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Irregular Sampling Theorems for Wavelet Subspaces

Wen Chen, Shuichi ItohMember, IEEE and Junji Shiki

Abstract—From the Paley-Wiener 1/4-theorem, the finite en-  Paley—Wiener's 1/4-Theorem (see [18, p. 151]) states that,

ergy signal f(¢) can be reconstructed from its irregularly sampled  if sup,, |6x| < 1/4 and &, = —6_;, then

values f(k + 6z ) if f(t) is band-limited and sup,, |6x| < 1/4. We

consider the signals in wavelet subspaces and wish to recover the f(t) = Z £k + &) G(t) A3)
signals from its irregular samples by using scaling functions. Then p G'(k+ 6;)G(t — (k4 b))

the way to estimate the upper bound ofsup, |6x| such that the )
iregularly sampled signals can be recovered is very important. holds for anyf(t) € P (Paley-Wiener Space), where
Following the work done by Liu and Walter, we present an 0

algorithm which can estimate a proper upper bound ofsup;, |6x|. G(t) =t H (1- t2/(n + 5n)2),

Compared to Paley—Wiener 1/4-theorem, this theorem can relax
the upper bound for sampling in some wavelet subspaces.

n=1
But it cannot deal well with nonbandlimited signals, and
Index Terms—Biorthogonality, MRA, orthogonality, sampling,  sampling with the symmetricity constraifif = —é_;, is also

scaling function, wavelet, Zak-transform. restrictive. Following Walter's [16] work, Liu and Walter [11]
tried to extend Paley—Wiener's 1/4-Theorem to hold for the
I. INTRODUCTION sampling in a class of orthonormal wavelet subspaces without

the symmetric sampling constraif)f = —é_. But they could
not claim that there is a sequenég C (0, 1] such that a
similar to (3) reconstruction formula holds wheitp,, |6x| <
% Then Liu [10] turned to deal with the special case, spline
wavelets, by applying the Feichtinger—Grochenig Iterative
£t) = Zf(TLT)Sin,Y(t_nT) (1) Algorithm (see [7]). Chen, Itoh, and Shiki [2] obtained a
— ~v(t —nT) recovering formula for sampling in general wavelet subspaces,
. but they were led to ait-bound on{§; }. In fact, they cannot
whereT” < w/v and f(w) is the Fourier transform of () yet estimate the aforementionéd.
defined by In this paper, we can estimate &Y-boundé,, for {6},
) ‘ which enables a reconstruction formula similar to (3) to hold
flw) = / f(t)e " dt. whensup,, |8x| < 8. Our theorem does not only require the
R symmetric sampling constraify, = —6_j, but also relaxes
Unfortunately it is not appropriate for nonbandlimitedthe bounds,, for the sampling in some wavelet subspaces. In
signals. However, if we lety = 2™r,m € Z, the summary, we can estimate somg € (0, 1], such that for
problem can be viewed as that of sampling in a wavelghy {6, }; with sup,, |6k < &, there is an{Si(t)}x C Vo
subspace, withe(t) = sin nt/nt playing the role of such that
scaling function of Multi-Resolution Analysis (MRA) £(t) = Zf(k + 6)Sk(D) )
k

OR a finite-energyy-band contir)uous signaf(t), t €
R, ie., f € L*R) and supp f(w) = [-7, 7], the

classical Shannon Sampling Theorem gives the followi
reconstruction formula:

{Vin = span{e(2™t — n)}, }m. Realizing these properties,
Walter [16] extended (1) such that it holds for a class %f

scaling functions. Lety(t) be a continuous orthonormal olds for any/(t) € Vo. Our idea is to let

scaling function of MRAV,,,}., such thafe(t)] < O([¢|***) go(s, t) = Z (s —n)p(t —n).
for somee > 0. Walter [16] showed that there is a sequence n
{Sk(®)}r in Vi such thatSy(t) = So(t — k) and Then we show thafg.(k, t)}, is a Riesz basis of},. By
applying the Paley—Wiener Theorem (see [18, p. 38]), we
F) =Y f(F)So(t = k) (2)  manage to find somé, so that{q,(k + &, )} is another
k Riesz basis of; equivalent to{q.(k, ¢)}+. Then there is a
holds for anyf(t) € Vo. basis sequencgsi(t)} C Vp biorthogonal tof . (k+ 6, t) } i,
However, in many cases the sampling is not always at tRech that
same step. How should irregular sampling cases be dealt with? £lt) = Z Sk(t)/ F8)quk + 65, 1) dt )
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Furthermore, the theorems are modified to be appropriate ¢y (s, t) Zf s—n)g(t—n)
for the shift sampling case by using Zak-transform (see [9]).
Later, we also calculate some examples and indicatesthat Lip? :{f| |f(s) = f(t)] < Cyls =], s, t € R}

can be bigger than/4 for the sampling in B-spline of order < A
S vavelet scbspace. Lipy () ={/ [1f(s +h) = ()] < Cy ()|l

Let us now introduce MRA (Multi-Resolution Analysis) h & la, ]},
which was mentioned above. (For more details see [13], [14] ¢ — sup |f(s+h) = f(s)]
or any book on wavelets such as [1], [15], and [17].) Livg, 1)) [a,b] |h|> ’

2 -

A Sl_Jbspace sequendd/,, }, of L*(R) is said to be an for f() € Llp[Aa,b}(S).
MRA if

D Vi C.Vm*l’ M Vin o {0}, U’"Vm = L*(R), [I. IRREGULAR SAMPLING THEOREM AND

2) Functionf(t) € V;, if and only if f(2t) € Vi1, ALGORITHM FOR ORTHOGONAL WAVELET SUBSPACES

3) There is a function (called scaling functiogjt) € W . : ,
) ( g olt) 0 Firstly, we shall show the existence of tlég described

such that{¢(t — &)}, form a Riesz basis iv}. . . o
The terms Multi-Resolution Aporoximation and M It._|n Section | for the sampling in orthogonal wavelet sub-
uitl utl pproximatl Ut spaces. Then we shall provide an algorithm to estimate

