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Irregular Sampling Theorems for Wavelet Subspaces
Wen Chen, Shuichi Itoh,Member, IEEE, and Junji Shiki

Abstract—From the Paley–Wiener 1/4-theorem, the finite en-
ergy signalf(t) can be reconstructed from its irregularly sampled
valuesf(k+ �k) if f(t) is band-limited and sup

k
j�kj < 1=4. We

consider the signals in wavelet subspaces and wish to recover the
signals from its irregular samples by using scaling functions. Then
the way to estimate the upper bound ofsup

k
j�kj such that the

irregularly sampled signals can be recovered is very important.
Following the work done by Liu and Walter, we present an
algorithm which can estimate a proper upper bound ofsup

k
j�kj.

Compared to Paley–Wiener 1/4-theorem, this theorem can relax
the upper bound for sampling in some wavelet subspaces.

Index Terms—Biorthogonality, MRA, orthogonality, sampling,
scaling function, wavelet, Zak-transform.

I. INTRODUCTION

FOR a finite-energy -band continuous signal
, i.e., and , the

classical Shannon Sampling Theorem gives the following
reconstruction formula:

(1)

where and is the Fourier transform of
defined by

Unfortunately it is not appropriate for nonbandlimited
signals. However, if we let , the
problem can be viewed as that of sampling in a wavelet
subspace, with playing the role of
scaling function of Multi-Resolution Analysis (MRA)

. Realizing these properties,
Walter [16] extended (1) such that it holds for a class of
scaling functions. Let be a continuous orthonormal
scaling function of MRA such that
for some . Walter [16] showed that there is a sequence

in such that and

(2)

holds for any .
However, in many cases the sampling is not always at the

same step. How should irregular sampling cases be dealt with?
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Paley–Wiener’s 1/4-Theorem (see [18, p. 151]) states that,
if and then

(3)

holds for any (Paley–Wiener Space), where

But it cannot deal well with nonbandlimited signals, and
sampling with the symmetricity constraint is also
restrictive. Following Walter’s [16] work, Liu and Walter [11]
tried to extend Paley–Wiener’s 1/4-Theorem to hold for the
sampling in a class of orthonormal wavelet subspaces without
the symmetric sampling constraint . But they could
not claim that there is a sequence such that a
similar to (3) reconstruction formula holds when

. Then Liu [10] turned to deal with the special case, spline
wavelets, by applying the Feichtinger–Grochenig Iterative
Algorithm (see [7]). Chen, Itoh, and Shiki [2] obtained a
recovering formula for sampling in general wavelet subspaces,
but they were led to an -bound on . In fact, they cannot
yet estimate the aforementioned.

In this paper, we can estimate an-bound for ,
which enables a reconstruction formula similar to (3) to hold
when . Our theorem does not only require the
symmetric sampling constraint , but also relaxes
the bound for the sampling in some wavelet subspaces. In
summary, we can estimate some , such that for
any with , there is an
such that

(4)

holds for any . Our idea is to let

Then we show that is a Riesz basis of . By
applying the Paley–Wiener Theorem (see [18, p. 38]), we
manage to find some so that is another
Riesz basis of equivalent to . Then there is a
basis sequence biorthogonal to ,
such that

(5)

holds for any . Since

holds, we obtain (4).
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Furthermore, the theorems are modified to be appropriate
for the shift sampling case by using Zak-transform (see [9]).
Later, we also calculate some examples and indicate that
can be bigger than for the sampling in B-spline of order

wavelet subspace.
Let us now introduce MRA (Multi-Resolution Analysis)

which was mentioned above. (For more details see [13], [14],
or any book on wavelets such as [1], [15], and [17].)

A subspace sequence of is said to be an
MRA if

1) , , ,
2) Function if and only if ,
3) There is a function (called scaling function)

such that form a Riesz basis in .

