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Abstract— Existing polar coding schemes for the two-user
interference channel follow the original idea of Han and
Kobayashi, in which component messages are encoded inde-
pendently and then mapped by some deterministic functions
(i.e., homogeneous superposition coding). In this paper, we pro-
pose a new polar coding scheme for the interference channel
based on the heterogeneous superposition coding approach of
Chong, Motani, and Garg. We prove that fully joint decoding
(the receivers simultaneously decode both senders’ common
messages and the intended sender’s private message) in the
Han–Kobayashi strategy can be simplified to two types of partial-
joint decoding, which are friendly to polar coding with practical
decoding algorithms. The proposed coding scheme requires less
auxiliary random variables and no deterministic functions and
can be efficiently constructed. Furthermore, we extend this result
to interference networks and show that partial-joint decoding is a
general method for designing heterogeneous superposition polar
coding schemes in interference networks.

Index Terms— Polar codes, interference channel, Han-
Kobayashi region, superposition coding, joint decoding.

I. INTRODUCTION

POLAR codes, proposed by Arıkan [1], are the first class
of channel codes that can provably achieve the capacity of

any memoryless binary-input output-symmetric channels with
low encoding and decoding complexity. Since its invention,
polar codes have been widely adopted to many other scenarios,
such as source compression [2]–[5], wiretap channels [6]–[11],
relay channels [6], [12], [13], multiple access channels
(MAC) [5], [14]–[17], broadcast channels [18], [19], broadcast
channels with confidential messages [10], [20], and bidi-
rectional broadcast channels with common and confidential
messages [21]. In these scenarios, polar codes have also shown
capacity-achieving capabilities.
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The interference channel (IC), first initiated by Shannon [22]
and further studied by Ahlswede [23], models the situation
where m sender-receiver pairs try to communicate simul-
taneously through a common channel. In this model, it is
assumed that there is no cooperation between any of the
senders or receivers, and the signal of each sender is seen as
interference by the unintended receivers. Although the 2-user
discrete memoryless IC (DM-IC) is rather simple in appear-
ance, except for some special cases [24]–[31], determining
the capacity region of a general IC remains an open problem.
Reference [23] gave simple but fundamental inner and outer
bounds on the capacity region of the IC. In [32], Carleial
determined an improved achievable rate region for the IC by
applying the superposition coding technique of Cover [33],
which was originally designed for the broadcast channel. Later,
Han and Kobayashi established the best achievable rate region
for the general IC to date [34]. A more compact description
of the Han-Kobayashi region was given in [35]. The idea of
the Han-Kobayashi coding strategy is to split each sender’s
message into a private part and a common part, and allow
the unintended receiver to decode the common part so as to
enhance the total transmission rates. To achieve the whole
Han-Kobayashi region, it is required that each receiver decodes
its intended private message and both senders’ common mes-
sages jointly.

There are limited studies on the design of specific coding
schemes that can achieve the Han-Kobayashi region. A low-
density parity-check (LDPC) code-based Han-Kobayashi
scheme was proposed for the Gaussian IC in [36], which
has close-to-capacity performance in the case of strong inter-
ference. In [37], a specific coding scheme was designed
for the binary-input binary-output Z IC using LDPC codes,
and an example was shown to outperform time sharing of
single user codes. For polar codes, [38] pointed out how
alignment of polarized bit-channels can be of use for designing
coding schemes for interference networks, and presented an
example of the one-sided discrete memoryless 3-user IC
with a degraded receiver structure. A polar coding scheme
that achieves the Han-Kobayashi inner bound for the 2-user
IC was proposed in [39], and [40] used a similar scheme
to achieve the Han-Kobayashi region in the 2-user classical-
quantum IC. The idea of [39] is to transform the original IC
into two 3-user MACs from the two receivers’ perspectives,
and design a compound MAC polar coding scheme for them.
The achievable rate region of the compound MAC equals the
Han-Kobayashi region, and can be achieved by polar codes.
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This design is based on the original Han-Kobayashi scheme
of [34], in which component messages are independently
encoded into auxiliary sequences and then mapped to the
channel inputs by some deterministic functions (also known
as homogeneous superposition coding [41]). By ranging over
all possible choices of these functions and distributions of
auxiliary random variables (ARV), the whole Han-Kobayashi
region can be achieved. However, such an approach could be
problematic in practice since finding such functions may be a
very complex task.