Resolution Decomposition are also used sometimes. s
{¢(t — k)}» is an orthogonal (respectively, orthonormalf I
Riesz basis, MRAV,,, },, and scaling function are considered Theorem 1:Let ¢(t) be a continuous orthogonal scaling

orthogonal (respectively, orthonormal). function of MRA{V,,, },, with
MRA pair {V,,,, Vi }», are considered biorthogonal if 1) |e(t)] = O(1/]t|**=) for somee > 0,
2) ¢*(w) # 0.
/ p(t = k)p(t — 1) dt = bnt, (6) Then there exists &, € (0, 1], such that for any{6;}, C
R

-6, 6,) there is a sequencdSy(s)}, biorthogonal to
where ¢(¢) € V, and ¢(t) € V, are scaling functions of {st/llsvll(s k 4+ ér)}r in Vo such that (4) holds for any
MRA{V;, o and {V,,, }n, respectively. In that case, scaling/(t) € Vo-
function pair{y(t), 3(¢)} is also considered biorthogonal. In order to demonstrate the theorem, we need a lemma

Finally, let us introduce some notations used in this pap&hich can be found in Liu and Walter [11].
For a measurable s¢f C R, |E| denotes the measure &f. Lemma 1: Let ¢(t) be an orthonormal continuous scaling

For the measurable function§t) and g(t) (¢ € R), a real fynction of MRA{V,,, }.,, With |(£)| = O(1/[t|**+%) for some
number) > 0, and an intervala, b] C [—1, 1], we write e > 0. Then

{{ak}k Zlakl < oo} Ft) = /Rf(s)qga(s,t) ds (7)
holds for anyf € V.

Proof of Theorem:Let g(¢t) = ¢(¢ . Then, g(t) is

{{ak}k Zm' < OO} an orthonormal continuoui( gcalir:pg( 2‘{1|r|1<§t|!on wimiqt(ﬂ) =
1/2 O(1/t|**+%) for somee > 0 and §*(w) # 0.
11 = ( [ o i) Define
12 g9(s, ) =Y g(s —n)g(t — n).
ltozm = ([ 10 ) "
Then, Walter [16] tells us thaftg,(s, &)}, is a Riesz basis in
[flloe = “l}EO ;‘\12 7)1 Vo, i.e., for any{ci}r € 12,

= sup inf t
Il £1lo |E|£0 inf | £

= 3 e

1/2
e <Z|fw+2k7r)|>
s, g Zfs—n (t—n)

2
C™E> el < |[D cragls, k)
K K

holds for someC > 1. If we can find a5, € (0, 1], such that
for any {éx }x € [-0,, 6,], there is & € [0, 1) such that

> ckag(s, k+6) = cagy(s, k)
k k
L*(R) I{f| [FAIRSES)

<6 chqg(s, k)
L=(R) = {[[l[fllec < o0} k

gr(s, ) =>_ fls—=n)f(t—n) holds for any{c;}, € 2, then{g,(s, k + &)}x is a Riesz
n basis in1, due to Paley—Wiener Theorem (see [18, p. 38]).

<CY lal (®
k

(9)




CHEN et al. IRREGULAR SAMPLING THEOREMS FOR WAVELET SUBSPACES 1133

Hence, there is a sequeng®y(s)}y in Vy biorthogonal to where (13) is due to the index transform = & — n and
{qy(s, k + 6)}x, such that 8 =101-n.

In the meantime, the assumptidg(t)| = O(1/|¢t|**=) for
t)= Zsk(t) /R F(s)ap(k + bk, 5) ds (10)  somee > 0 and the continuity ofy(t) imply that the series
k

holds for anyf(t) € V, i.e., (4) holds for anyf(¢) € V, due
to Lemma 1. Z lgtn +#)]

In order to show (9), let

=D eragls, k+8) =Y cugy(s. k)
& k
Z <Z en(glk+ 6, —n) — gk — n)))Q(S —n)
k
=2
:ZZ (k+ &, —n) =gk —n))
n k,l

(gl + & gl = n))era

Z(Z (k+ 6 —n)—glk—n)) and

k, 1
> 198+ p1r—a) — 9(B)|
3

converges uniformly with respect toon [-1, 1], and

2 > 19(B+ 6s4r-a) — 9(B)]
3

2 is uniformly bounded with respect &}, C [—1, 1]. Hence,

gk + 6 —n) — gk —n)) (11)

Jin 7 gt +8) = g()]
=> Jdim gl +8) = g(a)] =0 (14)

(gl + 6 —n)—g(l — ﬂ))) crCy

where (11) is due to the orthonormality gfs). Denote

ae =Y _(glk+ 8 —n)—g(k—n) (gl + & —n) — g(l—n))
n The above argument implies that there really exists some
then ay; = ay, and 8, € (0, 1], such that for any{&; }1. C [=8,, &,]

A= Zaklckcl

k,l

<3 lanl(c} +¢)/2
k,l

=%(z (z |am|)cz s (z |am|)c%) Thatis

k { { k

_y <Z |a,d|>cz wup 3 (a4 =5 )] o) ~0()| 007"

k {

< sup > 198+ 8a4r-a) — 9(B)| < 0. (15)
@R

Zlg (o +8) — |Z|g B+ barr—a) —g(B)] < 6C71,

(16)