The terms Multi-Resolution Approximation and Multi-
Resolution Decomposition are also used sometimes. If

is an orthogonal (respectively, orthonormal)
Riesz basis, MRA and scaling function are considered
orthogonal (respectively, orthonormal).

MRA pair are considered biorthogonal if

(6)

where and are scaling functions of
MRA and , respectively. In that case, scaling
function pair is also considered biorthogonal.

Finally, let us introduce some notations used in this paper.
For a measurable set , denotes the measure of.
For the measurable functions and , a real
number , and an interval , we write

for

II. I RREGULAR SAMPLING THEOREM AND

ALGORITHM FOR ORTHOGONAL WAVELET SUBSPACES

Firstly, we shall show the existence of the described
in Section I for the sampling in orthogonal wavelet sub-
spaces. Then we shall provide an algorithm to estimate
the .

Theorem 1: Let be a continuous orthogonal scaling
function of MRA with

1) for some ,
2) .

Then there exists a , such that for any
there is a sequence biorthogonal to

in such that (4) holds for any
.

In order to demonstrate the theorem, we need a lemma
which can be found in Liu and Walter [11].

Lemma 1: Let be an orthonormal continuous scaling
function of MRA with for some

. Then

(7)

holds for any .
Proof of Theorem:Let . Then, is

an orthonormal continuous scaling function with
for some and .

Define

Then, Walter [16] tells us that is a Riesz basis in
, i.e., for any ,

(8)

holds for some . If we can find a , such that
for any , there is a such that

(9)

holds for any , then is a Riesz
basis in due to Paley–Wiener Theorem (see [18, p. 38]).
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Hence, there is a sequence in biorthogonal to
, such that

(10)

holds for any , i.e., (4) holds for any due
to Lemma 1.

In order to show (9), let

(11)

where (11) is due to the orthonormality of . Denote

then and

(12)

But

(13)

where (13) is due to the index transform and
.

In the meantime, the assumption for
some and the continuity of imply that the series

converges uniformly with respect toon , and

is uniformly bounded with respect to . Hence,

(14)

and

(15)

The above argument implies that there really exists some
, such that for any

(16)

That is,

(17)

From (12), (13), and (17), we derive

Then, due to (8), we conclude that (9) holds.
The theorem tells us that there really exist some ,

such that an irregularly sampled signal with deviation
within some interval can be reconstructed. However,
we also need to know how big the can be, so that we
can design a sampling satisfying the criterion for a concrete
signal. Therefore, we should find some algorithm to estimate
the from the scaling function . We need at first to
introduce a function class , ,

and to give some simple propositions of
that function class, then present the algorithm.
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Definition 1:

if there is a constant such that for any

(18)

We also write

Proposition 1:

1) and
if .

2)

3) If is differentiable on each interval and

then .

Proof:

1) Obviously and
hold. Therefore, holds.
On the other hand, for any

This means that holds.
The second part is easy to see.

2) If we let , it is easy to see

On the other hand, we have

This implies that the first inclusion holds.

3) Due to the Lagrange mean value formula, there exists a
number sequence such that

We now show a theorem which can lead to an algorithm
to estimate the .

Theorem 2: Suppose is an orthogonal continuous scal-
ing function of MRA with

1) for some ,
2) ,
3) .

Then for any , there exists a se-
quence biorthogonal to in
such that (4) holds if

(19)

Proof: Let . Then, is an orthonor-
mal continuous scaling function which satisfies the above three
assumptions in Theorem 2. Following the proof of Theorem 1,
we only need to show that for any
and any

(20)

Due to , we have

(21)

(22)

By the way, we also have

(23)

(24)

(25)

(26)
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(27)

(28)

where (23) and (27) are due to Parseval identity, and (28) is
due to the orthonormality of . Following (20), (22), and
(28), we only need to show

(29)

However, (19) exactly implies (29).

Remark 1:

1) in (19) can be . In that case, the right-
hand side of (19) is . Then, Theorem 2 holds for any

.
2) Referring to Section IV, we will find .