Our work is inspired by the compact description of
the Han-Kobayashi region based on the Chong-Motani-Garg
scheme [35], in which no deterministic functions are required
and less ARVs are needed. This approach belongs to the
heterogeneous superposition coding scheme [41], in which
the common message is encoded first and then a satellite
codebook for the private message is generated around it.
When implementing such a scheme using polar codes, we find
that the fully-joint decoder which simultaneously decodes all
three component messages is difficult to design, because the
encoding scheme forces us to decode the common message of
a sender before its private message when successive cancel-
lation decoding (SCD) is used. By analyzing points on the
dominant faces of the Han-Kobayashi region and utilizing
random coding techniques, we find that it is possible to
loosen the fully-joint decoding requirement and propose to
use two types of partial-joint decoders. Each receiver can
either jointly decode both senders’ common messages first and
then the intended sender’s private message, or solely decode
the intended sender’s common message first and then jointly
decode the rest two. Based on this finding and enlightened
by Goela et al.’s superposition polar coding scheme for the
broadcast channel [18], we design two types of polar coding
schemes and show that every point on the dominant faces of
the Han-Kobayashi region can be achieved. Compared with
the existing scheme of [39], our proposed scheme achieves a
larger rate region for the same joint distribution of ARVs, and
can be constructed efficiently. Most notably, with the proposed
scheme, the task of finding proper ARVs for a DM-IC can
be reduced significantly. Further, we extend the partial-joint
decoding scheme to arbitrary discrete memoryless interference
networks (DM-IN) and show that heterogeneous superposition
polar coding schemes that can achieve optimal rate regions can
be easily designed based on it.

In our proposed scheme, joint decoders and the correspond-
ing code structure use the 2-user MAC polarization method
based on Arıkan’s monotone chain rule [5], whose encoding
and decoding complexities are similar to those of single-
user polar codes. We use Şaşoğlu’s result [42] to extend
it to arbitrary prime input alphabets, and propose a low-
complexity construction on the method of [43]. To deal with
non-uniform input distributions, one may apply Gallager’s
alphabet extension [44, p. 208] as in [39], the chaining con-
struction [45], or a more direct approach by invoking results
on polar coding for lossless compression [18], [20], [46], [47].
In this paper, we follow Chou and Bloch’s low-complexity
approach [20], [47], which only requires a vanishing rate
of shared randomness between communicators. One crucial

point in designing capacity-achieving polar codes for a general
multi-user channel is how to properly align the polar indices.
One solution is the chaining method, which has already been
used in several areas [9]–[11], [19], [48]. Another way is to
run additional stages of polarization to align the incompatible
indices, as shown in [49] and used in [39]. In this paper,
we adopt the chaining method as it does not change the
original polar transformation.

The rest of this paper is organized as follows. In Section II,
we introduce the 2-user DM-IC model and the Han-Kobayashi
region, and propose two types of partial-joint decoders.
In Section III, we review some background on polarization
and polar codes necessary for our code design. In Section IV,
we provide an overview of our scheme and analyze its
feasibility. Details of our proposed schemes are presented in
Section V, and the performance is analyzed in Section VI.
In Section VII, we extend the proposed scheme to arbi-
trary DM-INs. Section VIII concludes this paper with some
discussions.

Notations: [N] is the abbreviation of an index set
{1, 2, . . . , N}. Vectors are denoted as XN � {X1, X2, . . . ,
X N } or Xa:b � {Xa, Xa+1, . . . , Xb} for a ≤ b. For a subset
A ⊂ [N], XA denotes the subvector {Xi : i ∈ A} of X1:N .
GN = BN F⊗n is the generator matrix of polar codes [1],
where N = 2n with n being an arbitrary integer, BN is

the bit-reversal matrix, and F =
[

1 0
1 1

]
. Hq(X) stands

for the entropy of X with q-based logarithm, and H (X) is
short for the log-2 based entropy unless otherwise specified.
δN = 2−Nβ

with some β ∈ (0, 1/2).