a7
< <Sup Z |akl|> Zci (12)
Bt ko k From (12), (13), and (17), we derive
u
su ar _
kpzl:|kl| A< 60 lzc%
k
<sup > |glk+ 8 —n) — g(k — n)]
T Then, due to (8), we conclude that (9) holds.
g+ 6 =n) =gl —n)| The theorem tells us that there really exist sdfpes (0, 1],
< Sup Z lg(k + 6 — n) — g(k — n)] such that an irregularly sampled signal with deviati@i }
within some interva[—é6.., 6,,] can be reconstructed. However,
Z g(L+ & —n) — g = )| we aIso.need to kn'ow h0\_/v bjg thie, can pe, so that we
can design a sampling satisfying the criterion for a concrete
signal. Therefore, we should find some algorithm to estimate
< sup > lgler+ &) = g(e)l the &, from the scaling functiony. We need at first to
¢ introduce a function clas<}[a, 8] (A > 0, ¢ € [0, 1),
> 198+ 81r—a) — 9(B)| (13) 0 € [a, b] c [-1, 1]) and to give some simple propositions of
8

that function class, then present the algorithm.
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Definition 1:
F(t) € Ly[a, BJ(A > 0, 0 € [0, 1), 0 € [a, ] C [-1, 1])

if there is a constant’, ; > 0 such that for an{é, }» C [a, 5]
A
S Uk 04 8) = f(b+ ) £ Co g (sup 51) 29
- :

We also write
S If (k40 +6) = f(k + )|

||f||Lg[a,b1 = sup k
[a,8]

(supy, [6x)*

Proposition 1:

1) Ly[a, b] = L3[a, 0]N L3[0, b and L}[a, ] C L} [a, 1]
if A > N

2)

{f| Z ||f||L1p (k—l—o’) < OO} - Lir\[av b]

C ﬂkLip[)l‘ly wk+o).
3) If f(¢) is differentiable on each interv&h-o+[a, b] and

Z sup  |f/(#)] < oo

k k+o+[a,b]

then f(t) € Li[a, b].
Proof:

1) ObviouslyL[a, b] C L)[a, 0] and L)[a, b] C L2[0, b]
hold. Therefore L} [a, b] C L}[a, 0] N L[0, ¥] holds.
On the other hand, for an; }x C [a, b]

STk + o +6) — fk+0)]
k
= > ftk+o+6) - f(k+0)

b>6,>0

Ly

a<6, <0

A A
< |[fllzzo, 4 <Slip |5k|) + 1220, 07 <Slip |5k|>

flk+o+6)— flk+0)

A
< (201 + 1 1200,09 (500 ful )

This means that)[a, b] > L)[a, 0] N L]0, b] holds.

The second part is easy to see.
2) If we let 6, = h, it is easy to see

L a, b] C ﬂkLip[)l‘L w(k+ o).
On the other hand, we have

Z|fk+a+6k) f(k+0)

< Z ||f||L1p
<Z 1Nl (k—l—o)) sup ||,

This implies that the first inclusion holds.

5 (k+0) |6k |
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3) Due to the Lagrange mean value formula, there exists a
number sequencffy -} C (0, 1) such that

STk +o+6) - fk+0)
k

SO (k4 0 + 6k, 008 |6k
k

< (%,

& k+o+(a,b

If’(t)|> sup |6
] k

We now show a theorem which can lead to an algorithm
to estimate thed.,.

Theorem 2: Supposep(t) is an orthogonal continuous scal-
ing function of MRA{V,,, },» with

1) |p(t)] = O(1/[¢|**+*) for somee > 0,

2) ¢*(w) # 0,

3) ¢(t) € Lgla, b].
Then for any{6x }» C [—bs, 6] N [a, b], there exists a se-
quence{Sy(s) } biorthogonal to{q, /|, (s, &+ &) }x in Vo
such that (4) holds if

6 < (16l .17 @)]0)

Proof: Let g(t) = ¢(t)/|l¢l|. Then,g(¢) is an orthonor-
mal continuous scaling function which satisfies the above three
assumptions in Theorem 2. Following the proof of Theorem 1,
we only need to show that for afy; }+, C [—0, ds] NJa, 8]
and any{cg}. € I?

Z|g (a+ébr) —

A, (19)

a)| Z 1908 + 811—a) — 9(B)|

2
D el < 6D crge(s, k) (20)
k k
Due to g(t) € Lj[a, b], we have
Zlg a+6) - IZIg B+ bssk-a) = 9(B)]
< (gl o) 50 |6k|ks1;p borimal® @D
< (83l Laa, /Nl (22)
By the way, we also have
(s, )
= LIS il B) (23)
T o k Crdg(W,
1 2
=5 Z erg(w Z e_”“" —n) (24)
1 2
= o |22 g (@)a(w)e (25)
k
A 2
> ol @)l lz crg(- k)] (w) (26)
k
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2 It seems that we can establish an algorithm for general

(27)  wavelet subspaces by orthonormalizing the scaling function
(refer to [1], [15], and [17]), i.e., taking(¢) such asj(w) =

(28) @(w)G;*(w). But obtainingg(t) and calculatingl|g|| £a(a, »)
from ¢(t) involves convolution or the fast Fourier transform

where (23) and (27) are due to Parseval identity, and (28 (FFT) to be undertaken twice. This is inconvenient, so we
(23) (27) v (28) ﬁould find other proper ways to estimatg directly. First,

due to the orthonormality ofi(¢). Following (20), (22), and S X .
(28), we only need to show we extend the theorem and algorithm to those for the sampling

in biorthogonal wavelet subspaces, then we deduce the results
(8312l 22 a, a1/l < 2™ (@)llo/ Il I for the sampling in general of wavelet subspaces.
However, (19) exactly implies (29). m

=197 @)IIF ||>_ exgls — k)
k
=" @5 D lewl/llell®
k

(29)

. | RREGULAR SAMPLING THEOREM AND ALGORITHM

Remark 1: FOR BIORTHOGONAL WAVELET SUBSPACES

1 llell)a.y in (19) can be0. In that case, the right-  Theorem 3: Suppose(¢(t), ¢(t)} is a biorthogonal contin-
hand side of (19) isc. Then, Theorem 2 holds for anyuous scaling function pair of the MRA paji¥;., Vi }n (With

{6tk C la, B]. Vo = Vo), which satisfies
2) Referring to Section IV, we will find3*(w) € Lip®. 1) ¢(t) € L=(R), and |¢(t)] < O(1/|t|**+¢) for some
Hence e > 0,
2) ¢ (w) # 0.