Hence

and (19) is, in fact,

3) For cardinal orthonormal scaling function (see [1], [17])
holds.

4) From Proposition 1, we know that is big
enough. In fact, we can verify that spline, Daubechies
scaling function, and Meyer scaling function are all
included in it. And in a practical case we will often
find , , or .

For a sequence , we wish to know if we can
reconstruct the original signal from the sampled values

. Of course, we can verify the conditions in
Theorem 2, but the following method is simpler and more
convenient, because it has less restrictive constraints than
Theorem 2.

Corollary 1: In Theorem 2, if 3) is replaced by
“For a sequence , there is a constant , such that
for any mapping ( is the integer set)

for some ,”
then there is a sequence biorthogonal to

in such that (4) holds if

(30)

Proof: Let . Then (22) becomes

(31)

Referring to the proof of Theorem 2 and 2) of Remark 1, we
only need

It seems that we can establish an algorithm for general
wavelet subspaces by orthonormalizing the scaling function
(refer to [1], [15], and [17]), i.e., taking such as

. But obtaining and calculating
from involves convolution or the fast Fourier transform
(FFT) to be undertaken twice. This is inconvenient, so we
should find other proper ways to estimate directly. First,
we extend the theorem and algorithm to those for the sampling
in biorthogonal wavelet subspaces, then we deduce the results
for the sampling in general of wavelet subspaces.

III. I RREGULAR SAMPLING THEOREM AND ALGORITHM

FOR BIORTHOGONAL WAVELET SUBSPACES

Theorem 3: Suppose is a biorthogonal contin-
uous scaling function pair of the MRA pair (with

), which satisfies

1) , and for some
,

2) .

Then there exists a , such that for any
, there is a sequence biorthogonal to

in such that (4) holds.
We need two lemmas for the proof of the theorem.

Lemma 2: Under the same assumption as Theorem 3,
is a Riesz basis of .

Proof: It is easy to see that is well-defined
and . Let be the linear operator on
that takes

into

for any . Since

(32)

(33)

(34)

we obtain

(35)



1136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998

On the other hand, from

(36)

(37)

we can deduce that

(38)

Since is a continuous nonzero -periodic function, we
derive

(39)

It is well known (see [1], [15], and [17]) that

(40)

From (34), (35), (37), and (38), we can now conclude

Moreover, for any , take such that
. Then it is easy to show that and
. Therefore, is a linear mapping which is

continuous, one to one and onto, i.e., is a Riesz
basis of .

Lemma 3: Suppose the biorthogonal continuous scaling
function pair of the MRA pair
(with ) satisfies ,
for some . Then

for (41)

Proof: implies that is
uniformly bounded with respect to a.e. in .

and the continuity of imply that

is uniformly convergent with respect toin . Therefore,

converges uniformly with respect to a.e.in . For
, let

Then

(42)

Proof of Theorem:If we can show that
is a Riesz basis in , then there is a sequence
biorthogonal to in , such that

(43)

Following Lemma 3, it is easy to see that (4) holds. However,
Lemma 2 tells us that is a Riesz basis in .
So we only need to find a , such that for any

, there is a such that for
any

(44)

In order to show (44), let

Denote
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Then and

(45)

By the way, we have

(46)

where (46) is due to the index transform and
. Following the proof of Theorem 1, the constraint

for some and the continuity of
, we can conclude that there is a , such that

for any

(47)

From (45)–(47), it was followed that

holds. Then from (35), we conclude that (44) holds.
Based on the theorem, we can now provide an algorithm

for sampling in biorthogonal wavelet subspaces to calculate the
from the biorthogonal scaling function pair .

Theorem 4: Suppose is a continuous biorthog-
onal scaling function pair of the MRA pair (with

), which satisfies

1) , and for some
,

2) ,
3) .