II. PROBLEM STATEMENT

A. Channel Model

Definition 1: A 2-user DM-IC consists of two input
alphabets X1 and X2, two output alphabets Y1 and Y2, and
a probability transition function PY1Y2|X1 X2(y1, y2|x1, x2). The
conditional joint probability distribution of the 2-user DM-IC
over N channel uses can be factored as

PYN
1 YN

2 |XN
1 XN

2
(yN

1 , yN
2 |xN

1 , xN
2 ) =

N∏
i=1

PY1Y2|X1 X2(yi
1, yi

2|xi
1, xi

2).

(1)

Definition 2: A (2N R1 , 2N R2 , N) code for the 2-user
DM-IC consists of two message sets M1 = {1, 2, . . . , [2N R1 ]}
and M2 = {1, 2, . . . , [2N R2 ]}, two encoding functions

x N
1 (m1) :M1 �→ X N

1 and x N
2 (m2) :M2 �→ X N

2 , (2)

and two decoding functions

m̂1(yN
1 ) : YN

1 �→M1 and m̂2(yN
2 ) : YN

2 �→M2. (3)

Definition 3: The average probability of error P(N)
e of

a (2N R1 , 2N R2 , N) code for the 2-user DM-IC is defined
as the probability that the decoded message pair is not
the same as the transmitted one averaged over all possible
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message pairs,

P(N)
e = 1

2N(R1+R2)

∑
(M1,M2)∈M1×M2

Pr
{(

m̂1(YN
1 ), m̂2(YN

2 )
) �=(M1, M2)|(M1, M2) sent

}
,

(4)

where (M1, M2) are assumed to be uniformly distributed
over M1 ×M2.

B. The Han-Kobayashi Rate Region

In the Han-Kobayashi coding strategy, each sender’s mes-
sage is split into two parts: a private message, which only
needs to be decoded by the intended receiver, and a common
message, which is allowed to be decoded by the unintended
receiver. Each receiver decodes its intended private message
and two common messages jointly so that a higher trans-
mission rate can be achieved. In the rest of this paper, we
will refer to the two senders and two receivers as Sender 1,
Sender 2, Receiver 1 and Receiver 2 respectively. Sender 1’s
message, denoted as M1, is split into (M1p, M1c), where
M1p ∈M1p � {1, 2, . . . , [2N S1 ]} denotes its private message
and M1c ∈ M1c � {1, 2, . . . , [2NT1 ]} the common message.
Similarly, Sender 2’s message M2 is split into (M2p, M2c)
with M2p ∈ M2p � {1, 2, . . . , [2N S2 ]} and M2c ∈ M2c �
{1, 2, . . . , [2NT2 ]}. Define W1, W2, V1 and V2 as the random
variables for messages M1c, M2c, M1p and M2p respectively,
with W1, W2, V1 and V2 being their alphabets. Then each
encoding function can be decomposed into three functions.
For x N

1 (m1), the three functions are

wN
1 (M1c) :M1c �→WN

1 , vN
1 (M1p) :M1p �→ VN

1

and x
′N
1 (WN

1 , VN
1 ) :WN

1 × VN
1 �→ X N

1 . (5)

Similarly, for x N
2 (m2), the three functions are

wN
2 (M2c) :M2c �→WN

2 , vN
2 (M2p) :M2p �→ VN

2

and x
′N
2 (WN

2 , VN
2 ) :WN

2 × VN
2 �→ X N

2 . (6)

With this approach, Han and Kobayashi established the best
achievable rate region for the general IC to date [34]. The
result is summarized in Theorem 1.

Theorem 1 [34], [50]: Let P∗ be the set of probability
distributions P∗(·) that factor as

P∗(q, v1, v2, w1, w2, x1, x2)

= PQ(q)PV1|Q(v1|q)PV2|Q(v2|q)PW1|Q(w1|q)PW2|Q(w2|q)

× PX1|V1W1 Q(x1|v1, w1, q)PX2|V2W2 Q(x2|v2, w2, q), (7)

where Q ∈ Q is the time-sharing parameter, and PX1|V1W1 Q(·)
and PX2|V2W2 Q(·) equal either 0 or 1, i.e., they are determin-
istic functions. For a fix P∗(·) ∈ P∗, consider Receiver 1 and
the set of non-negative rate-tuples (S1, T1, S2, T2) denoted

by Ro,1
H K (P∗) that satisfy

0 ≤ S1 ≤ I (V1; Y1|W1W2 Q), (8)