5*(w)|lo = inf |¢*(w)| >0
(o 7wl Then there exists &, ¢ € (0, 1], such that for any{éx}, C

and (19) is, in fact,

6 < (Il it 18" @)

3) For cardinal orthonormal scaling function (see [1], [17]) Lemma 2:Under the same assumption as Theorem 3,

¢*(w) = 1 holds.
4) From Proposition 1, we know that}[a, b] is big

[—6s, ¢, Oy 3], there is a sequencESy(s)}, biorthogonal to
{4y, (s, k+ 6,)}x In Vi such that (4) holds.
We need two lemmas for the proof of the theorem.

{qy, (s, k)}r is a Riesz basis ofj.
Proof: It is easy to see thaj, s(s, t) is well-defined

enough. In fact, we can verify that spline, Daubechiegnd {q, s(s, k)}» C Vo. Let T’ be the linear operator o¥p
scaling function, and Meyer scaling function are althat takes
included in it. And in a practical case we will often
find [a, 8] = [-1, 1], [-1, 0], or [0, 1].
For a sequencééy }x C [a, b], we wish to know if we can
reconstruct the original signgi(¢) from the sampled values INto
{f(k + &)}x. Of course, we can verify the conditions in
Theorem 2, but the following method is simpler and more
convenient, because it has less restrictive constraints than

>t — k)
5

Z ck(l‘r”‘: 92‘(87 k)
k

Theorem 2.

Corollary 1: In Theorem 2, if 3) is replaced by

“For a sequencddy }, there is a constar@,, > 0, such that

for any mappingr: Z — Z (Z is the integer set)

D ok + 6.)) — (k)| < C, sup |65
. :

for someA > 0,
then there is a sequenceSi(s)}r
{44/11411 (55 k + 61) }1 in Vo such that (4) holds if

sup [éx] < (G5 inf |§7 (@)D, (30)

Proof: Let g(t) = ¢(t)/|l¢||- Then (22) becomes
> lga+ ) = gD 19(B+ ba41—a) — 9(B)]
@ 3

< (Cpsup |6/ llel)?. (31)

Referring to the proof of Theorem 2 and 2) of Remark 1, we

only needsup,, [6x] < (C;* inf |@* (W)

biorthogonal to

for any {c;}x € I2. Since
2

Y cnd, (s k)
k

== > ey 5l (32)
1 ok 2
= o || 2o (@)pw)em ™ (33)
1 k 2
== P (W)Gp(w) D et (34)
k L2]0, 2x]

we obtain
2

187 (@) Go@)llF D lewl® < |[D cngp, o(s. k)
k k

<118 @) G @2 D lenl.
k

(35)
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On the other hand, from Proof of Theoremif we can show thafq, (s, k+06x) 1«
2 1P is a Riesz basis iV}, then there is a sequendei(s)}x
> apls—k)| = pw) Y exe™ ™ (36) biorthogonal to{q,, (s, k + 8)}x In Vo, such that
k k
2 ZSk / $)qp,3(s, k + &) ds, Few.
—ikw
(W) Z cpe (37) (43)
k L2[0, 2x] ] o

we can deduce that Following Lemma 3, it is easy to seg that (4) holds: H_owever,

2 Lemma 2 tells us thafg. (s, k)}+ is a Riesz basis ifvj.

||G¢(w)||(2)z lex|? < So we only need to find 4, s € (0, 1], such that for any
% {6x}r C [0, 5, 64 3], there is af € [0, 1) such that for
<G @2 Y fenl?. (38) any{ah € 2

K
D anp (s, k+6) =D rdp 35, k)
K K

. a* . . . . .
Sinceg (w) is a continuous nonzetr-periodic function, we

derive

0 <inf |§"(w)] < sup [¢"(w)] < o0, (39) (44)
It is well known (see [1], [15], and [17]) that In order to show (44), let

0 <[[Go(@)llo < [[Gp(Wlloo < 0. (40)

= CkQy,5(8, k+ o) — Cry, 5(S, k
From (34), (35), (37), and (38), we can now conclude zk: e, o 2 zk: e, (5 F)

0 < IF @G0 7y o 15 @G

TR TEReSI < 00. = zrl:(zk:ck@@(k—i-ék—n)
Moreover, for anyg(t) € Vo, take f(t) such thatf(w) = 2
g(w)/fﬁ*(w). Then it is easy to show thaf(¢t) € V, and = ¢(k=mn)) |p(s—n)
T(f) = g¢. Therefore,T is a linear mapping which is
continuous, one to one and onto, i.fy, (s, k)}x is a Riesz 1 .
basis of V;. o Z Z K(&(k + 6 —n)
n k
Lemma 3: Suppose the biorthogonal continuous scaling 2
fupction pair {(p(t.),.tﬁ(t)} of the MRA pair {Vy,, Vin}m — ok — n)))@(w)e—mw
(with Vo = Vp) satisfiesp(t) € L=(R), |@(t)] < O(1/]¢**¢)
for somee > 0. Then 1
= — |G (w o(k+ o —n
= /Rf(s)q%%;ﬁ(s,t) ds, for f e V. (41) 2m o )zn: <zk: k(& » )
2
Proof: ¢(s) € L°°(R) implies that |p(s — n)| is —p(k —n)) |emine
uniformly bounded with respect to a.e.in R. |¢(¢)] < Lo0.o
O(1/|t|**%) and the continuity of3(¢) imply that [0, 2]
> 1t - n)) <G (w ||2 Gk + & — n)

. . . . 2
is uniformly convergent with respect toin R. Therefore,

Z 5 — ) — ¢(k —n))
o(s—n)p(t —n

_ _ =[G @)% ZZ (k+ 6k —n) — ¢(k —n))
converges uniformly with respect to a£in R. For f € V = n
Vo, let (@46 — n) ¢(l = n))crer