Then for any , there exists a se-
quence biorthogonal to in
such that (4) holds if

(48)

Proof: Following the proof of Theorem 3, we only need
to show that for any

(49)

Due to , we know

(50)

Equations (49) and (50) imply that we only need

This is exactly implied by (48).

Remark 2:

1) As the sampling in orthogonal wavelet subspaces,
in (48) can be zero. Then, Theorem 4

holds for any .
2) Since (refer to Section IV) and

, we know that .
3) In the orthogonal case, is constant a.e. and

. Therefore, (48) is the same as (19).
4) From the proof of the theorem, we also find that

does not need to be continuous.

There is another simple way to verify the conditions for a
given sampling in biorthogonal wavelet subspace.

Corollary 2: In Theorem 4, if 3) is replaced by
“For a sequence there is a constant such that
for any mapping ( is the integer set)

for some ,”
then there is a sequence biorthogonal to

in such that (4) holds if

(51)

Now following the results for biorthogonal wavelet sub-
spaces, we can show an irregular sampling theorem and
provide an algorithm for the sampling in general wavelet
subspaces.

IV. I RREGULAR SAMPLING THEOREM AND

ALGORITHM FOR GENERAL WAVELET SUBSPACES

Theorem 5: Suppose the continuous scaling function
of MRA satisfies:

1) for some ,
2) .

Then there is a , such that for any
, there is a sequence such that (9)

holds.
In order to show the theorem, we need two lemmas.

Lemma 4: Suppose the continuous scaling function
of MRA satisfies the same constraints as Theorem 5.
Then is a Riesz basis in . Suppose is
biorthogonal to . Then and
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Proof: Referring to Lemma 2, it is easy to show that
is a Riesz basis in . Since

is biorthogonal to , we have
due to the uniqueness of (see [5], [9],

and [17]). Let

Then due to (see [12] and [15])

(52)

Equation (52) implies . Of course, we also have
. Let

Since and are continuous (refer to the proof of
Lemma 5), we have due to Wiener–Ĺevy
Theorem (see [6]). Since

we can take the inverse Fourier transform of

in as denoted by

(refer to the Introduction). Now we obtain

(53)

Equation (53) implies .
By the way, we also have

(54)

(55)

(56)

Equation (56) implies that
is biorthogonal to . Hence

due to the uniqueness of in . It deduces that

(57)

Lemma 5: Suppose the continuous scaling function
of MRA satisfies the same constraints as Theorem 5.
Then defined in Lemma 4 is continuous and

.
Proof: Suppose

Then

(58)

Due to , we obtain

(59)

Equation (59) implies (see [6]). For the same
reason, (52) implies that holds. Therefore,

It means (of course, ). Now
we are to calculate (58):

The continuity of follows because uni-
formly converges with respect to on any closed interval

.



CHEN et al.: IRREGULAR SAMPLING THEOREMS FOR WAVELET SUBSPACES 1139

Proof of Theorem:Following Lemma 4, we know that
is a biorthogonal scaling function pair of the

MRA pair . Following Lemma 5, we derive that
is continuous. By the way, we have

In the meantime, holds. Now we
can apply Theorem 3 to the biorthogonal pair
to conclude the proof.

Based on the theorem, we can provide an algorithm for
the sampling in general wavelet subspaces by generalizing
Theorem 4.

Theorem 6: Suppose the continuous scaling function
of MRA satisfies

1) for some ,
2) ,
3) .

Then for any , there is a sequence
such that (9) holds if

(60)

Proof: We have, for any

This implies Now referring to the proof
of Theorem 5, we can apply Theorem 4 to the biorthogonal
pair . In this case, (48) becomes

(61)

Since

(62)

(63)

(64)

(65)

and

(66)

we have the theorem by calculating (61).

The following corollary is easily shown by referring to the
proof of Corollary 2.

Corollary 3: In Theorem 6, if 3) is replaced by
“For a sequence there is a constant such that
for any mapping ( is the integer set)

for some ,”
then there is an such that (4) holds if

(67)

Remark 3:

1) The in Theorems 5 and 6, and Corollary 3 are
biorthogonal to .