0 ≤ T1 ≤ I (W1; Y1|V1W2 Q), (9)

0 ≤ T2 ≤ I (W2; Y1|V1W1 Q), (10)

S1 + T1 ≤ I (V1W1; Y1|W2 Q), (11)

S1 + T2 ≤ I (V1W2; Y1|W1 Q), (12)

T1 + T2 ≤ I (W1W2; Y1|V1 Q), (13)

S1 + T1 + T2 ≤ I (V1W1W2; Y1|Q). (14)

Similarly, let Ro,2
H K (P∗) be the set of non-negative rate-tuples

(S1, T1, S2, T2) that satisfy (8)–(14) with indices 1 and 2
swapped everywhere. For a set S of 4-tuples (S1, T1, S2, T2),
let R(S) be the set of (R1, R2) such that 0 ≤ R1 ≤ S1 + T1
and 0 ≤ R2 ≤ S2+ T2 for some (S1, T1, S2, T2) ∈ S. Then we
have that

Ro
H K = R

( ⋃
P∗∈P∗

Ro,1
H K (P∗) ∩Ro,2

H K (P∗)
)

(15)

is an achievable rate region for the DM-IC.
The original Han-Kobayashi scheme can be classified

into the homogeneous superposition coding scheme [41], in
which component messages of each sender are independently
encoded into auxiliary sequences and then mapped to the chan-
nel input sequence by some symbol-by-symbol deterministic
function. The scheme of [39] belongs to the this type. Another
variant of superposition coding is the heterogeneous superposi-
tion coding [41], introduced by Bergmans [51]. In this variant,
the coarse messages are encoded into auxiliary sequences
first, and then a satellite codebook for the fine message
is conditionally independently generated around it. Usually
the heterogeneous variant is simpler than the homogeneous
one since it requires fewer ARVs. Reference [35] presented
a simplified description of Han-Kobayashi region based on
this approach (referred to as the Chong-Motani-Garg scheme
in this paper), in which only three ARVs are used and no
deterministic functions are needed. Their result is summarized
in Theorem 2.

Theorem 2 [35], [50]: Let P∗1 be the set of probability
distributions P∗1 (·) that factor as

P∗1 (q, w1, w2, x1, x2)

= PQ(q)PX1W1|Q(x1, w1|q)PX2W2|Q(x2, w2|q), (16)

where |W j | ≤ |X j | + 4 for j = 1, 2, and |Q| ≤ 6. For a fix
P∗1 (·) ∈ P∗1 , let RH K (P∗) be the set of (R1, R2) satisfying

0 ≤ R1 ≤ I (X1; Y1|W2 Q) � a, (17)

0 ≤ R2 ≤ I (X2; Y2|W1 Q) � b, (18)

R1 + R2 ≤ I (X1W2; Y1|Q)+ I (X2; Y2|W1W2 Q) � c,

(19)

R1 + R2 ≤ I (X1; Y1|W1W2 Q)+ I (X2W1; Y2|Q) � d,

(20)

R1 + R2 ≤ I (X1W2; Y1|W1 Q)+ I (X2W1; Y2|W2 Q) � e,

(21)
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2R1 + R2 ≤ I (X1W2; Y1|Q)+ I (X1; Y1|W1W2 Q)

+ I (X2W1; Y2|W2 Q) � f, (22)

R1 + 2R2 ≤ I (X2; Y2|W1W2 Q)+ I (X2W1; Y2|Q)

+ I (X1W2; Y1|W1 Q) � g. (23)

Then we have that

RH K =
⋃

P∗1 ∈P∗1
RH K (P∗1 ) (24)

is an achievable rate region for the DM-IC.
It is shown in [35] that the regions described in Theorem 1

and 2 are equivalent, and constraints (9), (10) and (13) and
their counterparts for the second receiver are unnecessary.
It is straightforward to see that Ro

H K (P∗) ⊆ RH K (P∗1 ) by
using Fourier-Motzkin elimination [35], where Ro

H K (P∗) =
Ro,1

H K (P∗) ∩Ro,2
H K (P∗) and

P∗1 (q, w1.w2, x1, x2) =
∑

v1∈V1,v2∈V2

P∗(q, v1, v2, w1.w2, x1, x2).