=Y ap(t—k).
t) z};mp(t ) = |G (w)]%, Z(Z (k+ 6 —n) —@(k —n))

n

Then
/R f(5)ap,5(s,t) ds (@ +6b—n)—@(l - n))) ey
=Y et-m Y o [ ¢ls—n)p(s—k)ds penote
zn: zk: k/R b,i= ) (@(k+6—n) = @(k—=n))(@(I+6—n) — (I —n)).
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Then by ; = b, and Equations (49) and (50) imply that we only need

A <G (@)lIZ D b ierer
ko1

% 475* WG ()2
(6$,¢H‘P||L3[a,b1)2 < M'

[P
5||G¢<w>||zo<sgpz|bk,l|>Zcz. CONE o
By the way, we have ! k This is exactly implied by (48).
sup O |bra| < sup DS (@ + 8 —n) — @k —n) Remark 2: o
kg kT 1) As the sampling in orthogonal wavelet subspaces,
el 4+ & —n) — @l —n)| ()] La[a,07 I (48) can be zero. Then, Theorem 4

holds for any{é:}+ C [a, b].
2) Since fﬁ*(w) € Lip® (refer to Section IV) and

<sup D [@(a+8) - ¢(e)
|Gos(w)]lo > 0, we know that|¢ " (w) Gy (w)]o > 0.

28: 608+ 8341—a) = #(A) (46) 3) In the orthogonal case((w) is constant a.e. and
where (46) is due to the index transform = k — n and ¢(t) = ¢(t)/l|#l|*. Therefore, (48) is the same as (19).
3 = I — n. Following the proof of Theorem 1, the constraint 4) From the proof of the theorem, we also find that)
|G(t)] < O(1/|t[**<) for somee > 0 and the continuity of does not need to be continuous.
@(t), we can conclude that there isfa € (0, 1], such that There is another simple way to verify the conditions for a
for any {6x}x C [=0s, 35 00, 3] given sampling in biorthogonal wavelet subspace.
sup »_|@(a+ 61) = @) Y18+ bp1r—a) — B(B)| Corollary 2: In Theorem 4, if 3) is replaced by
b e 8 “For a sequencedy };, there is a constanf; > 0 such that
5% ) 2 for any mappingr: Z — Z (Z is the integer set)
< 9||sT| c(:szﬁ(;)”O' )
\W)|ae
From (45)—(47), it wa:f *followed that Z |Gk + 6r1y) — P(K)| < Czsup |6k
A <O (@G @G R K
i
holds. Then from (35), we conclude that (44) holds. for some A > 0,”

Based on the theorem, we can now provide an algorithimen there is a sequencdS,(#)}r biorthogonal to
for sampling in biorthogonal wavelet subspaces to calculate the, (s, k)}. in Vo such that (4) holds if
8., s from the biorthogonal scaling function pdip(t), ¢(t)}.

Theorem 4: Suppos€(t), ¢()} is a continuous biorthog- 15" ()Gl /A

onal scaling function pair of the MRA paitV;,., V;,, b (with S |6k < CalGo() oo : (51)
~ . L 21T 0o

Vo = Vo), which satisfies

1) ¢(t) € L=(R), and [¢(t)] = O(1/|t[**") for some  Now following the results for biorthogonal wavelet sub-

i*> 0, spaces, we can show an irregular sampling theorem and
2) ® (w) #AO’ provide an algorithm for the sampling in general wavelet
3) #(t) € Lgla, b]. subspaces.

Then for any{éx }r C [—6,, s, 0., 5]N[a, b], there exists a se-
quence{Si(t)}» biorthogonal to{q,, (s, k + &)} in Vo

such that (4) holds if V. IRREGULAR SAMPLING THEOREM AND
o 1/ ALGORITHM FOR GENERAL WAVELET SUBSPACES
0g. ¢ < < le (w)G“ﬂ(w)HO ) . (48) Theorem 5: Suppose the continuous scaling functip()
G (@) looll1] 23 10,0 of MRA{V},,},, satisfies:
Proof: Following the proof of Theorem 3, we only need 1) |¢(¢)| < O(1/|t|**¢) for somee > 0,
to show that for any{éx }r C [=6, &5 Op, &) N [a, B] 2) ¢*(w) # 0.
. . . . Then there is a5, € (0, 1], such that for any{é;}, C
> lela+ ) - Gla)l %: (605 + 8p+r—a) = 2(B)] [—6,, 6,], there is a sequencES,(t)}, C Vo such that (9)
: | . ) holds.
Olle (w)Go(w)llo (49) In order to show the theorem, we need two lemmas.
- 2
16 ()2 Lemma 4: Suppose the continuous scaling functioit)
Due to ¢(t) € Lj[a, b], we know of MRA{V,,,}., satisfies the same constraints as Theorem 5.
S S . . Then{q,(¢, k)}i is a Riesz basis ivy. Suppose{ g (t)}i is
za: [Plart bi) — Pl z@: P8 +0p1k-a) = 2(A)] biorthogonal to{q,.(t, k)}x. Theng.(t) = Go(t — k) and

~

< (69);,¢||¢||Lé‘[a,b1)2' (50) qo(w) = ﬂw)/sa*(w)Gi(w)
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Proof: Referring to Lemma 2, it is easy to show that _1 Y @(w +2/€7T)|26—i(k—l)wdw (55)
{q,(t, k)}, is a Riesz basis iy. Sinceq,(t, k) = g.(t — 2 J, G%(w)
k, 0),{Go(t — k)}+ is biorthogonal tog.(t — &, 0), we have = u1. (56)
G1(t) = Go(t — k) due to the uniqueness ¢f(¢) (see [5], [9],
and [17]). Let Equation (56) implies thaf[3(w)e ™" /¢*(w) G2 (w)]Y (s) }x
Zd ik is biorthogonal to{q,(s, k)}x. Hence
= LC .