2) Since and are -functions, we have

and

Therefore, (60) is equivalent to

3) In the orthogonal case, is a constant. Then, (60)
becomes

Furthermore, if is also a cardinal scaling function,
then and a.e. . Therefore,
(60) is the same as (19), i.e.,
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V. A M ODIFIED VERSION FORGENERAL WAVELET SUBSPACES

If , we can apply the above algorithms to deal
with irregularly sampled signals. Unfortunately, some scaling
functions, even some important scaling functions, do not show
the property. For example, consider the B-spline of order
scaling function

(68)

where is the characteristic function of the interval

for . Then
when . So we should find a proper way to solve it. This
is the main purpose of this section.

Suppose the scaling function satisfies
for some . Then, for , we can

define the Zak-transform of (see [8], [9], and [17]) as

(69)

For the above B-spline of order scaling function ,
we find . This
implies that we can improve our above-mentioned algorithms
by sampling at instead of for some with

. First, we modify the theorem and algorithm for
sampling in biorthogonal wavelet subspaces, then we deduce
the modified results for that in general wavelet subspaces.
Since the procedure is similar to the former sections except that

takes the place of , here we will not show it in
detail. Now we only display the three results without proofs.

Theorem 7: Suppose the continuous scaling function
of MRA satisfies

1) for some ,
2) for some .

Then, there exists a , such that for any
, there is a sequence such that

(70)

holds for any .

Theorem 8: Suppose the continuous scaling function
of MRA satisfies

1) for some ,
2) for some ,
3) .

Then for any , there exists a
sequence such that (70) holds if

(71)

Corollary 4: In Theorem 8, if 3) is replaced by
“For a sequence there is a constant such that
for any mapping (Z is the integer set)

for some ,”
then there is a sequence such that (70) holds
if

(72)

Remark 4:

1) The in Theorems 7 and 8, and Corollary 9
are biorthogonal to .

2) Since , (71) is the same as (60) when
.

3) We can also show that Lip . Therefore,
(71) is equivalent to

VI. CONCLUSION AND EXAMPLES

1) Suppose is a Multi-Resolution Decomposition
of with the scaling function satisfying

A. for some .
B. for some .

We can assert that there is a such that
for any irregularly sampled points with

, the original signal can be
reconstructed by

(73)

2) The in (73) can be computed as the biorthogonal
basis of in .

3) Besides the constraintsA andB, if the scaling function
also satisfies

C. ,
then we can estimate the deviation bound by

(74)

4) For the irregularly sampled signals we
can also verify Corollary 5 to recover the original signal

.
5) In fact, we have not used the dilation equation. There-

fore, all the theorems are correct only with the hypothe-
sis that is a Riesz basis of instead of that



CHEN et al.: IRREGULAR SAMPLING THEOREMS FOR WAVELET SUBSPACES 1141

is a scaling function, i.e., only with the hypothesis
of

6) If the sampling step is not ator say , we can
regard as . All the theorems and algorithms can be
modified to easily by using the Hilbert reproducing
kernel

Now we apply the algorithm to calculate some examples.

Example 1 (See [3]):Daubechies scaling function
is defined as

where

and

It has been shown that is orthonormal,
and

Therefore, for any
due to Proposition 1. If for some ,
then

(75)

Example 2 (See [15]):Meyer scaling function is defined as

otherwise

where , when , when
, and . It is shown that is

orthonormal and -regular. Therefore,

converges. Hence for any due
to Proposition 1. Since

we obtain

(76)

The following example indicates that can be bigger
than for the sampling in the B-spline of orderwavelet
subspace.

Example 3 (See [1]):The B-spline of order scaling func-
tion

Obviously, satisfies constraintA and C (with ,
). Since

and

Therefore, (74) becomes

(77)
Since

and

we derive . When for all or for
all , we have . Obviously, .
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