However, to prove the converse, we will need [35, Lemma 2],
which states that RH K (P∗1 ) ⊆ Ro

H K (P∗) ∪ Ro
H K (P∗∗) ∪

Ro
H K (P∗∗∗), where

P∗∗ =
∑

w1∈W1

P∗, P∗∗∗ =
∑

w2∈W2

P∗.

This indicates that for a given joint distribution, the original
Han-Kobayashi region can be smaller than the compact one,
as shown in [35, Remark 3]. Thus, to achieve RH K (P∗1 ) for a
some P∗1 with the scheme of [39], one generally needs three
codes designed for different joint distributions. In this paper,
we aim to design a heterogeneous superposition polar coding
scheme to achieve RH K (P∗1 ) directly.

C. Partial-Joint Decoding for the 2-User DM-IC

To achieve the whole Han-Kobayashi region, both superpo-
sition coding variants require joint decoding of all component
messages at each receiver, which we refer to as fully-joint
decoding. For the homogeneous variant, fully-joint decod-
ing can be realized by polar codes using MAC polarization
techniques since each component message is independently
encoded, as [39] has adopted. For the heterogeneous variant,
however, fully-joint decoding may not be easily implemented
using polar codes and practical decoding algorithms (such
as SCD), as the coarse message and the fine message are
encoded sequentially. When decoding the fine message in
a heterogeneous superposition polar coding scheme (such
as [18]), the estimate of the coarse message is required as side
information. To design a low-complexity polar coding scheme
that can achieve RH K (P∗1 ) directly, we propose two types of
partial-joint decoding orders and prove their achievability.

Definition 4 (Partial-Joint Decoding): The two types of
partial-joint decoding are defined as:
• (Type I) a receiver jointly decodes two senders’ common

messages first, and then decodes its private message with
the estimates of the common messages;

• (Type II) a receiver decodes its intended common message
first, and then jointly decodes the unintended common

message and its private message with the estimate of the
intended common message.

Theorem 3: Let R1
Par(P∗1 ) be the achievable rate region of

the DM-IC when both receivers use the Type I partial-joint
decoding, and R2

Par(P∗1 ) (resp. R3
Par(P∗1 )) the region when

Receiver 1 (resp. 2) adopts Type I while Receiver 2 (resp.1)
applies Type II. Define RPar(P∗1 ) = R1

Par(P∗1 ) ∪R2
Par(P∗1 ) ∪

R3
Par(P∗1 ). Then we have

RPar(P∗1 ) = RH K (P∗1 ). (25)

Proof: See Appendix A. �
Remark 1: It is worth noting that we do not consider

the case when both receivers use the Type II partial-joint
decoding. This is because the Han-Kobayashi region can
already be covered by the other three decoding strategies.
In fact, one can easily verify that the achievable rate region in
this case can also be achieved by at least one of the other three
strategies since the upper bounds on the common message
rates (Rc

k ≤ I (Wk ; Yk|Q) for k = 1, 2) are non-optimal.
This explains why in our proposed polar coding scheme in
Section IV we do not need such a strategy either.

Remark 2: The reasons why the fully-joint decoder is hard
to design are twofold, the decoding algorithm and the code
structure. Existing polar codes are optimized for SCD, which
is sequential in nature. To design a joint decoder using SCD,
one has to use methods similar to the permutation based MAC
polarization – mixing different users’ sequences of random
variables into a single one and then decoding them together.
However, in the heterogeneous scheme, Wk and Xk (k = 1, 2)
are correlated. If we try to apply this method, the induced
random process will have a complicated memory. Although
there have been studies on polarization for processes with
memory [42], [52], [53], the results are still far from handling
such a problem now. If we want to realize genuine fully-joint
decoding (e.g., using maximum-likelihood (ML) or ML-like
decoding), then the corresponding structure of codes should
also be optimized for this decoding algorithm (we cannot
use the same code structure optimized for SCD and just
switch to ML decoding, as the achievable rate region of the
scheme remains the same). However, neither the construction
complexity nor the decoding complexity is affordable.