Go(s = k) = [p(w)e™™ /9" (W)GL(W)]"(5)
due to the uniqueness §fip(s — &)}, in V5. It deduces that

|dx| = ‘/ o(t+ k) dt‘ N

/ o(t)p(t + k)| dt
[t|<]k|/2

Then due toe(t)| < O(1/]t]*+) (see [12] and [15])

¢*(w)GH(w)

Lemma 5: Suppose the continuous scaling functieit)

+/ o(t)|p(t + k)| dt of MRA{V,,,}, satisfies the same constraints as Theorem 5.
lt1=Ikl/2 Then §o(t) defined in Lemma 4 is continuous an@(t)| <
O(1/|H+ / ) dt O(1/It7).
(/1K) |t|§|k|/2|¢( ) Proof: Suppose
+ O(l/|k|1+a) /||>|k|/ |<p(t + k)| dt 1/@*(w)Gi(w) _ Z ckeikw
t :|/2
2 k
<O(1/|k|H9). (52)
(1/1K177%) Then
Equation (52) implies{d;} € I*. Of course, we also have
{o(k)h € 1L Let Go(t) =D crp(t — k). (58)
k

1/ G2 che

Sinceg*(w) and G2 (w) are continuous (refer to the proof of
Lemma 5), we have{c;}s € I' C [? due to Wiener—Bvy
Theorem (see [6]). Since

Due to|p(t)| < O(1/[¢|**<), we obtain

S ekyete| < 3 fe(k)

k>n k>n

o) /FEWI < Ollel) <o (Z y k|1+5>

we can take the inverse Fourier transform of k>n
—ilw <O(1/|n|?). 59
Glw)e™™ [o* (w)Gh(w) <O(Y/[nl%) (59)

in L2(R) as denoted by Equation (59) impliesp*(w) € Lip® (see [6]). For the same
reason, (52) implies that?2 (w) € Lip® holds. Therefore,
[B(w)e™" [* (W) G (w)]¥(s)

(refer to the Introduction) Now we obtain

1/ (w)G2(w) € Lip®.

5(w) It means|c,| < O(1/]k|%) (of course,sup,, |cx| < o0). Now
A_(pi —ilw ch s—k-=1). (53) we are to calculate (58):
¢ (w)GZ(w)
| L do(#)]
Equation (53) implieg(¢(w)/¢*(w)G2(w))e™ ]V (s) € Vo.
By the way, we also have < Z ot — k)| + Z vt — k)
$(w) v |k|<[t]/2 |kI>1t]/2
[ actst [7& o (w)e—”w] ()ds SOW/IH*) 3 el + O/ D2 It = k)
. v o) |KI<[tl/2 |kl >[t/2
A plw ilw 1+e 2
=— Aw, k) —— 5" dw < O(1/t O(|t]) + O(1/[t ot -k
ol ROy ey (/P00 + 00/ 3 lote = 4
1 Ak —ikw P(w) 1 < O(1/[t]%).

NS The continuity ofgy(t) follows because), crp(t — k) uni-
Me—i(k—l)w dw 54) formly converges with respect t6 on any closed interval
& (54)

r GH(W) [-N, N] C R.
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Proof of Theorem:Following Lemma 4, we know that Since
{Go(t), q,(t, 0)} is a biorthogonal scaling function pair of the

1/2
MRA pair {V,,,, V. }im. Following Lemma 5, we derive that . o
do(t) € L*(R) is continuous. By the way, we have Ganlw) = <§k: G 2k7r)|2> (62)
1/2

-(t, 0 S

(0.0 - <Z o 2kw>/¢*<w>ai<w>|2> 63)
k
E)e(t — k —k —
i 0 G ) FTAC) ©
< O(l/|t|1+6) Z |<,0(/€)| :1/ ¢*(w)|G9¢(w) (65)
[kI<[t]/2 and
O(1/|t|**e t—k —

Ay 2. lelt=h) B, 0) = §'(WFW) (66)

< O(1/|t]*+9) Z le(E)| 4+ O(1/]t]}+e) Z lo(t — k) we have the theorem by calculating (61).

, The following corollary is easily shown by referring to the

1+e
< O(1/[t779). proof of Corollary 2.

In the meantimeg?, (w, 0) = ¢*(w)¢*(w) # 0 holds. Now we  Corollary 3: In Theorem 6, if 3) is replaced by
can apply Theorem 3 to the biorthogonal plajs(t), ¢.(t, 0)} “For a sequencdéy } there is a constant’, > 0 such that

to conclude the proof. for any mappingr: Z — Z (Z is the integer set)

Based on the theorem, we can provide an algorithm for
the sampling in general wavelet subspaces by generalizing > leo(k + 8-9) — ¢(k)| < Cpsup |6
Theorem 4. K b

Theorem 6: Suppose the continuous scaling functiptt) for some > 0,
of MRA{V,,,},, satisfies then there is aq S, (s)}x C Vo such that (4) holds if

1) |e(#)] < O(1/]t]**¢) for somee > 0, 1y -

2) ¢*(w) £ 0, sup [8x| < (CZH19" W)/ G(@)loll g™ (@) G (w)llo) .

