced that
lletll= < O(XA~°?). For simplicity, we consider the B-spline of de-
gree 2, 3%, the graph of which is shown in Fig. 4(c). By Matlab, we

find [|Gs2l|lc = 3 and ||¢||w, = 2. Then, the aliasing error sat-
isfies [le}|l2 < 6A~°°. Fig. 4(d) shows the actual aliasing error for
A = 10,...,20. The actual aliasing error is lower than the estimate,

which implies that our estimate is not optimal. We also put the aliasing
error for the ideal lowpass prefiltering in Fig. 4(d). Since f € Lip!,
the theoretical estimate of aliasing error for ideal lowpass prefiltering
also behaves like O(A™°%), but Fig. 4(d) tells us that the actual ac-
curacy of prefiltering Pﬁ\z is superior to that of P2, ., even if their
theoretical estimates are in the same order. Visually, we will see that
prefiltering by a quasi-projection into V3 (3?) provides good approxi-
mation. In Fig. 5, the ideal lowpass prefiltering Py, . introduces small
ripples in the smooth part of f and big ripples at the singularities ¢ = 0,
2. However, sz (f) approximates f very well. For this special signal,
f € Lip) NLip! . However, in most cases, f € LipS NLip for some
« € (0,1],e.g., f € Lip; NLip} if f is smooth. Hence, prefiltering by
quasi-projection into shift-invariant space provides higher accuracy.
One the other hand, since 42 (w) = e ™, by Theorem 2,
Sgz = B%(- 4 1). Since #? is compactly supported, computing for
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Fig. 5. Ideal lowpass prefiltering Pj}n . and the prefiltering R;Q by a
quasi-projection into V3 (3%) for A\ = 20. This graph is based on the same
computational complexity. Visually, Pé\g (f) provides better approximation to

fthan P2, . does, since P2, . (f) introduces small ripples in the smooth part
of fand big ripples at the singularities of f.

finite terms by Theorem 2 will perfectly reconstruct ng (f) for any
signal f of finite energy. Since sinc function is an everlésting function
[see Fig. 4(b)], one has to compute for infinite terms to perfectly
reconstruct P2, -(f). This reduces the computational complexity in
reconstruction.

III. CONCLUSION

In this paper, we introduce a novel method of prefiltering a signal of
finite energy by a quasi-projection into some shift-invariant spaces. In
such a prefiltering, we find that the aliasing error behaves like O(A™%)
if the input signal is Lipschitz-«w continuous. An explicit formula to
calculate the coefficient of the decay rate is figured out. Meanwhile,
we make comparison with the ideal lowpass prefiltering theoretically
and numerically. Therefore, it provides various choices for one to de-
sign an A/D conversion system of high accuracy, low computational
complexity (by choosing some compactly supported ), efficient re-
construction for sampling (by choosing some ¢ such that S, is com-
pactly supported or of fast decay). Future applications include being
suitable for nonideal prefiltering (by choosing some ¢ such that ¢ has
smooth cut off); being suitable for an arbitrary band signal (by choosing
some ¢ such that ¢ matches the practical bands); and designing an op-
timal prefiltering (by choosing some ¢ such that |G, || and ||| w,
are both small).

APPENDIX A
PROOF OF LEMMA 1

By Taylor’s theorem, we have f(s) = f(t) + fol i+ 0(s —
t))(s — t)df. For any { € Z, by the definition of prefiltering, we
have P2(f)(t = (/X)) = A Y, (fro(A - =k) (At = ¢/A) = k)=
AL (P oA -+ = B)pOE — B)= AL, = £/A)p(A -
—k))p(At — k). Notice f(t — £/X) = XY, (f(t = L/N), (X -
—Fk))p(At — k). We have

PX(f) (f— §) —f(t— é)
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ke R

1
-/f’ {t—%+€(s—t}} (s —t)d#

= Zp(/\t — k) /gp(a — k)ds

k R

S-G9 G-

Letx = t/A+ 6(s — t)/\. Then

R -1,

:0/; PX(f) (t— %) —f<t— %)

= [l (-5~ (-3)