III. POLAR CODING PRELIMINARIES

A. Polar Coding for Lossless Source Compression

First, let us recap the lossless source polarization scheme
introduced in [2] and generalized to arbitrary alphabet in [42].
Let (X, Y ) ∼ pX,Y be a pair of random variables over
(X × Y) with |X | = qX being a prime number.1 Consider
X as the memoryless source to be compressed and Y as
side information of X . Let U1:N = X1:N GN . As N goes
to infinity, U j ( j ∈ [N]) becomes either almost indepen-
dent of (Y 1:N , U1: j−1) and uniformly distributed, or almost
determined by (Y 1:N , U1: j−1) [2]. Define the following sets

1Although for composite qX , polarization can also happen if we use some
special types of operations instead of group operation [42], [54]–[56], we only
consider the prime number case in this paper for simplicity.
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of polarized indices:

H(N)
X |Y = { j ∈ [N] : H (U j |Y 1:N , U1: j−1) ≥ log2(qX )− δN },

(26)

L(N)
X |Y = { j ∈ [N] : H (U j |Y 1:N , U1: j−1) ≤ δN }. (27)

From [20] and [42] we have

lim
N→∞

1

N
|H(N)

X |Y | = HqX (X |Y ),

lim
N→∞

1

N
|L(N)

X |Y | = 1− HqX (X |Y ). (28)

With U (L(N)
X |Y )C

and Y 1:N , X1:N can be recovered at arbitrarily
low error probability given sufficiently large N .

The compression of a single source X can be seen as a
special case of the above one by letting Y = ∅.

B. Polar Coding for Arbitrary Discrete Memoryless Channels

Polar codes were originally developed for symmetric
channels. By invoking results in source polarization, one
can construct polar codes for asymmetric channels without
alphabet extension, as introduced in [46]. However, the scheme
of [46] requires the encoder and the decoder to share a large
amount of random mappings, which raises a practical concern
of not being explicit. In [18], [20], [47], and [57], deterministic
mappings are used to replace (part of) the random mappings so
as to reduce the amount of shared randomness needed. Next,
we briefly review the method of [20] and [47],2 which only
requires a vanishing rate of shared randomness.

Let W (Y |X) be a discrete memoryless channel (DMC) with
a qX -ary input alphabet X , where qX is a prime number. Let
U1:N = X1:N GN and define H(N)

X and H(N)
X |Y as in (26), and

L(N)
X |Y as in (27). Define the information set, frozen set and

almost deterministic set respectively as follows:

I � H(N)
X ∩ L(N)

X |Y , (29)

Fr � H(N)
X ∩ (L(N)

X |Y )c, (30)

Fd � (H(N)
X )c. (31)

The encoding procedure goes as follows: {u j } j∈I carry infor-
mation, {u j } j∈Fr are filled with uniformly distributed frozen
symbols (shared between the sender and the receiver), and
{u j } j∈Fd are randomly generated according to conditional
probability PU j |U 1: j−1(u|u1: j−1). To guarantee reliable decod-
ing, {u j }

j∈(H(N)
X )C∩(L(N)

X |Y )C are separately transmitted to the

receiver with some reliable error-correcting code, the rate of
which vanishes as N goes large [20]. Since {u j } j∈Fr only
need to be uniformly distributed, they can be the same in
different blocks. Thus, the rate of frozen symbols in this
scheme can also be made negligible by reusing them over
sufficient number of blocks.

2We note that the common message encoding scheme in [20] (consider
the special case when there is no Eve and no chaining scheme) and the
scheme in [47] share the same essence, although there is a slight difference in
the partition scheme for information and frozen symbols (see [20, eq. (11)],
[47, eq. (10)]), and [47] uses deterministic rules for some symbols while [20]
uses random rules.