3) ¢(t) € La, b]- (67)
Then for any{éx}» C [—6,, 6,] N [a, b], there is a sequence
{Sk(s)}x C Vo such that (9) holds if Remark 3:

1) The{Sk(s)} in Theorems 5 and 6, and Corollary 3 are
||¢*(w)/G<;(w)||0||¢*(W)G<;(w)||0 1/A biorthogonal tO{qu(.),q¢(.70)(s, k+ 6;) .
8 < TREx[E - (80)  2) Sinceg*(w) and G, (w) are Lip*-functions, we have

o* G = inf |$* G, >0
Proof: We have, for any{; }x C [a, b] 17(w)/ Getw)llo = inf |&7(w)/Golw)]

and
S (g (k + b, 0) — gk, 0)] 16" (@)Go(@)llo = inf [¢7(w)/Gp(w)] > 0.
* Therefore, (60) is equivalent to
=> k= n)e(=n) =Y @k —n)p(=n) o o 1A
K . 5 (18" @)/Gow)l inf " @)Gu@) |
< D le(=m Y Lok + 8 = n) = (k= n) ’ (5.0l 2310,
n k
_ Z lo(=n)] Z lo(l+ 614n) — 0(D)] 3) lIarle('ir(l)?n(;rsthogonal cas€;,(w) is a constant. Then, (60)
A 1/A
< Z (- |||sa||p[a s (5l o (il 7
7 \lge(t 01y a

This impliesg,.(s, 0) € Ly[a, b]. Now referring to the proof
of Theorem 5, we can apply Theorem 4 to the biorthogonal
pair {Go(t), g.(t, 0)}. In this case, (48) becomes

Furthermore, ifp(¢) is also a cardinal scaling function,
theng,(t, 0) = ¢(t) and@*(w) =1 a.e.w. Therefore,
(60) is the same as (19), i.e.,

. /A

* ~ A

5, < 195(w, 0) G (W)llo e 50 < Ilellpafo sy
1Ga0 (@)lloollge (s, )| £y o,
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Corollary 4: In Theorem 8, if 3) is replaced by

If 3*(w) # 0, we can apply the above algorithms to deal Or @ sequencddy }y there is a constant’, > 0 such that

with irregularly sampled signals. Unfortunately, some scalir{Q
functions, even some important scaling functions, do not show
the property. For example, consider the B-spline of orzler

scaling function
x? 6t —2t2 — 3
No(t) =5 xpo,1y(t) + ————
2 2
(3-1)°
2

X[1,2) (t)

+

X[2,3) (1), (68)

wherex;, ;4+1)(%) is the characteristic function of the interval

[j, j+1) for j =0, 1, 2. ThenN, (w) = 7 (e +1)/2 = 0

r any mappingr: Z — Z (Z is the integer set)

> ok + 0+ 6-0) — ¢k +0)| < Cpsup |6
k

for someA > 0,
then there is a sequen¢s,, 1 (s)}, C Vo such that (70) holds

Zy(o,w)
Go(w)

1/A
)

(72)

sup 5] < (€54 1Z,(0, )Gl

whenw = 7. So we should find a proper way to solve it. This Remark 4:

is the main purpose of this section.

Suppose the scaling functiog(t) satisfies |p(t)| <
O(1/|t|**%) for somee > 0. Then, foro € [0, 1), we can
define the Zak-transform af (see [8], [9], and [17]) as

Zy(o, w) =Y @lo+n)e™. (69)

For the above B-spline of ordel scaling functionN(¢),
we find Zn,(1/2, w) = (1 + 6e™ + ¢**)/8 # 0. This

implies that we can improve our above-mentioned algorithms

by sampling af o+ %} instead of{ £} for somes € [0, 1) with

Z,(o, w) # 0. First, we modify the theorem and algorithm for

1) The{S, »(s)}+ in Theorems 7 and 8, and Corollary 9
are biorthogonal td gz, o, q.(.,o) (S, k + o + 0x) }i-

2) SinceZ,(0, w) = ¢*(w), (71) is the same as (60) when
o = 0.

3) We can also show that (s, w) € Lip®. Therefore,
(71) is equivalent to

. . /A
o (1200 0)G @) int | Zy(0,0)/Gotw)) )
e llgo(s; o)l L2 (a0

VI. CONCLUSION AND EXAMPLES

sampling in biorthogonal wavelet subspaces, then we deduce i ) _ -
the modified results for that in general wavelet subspacesl) Suppose{V..},. is a Multi-Resolution Decomposition

Since the procedure is similar to the former sections except that

Z,(0, w) takes the place ap*(w), here we will not show it in

detail. Now we only display the three results without proofs.

Theorem 7: Suppose the continuous scaling functip()
of MRA{V,,,},, satisfies

1) |p(t)] < O(1/[t|**+*) for somee > 0,

2) Z,(o, w) # 0 for someo € [0, 1).
Then, there exists &, € (0, 1], such that for any{é; }, C
[—65. 4, 85, ], there is a sequendeS,, x(s)}x C Vo such that

F(s) =Y fk+0+6,)Ss,k(s5) (70)
k

holds for anyf € V,.

Theorem 8: Suppose the continuous scaling functip()
of MRA{V,,,},, satisfies

1) |o(t)| < O(1/|t|**¢) for somee > 0,

2) Zy(o, w) # 0 for someo € [0, 1),

3) o(t) € L)a, b].
Then for any{éx}r C [—00, 4, 6o ] N [a, b], there exists a
sequenceS,. x(t) }x C Vo such that (70) holds if

1/A
o (120G ol Zeo )/ Gl |
¥ llgo(s; o)l £ (a0
(71)

of L%(R) with the scaling functiony(t) satisfying

A. le®)] < O(1/t]1*#) for somee > 0.

B. Z,(0, w) # 0 for someos € [0, 1).
We can assert that there iség, . € (0, 1] such that
for any irregularly sampled point§k + &} with
supy, |0k| < 64, the original signalf € V, can be
reconstructed by

F(8) =Y (k40 + 6)S01(5)- (73)
k

2) TheS, 1(s)in (73) can be computed as the biorthogonal
basis 0f{qs, o, 4., o) (5, k+ 0+ )} In Vo
3) Besides the constrainfs andB, if the scaling function
also satisfies
C. ¢(t) € L)a, b], (A > 0,0 € [a, b] C [-1, 1])
then we can estimate the deviation bound by

. nf |Z, (o,w /A

3 inf | Z, (o, @@@nw -

T, @ .

||Q99(370—)||L3[a,b}

4) For the irregularly sampled signaly'(k + &)} we
can also verify Corollary 5 to recover the original signal
/().

5) In fact, we have not used the dilation equation. There-
fore, all the theorems are correct only with the hypothe-
sis that{x(t—n)}, is a Riesz basis df; instead of that
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©(t) is a scaling function, i.e., only with the hypothesisve obtain

of 0 < [|Go(@)lo < [|Go(@)]loo < 0.