= ,\—3/1(&; /(s—t)ls’(s, t)ds/lf’ (:c— §> e
0 R 0

<AT? /dt /|(s—t)lx"(s,t)|ds-/‘d{9
R

XQZ

dt

2

W=
W

St B(s—t) (
d f<x+ X _X>

)

APPENDIX B
PROOF OF THEOREM 1

Since fi = A[Lx x f — L % f(- — 1/))], we have

ll
=

Gl

Since f € Lipg, it shows that
, {
t —

I < + )\>

<\ ‘f <t+f—s>—f(t+f—s—l>
ztjo/ A A A

9

>

¢

2

3

1931
L
A 1 2
:/\32 / ‘f(t—s)—f(t—s—x) ds
ety
A
1 2
=Nfe=-D—-fFlt=—=—-
se-=1(t-5-)|.
3—2a)| £112
<A ||f||Lip§- “
By Lemma 1 and (4), we have |[|fn -— P?(f,\)HSS

)\_m”f”iipa sup,cg(fg (s — t)K(s.t)|dt)>. On the other
hand, we also have

/ |(s — t)K (s,t)| dt

R

:Z/I(S—t—k+k)p(s—k)p(t—k)|dt
kR

< ;./(14' s — k|) (14 |t — k|) |o(s — k)p(t — k)| dt
R

< llelli, - (5)

It is deduced that [|fx — PZ(f3)ll> < [IFllips lelif, A~ By
the definition of Ly, we have Ly + Ly = [/  ALA(t — s)ds =
X [ Xjo,1)(At — s)ds, which implies that [ Ly % La(t)dt =
J) ds [o \L(Xt = s)dt= [ ds [ \jo,1(t)dt = 1. Since f € Lips,
we have

s = fllo / [F(- = $) = F)] (Ly + L) (8)dt

R 2

/Ilf(- ) = Ol 1L+ La)(0)] dt
R

<flliigs [ 17 1(Za s Lo

R
1

1 flipg [ 1174t [ Ml (3¢ = )
J e

0
1

:)\_u“fHLlp;/|t|udt/>([0’l](f_5)d8 (6)

R 0

Since .[01 X[OJ](t_S)ds = fX/[0,1]+(2—t)X[1,2],W3 have || fa—fll2 <

((2°T2 —1/((a4+1)(« +2)))A™" (| fllipe - Finally, the aliasing error
. 2

1S

A
er

|, <lF=fille+ | = P20 4]

PX1=P(F),

1+]|P2[,) 2+ =1 ‘

S)\*W”f”Lip" ( (a4 1)(a+2)

where [|P2||2 is the norm of the quasi-projection P} defined by
||P; |2 = supfeLz(R)(||P;,\(f)||2/||f||2). In order to prove Theorem
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1, we need to prove || P2 |2 < [|G

- only. By the Parseval identity,

we have
|P2c
2
=AY (fp(A =Ry p(A - —k)
k 2
1 . . 1 P . ki- _ ik
= ———=|¥Y\T Z f‘rﬁ kY 76X e A
e O
27w
1 w
o / *O(A) 2l
0
2 5
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[8]
Therefore, || P2 |2 < ||G ||~ This completes the proof.

[9]

APPENDIX C
ALIASING ERROR FOR PREFILTERING BY AN IDEAL LOWPASS FILTER
OF BANDWIDTH 7 A

[10]
[11]
By the definition of the Fourier transform, for w # 0, we have b
[12]

flw) = /.f(t)f?_mdt [13]
R

/f (t - g) emilt=3)w gy

R

- /f (t - 5) et
R

Since f € Lip{', we have

2| = | [ (1007 (6= T)) e ar

R

lr=7(-2)

’T‘C"

[14]

[15]

[16]

[17]

(18]

[19]

INA

11

IN

Flly s Z
” ||Llp1 w 21

Therefore, the aliasing error satisfies

. o 22
s NI e 2]
e <$ |w|_2”(]"
Tl = 8w - (23]
|w]>wA
2 2
_ ||f||L1p;Y7T (Wk)i(zail) [24]
47200 — 1) [25]
2
_ IFILips ooy [26]
42 = 1)