After receiving y1:N and recovered {u j }
j∈(H(N)

X )C∩(L(N)
X |Y )C ,

the receiver computes the estimate ū1:N of u1:N with a SCD
as

ū j =

⎧⎪⎨
⎪⎩

u j , if j ∈ (L(N)
X |Y )C

arg maxu∈{0,1} PU j |Y 1:N U 1: j−1(u|y1:N , u1: j−1),

if j ∈ L(N)
X |Y

(32)

It is shown that the rate of this scheme, R = |I|/N ,
satisfies [46]

lim
N→∞ R = I (X; Y ). (33)

C. Polar Coding for Multiple Access Channels

Let PY |X1 X2(y|x1, x2) be the transition probability of a
discrete memoryless 2-user MAC, where x1 ∈ X1 with
|X1| = qX1 and x2 ∈ X2 with |X2| = qX2 . For a fixed product
distribution of PX1(x1)PX2(x2), the achievable rate region of
PY |X1 X2 is given by [58]

R(PY |X1 X2) �

⎧⎨
⎩

(
R1
R2

) ∣∣∣∣∣∣
0 ≤ R1 ≤ I (X1; Y |X2)
0 ≤ R2 ≤ I (X2; Y |X1)

R1 + R2 ≤ I (X1, X2; Y )

⎫⎬
⎭. (34)

Polar coding for MACs has been studied in [5]
and [14]–[17]. Although [17] provides a more general scheme
that can achieve the whole uniform rate region of a m-user
(m ≥ 2) MAC, in our scheme, we adopt the monotone
chain rule expansion method in [5] because it has simple
structure and possesses similar complexity to the single-user
polar codes. Reference [5] mainly deals with the Slepian-Wolf
problem in source coding, but the method can be readily
applied to the problem of coding for the 2-user MAC since
they are dual problems, which has been studied in [14] and
used in [39]. However, both [14] and [39] consider uniform
channel inputs. Here we generalize it to arbitrary input case
with the approach of the previous subsection. Note that
although the input alphabets of the two users can be different,
the extension is straightforward since there is no polarization
operation between the two channel inputs. For simplicity,
we assume qX1 and qX2 are prime numbers. Define

U1:N
1 = X1:N

1 GN , U1:N
2 = X1:N

2 GN . (35)

Let S1:2N be a permutation of U1:N
1 U1:N

2 such that it preserves
the relative order of the elements of both U1:N

1 and U1:N
2 ,

called a monotone chain rule expansion. Such an expansion
can be represented by a string b2N = b1b2 . . . b2N , called the
path of the expansion, where b j = 0 ( j ∈ [2N]) represents
that S j ∈ U1:N

1 , and b j = 1 represents that S j ∈ U1:N
2 . Then

we have

I (Y 1:N ;U1:N
1 , U1:N

2 )

= H (U1:N
1 , U1:N

2 )− H (U1:N
1 , U1:N

2 |Y 1:N )

= N H (X1)+ N H (X2)−
2N∑
j=1

H (S j |Y 1:N , S1: j−1).
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It is shown in [5] that H (S j |Y 1:N , S1: j−1) ( j ∈ [2N])
polarizes to 0 or 1 as N goes to infinity.3 Define the rates
of the two users as

RU1 = H (X1)− 1

N

∑
j∈SU1

H (S j |Y 1:N , S1: j−1),

RU2 = H (X2)− 1

N

∑
j∈SU2

H (S j |Y 1:N , S1: j−1), (36)

respectively, where SU1 � { j ∈ [2N] : b j = 0} and SU2 �
{ j ∈ [2N] : b j = 1}.

Proposition 1 [5]: Let (R1, R2) be a rate pair on the
dominant face of R(PY |X1 X2). For any given ε > 0, there
exists N and a chain rule b2N on U1:N

1 U1:N
2 such that b2N

is of the form 0i 1N 0N−i (0 ≤ i ≤ N) and has a rate pair
(RU1, RU2) satisfying

|R1 − RU1 | ≤ ε and |R2 − RU2 | ≤ ε. (37)

Although the permutations can have lots of variants, even
non-monotone [17], Proposition 1 shows that expansions of
type 0i 1N 0N−i (0 ≤ i ≤ N) are sufficient to achieve every
point on the dominant face of R(PY |X1 X2) given sufficiently
large N , which can make our code design and construction
simpler. To polarize a MAC sufficiently while keeping the
above rate approximation intact, we need to scale the path.
For any integer l = 2m , let lb2N denote

b1 · · · b1︸ ︷︷ ︸
l

b2 · · · b2︸ ︷︷ ︸
l

· · · · · · b2N · · · b2N︸ ︷︷ ︸
l

,

which is a monotone chain rule for U1:lN
1 U1:lN

2 . It is shown
in [5] that the rate pair for b2N is also the rate pair for lb2N .