If the sampling step is not ator sayl = 2=™, we can
regardV,,, asVy. All the theorems and algorithms can be
modified toV,,, easily by using the Hilbert reproducing
kernel

qgg(s, t)y=2m Z ©(2™s —n)P(2"Mt — n).

6)

(76)

-1
6, < <Z S |¢'<t>|> :

The following example indicates that, can be bigger
than1/4 for the sampling in the B-spline of orddrwavelet
subspace.

Example 3 (See [1]):The B-spline of ordet scaling func-

Now we apply the algorithm to calculate some examples;qy,

Example 1 (See [3]):Daubechies scaling functiop ()
(N =1,2,3,---) is defined as

N (w)

where

and

H(w) = ((1+¢7)/2)" My (w)

and
N-—1

My(@) = 37 CRoppnlsin® w/2)".
0

It has been shown thapx(t) is orthonormal,sup¢y C
[0, 2N — 1] and

by <

on(t) € Liptninleh: 1)) w=0.18.
Therefore,on () € LE™#N-1D1_1 1] for any o € [0, 1)
due to Proposition 1. IZ, (o, w) # 0 for somes € [0, 1),
then

inf,,

Zyo o, w)|
(50 o< YN\Y
s PN <2N||<PN

Lip(min{p N,1})

(75)

) 1/(min{puN, 1})

Ni(t) = txpo,1) + (2= Bxp, 2)-

Obviously, Nl(t) satisfies constraind and C (with ¢ = 0,
A =1). SinceN{(w) =1

G, (w) = (1/342/3 cos?(w/2))*/?

> Ni(t+ k)Ni(k) = Ni(#).
k

Therefore, (74) becomes

1

2 Hqw 1/2
T3 (5)) 12 o\
0 —+= cos? [ —
3 3 (2) 0

[Vl 231,07

G

(77)

Since
1Nl za—1,1 =35 INLllzaj—1, 00 = 2, @and|[Ni||zzp0,1) = 2

we derived,, < 1/3\/3. Whené,. < 0 for all k£ or 6, > 0 for
all k, we haved, < 1/2v/3. Obviously,1/2v/3 > 1/4.
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1, w| < 27/3
N 3
¢(w) =< cos {gv<2—|w| - 1)} 2 /3 < |w| < 97/3
m
0, otherwise

wherewv(w) € C°, v(w) = 1 whenw > 1, v(w) = 0 when
w <0, andv(w) + v(1 — w) = 1. It is shown thaty(t) is
orthonormal and--regular. Therefore,

(1]
(2]

(3]
(4]

&' (£)]

sup
. [nntl]

converges. Hence(t) € Li[-1, 1] for any o € [0, 1) due

to Proposition 1. Since (5]
cos Ev 3_w+2
2 27

(6]

inf |¢* (w)|=min {1, 7]

inf
—4r/3<w<—27/3

(8]
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Prof. R. Long, Prof. T. Hashimoto, and Dr. Y. Zhou for their
partial contributions.

REFERENCES

C. K. Chui, “An introduction to wavelets,” i'Wavelet Analysis and Its
Applications vol. 1. New York: Academic, 1992.

W. Chen, S. Itoh, and J. Shiki, “Sampling theorems by wavelets for
irregularly sampled signals,lEICE Trans, vol. J79-A, no. 12, pp.
1991-1997, 1996.

|. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Mathvol. 91, no.7, pp. 909-996, 1988.

, “The wavelets transform, time frequency localization, and signal
analysis,” IEEE Trans. Inform. Theoryvol. 36, pp. 961-1005, Sept.
1990.

|. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal
expansions,’J. Math. Phys.vol. 27, pp. 1271-1283, 1986.

R. E. Edwards, “Fourier series,” iBraduate Texts in Math. 69 and 85.
Berlin, Germany: Springer-Verlag, 1979 and 1981.

H. Feichtinger and K. Grochenig, “Theory and practice of irregular
sampling,” inWavelets: Mathematics and Applicatiods Benedetto and

M. Frazier, Eds. Boca Raton, FL: CRC, 1993.

C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet trans-
forms,” SIAM Rev. vol. 31, pp. 628-666, 1989.




1142

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998

[9] A. J. E. M. Janssen, “The Zak transform and sampling theoreifi4] R. Long, W. Chen, and S. Yuan, “Wavelet generated by vector multi-

for wavelet subspacesfEEE Trans. Signal Processingol. 41, pp.
3360-3369, Dec. 1993.

[10] Y. Liu, “Irregular sampling for spline wavelet subspacd&EE Trans.
Inform. Theory vol. 42, pp. 623-627, Mar. 1996.

[11] Y. Liu and G. G. Walter, “Irregular sampling in wavelet subspacds,” [16]

Fourier Anal. Appl, vol. 2, no. 2, pp. 181-189, 1995.
[12] R.Longand D. Chen, “Biorthogonal wavelet basesish” Appl. Comp.
Harmonic Anal, vol. 2, pp. 230-292, 1995.

[13] R.Longand W. Chen, “Wavelet basis packet and wavelet frame packef18]

J. Fourier Anal. Appl. vol. 3, no. 3, pp. 229-256, 1997.

resolution analysis,Appl. Comput. Harm. Analvol. 9, pp. 317-350,
1997.

Y. Meyer, “Wavelets and operators,” @ambridge Studies in Advanced
Math. 37. London, U.K.: Cambridge Univ. Press, 1992.

G. G. Walter, “A sampling theorem for wavelet subspacH#sEE Trans.
Inform. Theory vol. 38, pp. 881-889, Mar. 1992.

, Wavelets and Orthogonal System with ApplicationBoca Ra-
ton, FL: CRC, 1994.

R. M. Young, An Introduction to Non-Harmonic Fourier SeriesNew
York: Academic, 1980.