. [27]
that is [|e}]]2 < (1 llip /2v2a =1 T)A—(a=1/2),
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Abstract—The so-called ‘‘super-exponential” methods (SEMs) are
attractive methods for solving blind signal processing problems. The
conventional SEMs, however, have such a drawback that they are very
sensitive to Gaussian noise. To overcome this drawback, we propose a
new SEM. While the conventional SEMs use the second- and higher order
cumulants of observations, the proposed SEM uses only the higher order
cumulants of observations. Since higher order cumulants are insensitive
to Gaussian noise, the proposed SEM is robust to Gaussian noise, which
is referred to as a robust super-exponential method (RSEM). To show the
validity of the proposed RSEM, some simulation results are presented.

Index Terms—Blind source separation, deflationary approach, Gaussian
noise, instantaneous mixtures, super-exponential methods.

I. INTRODUCTION

This correspondence deals with the blind source separation (BSS)
problem of a static system driven by (or linear mixtures of) independent
source signals. To solve this problem, the ideas of the super-exponen-
tial methods (SEMs) in [1], [4], and [6] are used. Several researchers
(e.g., [1], [4]-[6], [10]) have so far proposed some SEMs for solving in-
dependent component analysis (ICA), blind deconvolution (BD), and
blind channel equalization (BCE). One of the attractive properties of
the SEMs is that they are computationally efficient and that they con-
verge to a desired solution at a super-exponential rate. However, almost
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all the conventional SEMs have the drawback that they are very sensi-
tive to Gaussian noise (this will be shown in Section IV) because they
utilize the second- and higher order cumulants of observations.

In this correspondence, we propose a new SEM that overcomes the
drawback. The proposed SEM utilizes only the higher order cumu-
lants of observations, and hence, the proposed SEM becomes robust
to Gaussian noise, which is referred to as a robust super-exponential
method (RSEM). Simulation results show that the proposed RSEM is
robust to Gaussian noise and can successfully achieve the BSS of static
systems (or linear mixtures of independent source signals).

II. PROBLEM FORMULATION

Throughout this correspondence, let us consider the following
MIMO static system with n inputs and 2 outputs:

y(t) = Hs(t) +n(?) (1

where y(t) represents an m-column output vector called the observed
signal, 8(t) represents an n-column input vector called the source
signal, H is an m x n matrix, and n(t) represents an m-column noise
vector. It can be regarded as a linear mixture model with additive noise.
To achieve the blind source separation (BSS) for the system (1), the
following n filters, which are m-input single-output (MISO) static sys-
tems driven by the observed signals, are used:
at) =wiyt), [=1.2,---.n )
where z(t) is the Ith output of the filter, and w; =
[win, wig, -« w,m]T is an m-column vector representing the
m coefficients of the filter. Substituting (1) into (2), we obtain

z(t) =w] Hs(t) +w/ n(t)
=g/ s(t)+w/n(t), 1=1,2,---,n 3)
where ¢, = [gi1, g2, - - - » gia]* := H"  w, is an n-column vector. The
BSS problem considered in this correspondence can be formulated as
follows: Find n filters w;’s denoted by w;’s satisfying the following
condition, without the knowledge of H, even if the Gaussian noise n(t)
is added to the observed signal y(t)
g=H'in=6, 1=12,-n )
where 31 is an n-column vector whose elements 51,, gr =1,2,---,n)
are equal to zero, expect for the psth element, that is, 6, = ¢;6(r — p1),
r=12-n.

Here, 6(%) is the Kronecker delta function, ¢; is a number standing
for a scale change, and p; is one of integers {1, 2, -+, n} such that the
set {p1,p2,- -, pn} is a permutation of the set {1,2,---,n}.

To solve the BSS problem, we put the following assumptions on the
system and the source signals.

Al)  The matrix H in (1) is an m X n (m > n) matrix and has
full column rank.
A2)  The input sequence {8(¢)} is a zero-mean, non-Gaussian

vector stationary process whose element processes {s; ()},
¢t = 1,2,--- n are mutually statistically independent and
have nonzero (p + 1)st-order cumulants x; defined as

Ki :Cum{si(t),s,'(t),---,s,'(t)} 750 5)

v

p+1

where i = 1,2,---,n,andp > 2.
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