Now we can construct a polar code for the 2-user MAC
with arbitrary inputs. Let fk(i) : [N] → SUk (k = 1, 2) be the
mapping from indices of U1:N

k to those of SSUk . Define

H(N)
SUk

� { j ∈ [N] : H (S fk( j )|S1: fk ( j )−1) ≥ log2(qXk )−δN },
L(N)

SUk |Y � { j ∈ [N] : H (S fk( j )|Y 1:N , S1: fk ( j )−1) ≤ δN }, (38)

which satisfy

lim
N→∞

1

N
|H(N)

SUk
| = 1

N

∑
j∈SUk

HqXk
(S j |Y 1:N , S1: j−1),

lim
N→∞

1

N
|L(N)

SUk
| = 1− 1

N

∑
j∈SUk

HqXk
(S j |Y 1:N , S1: j−1). (39)

Since X1 and X2 are independent, we have

H(N)
SUk
= H(N)

Xk
(40)

� { j ∈ [N] : H (U j
k |U1: j−1

k ) ≥ log2(qXk )− δN }. (41)

Partition user k’s (k = 1, 2) indices as

Ik � H(N)
SUk
∩ L(N)

SUk |Y ,

Fkr � H(N)
SUk
∩ (L(N)

SUk |Y )C ,

Fkd � (H(N)
SUk

)C . (42)

3The entropy here is calculated adaptively. If j ∈ SUk (k = 1, 2), then
entropy is calculated with qXk -based logarithm.

Fig. 1. Proposed heterogeneous superposition polar coding scheme for the
2-user DM-IC.

Then each user can apply the same encoding scheme as the
single-user case. The receiver uses a SCD to decode two
users’ information jointly according to the expansion order.
The polarization result can be summarized as the following
proposition.

Proposition 2 [5]: Let PY |X1 X2(y|x1, x2) be the transition
probability of a discrete memoryless 2-user MAC. Consider
the transformation defined in (35). Let N0 = 2n0 for some
n0 ≥ 1 and fix a path b2N0 for U1:N0

1 U1:N0
2 . The rate pair for

b2N0 is denoted by (RU1, RU2). Let N = 2l N0 for l ≥ 1 and
let S1:2N be the expansion represented by 2lb2N0 . Then, for
any given δ > 0, as l goes to infinity, we have (the entropy
here is also calculated adaptively)

1

2N

∣∣{1 ≤ j ≤ 2N : δ < H (S j |Y 1:N , S1: j−1) < 1− δ}∣∣→ 0,

|I1|
N
→ RU1 and

|I2|
N
→ RU2 . (43)

Proposition 1 and 2 can be readily extended from
[5, Ths. 1 and 2] by considering Y as side information of
source pair (X1, X2) and performing the same analysis. Thus,
we omit the proof here.

IV. AN OVERVIEW OF OUR NEW APPROACH

In this section, we introduce the main idea of our scheme.
Since the purpose of introducing the time-sharing parameter Q
in Theorem 1 and 2 is to replace the convex-hull operation,
in the code design part, we will consider a fixed Q = q and
drop this condition in the expressions for simplicity.

Our proposed heterogeneous superposition polar coding
scheme is illustrated in Fig. 1. Sender k’s (k = 1, 2) splits
its message Mk into a private message Mkp and a common
message Mkc . Encoder Ekb maps Mkc into a sequence U

′1:N
k

of length N , which goes into a polar encoder to generate an
intermediate codeword W 1:N

k (corresponding to ARV Wk in
Theorem 2). Encoder Eka then maps Mkp together with W 1:N

k
into U1:N

k , which goes into another polar encoder to generate
the final codeword X1:N

k .

A. Synthesized MACs for Receivers

For a target rate pair P, let R p
k and Rc

k respectively denote
the corresponding private and common message rates of
Sender k (k = 1, 2), and define P1 � (R p

1 + Rc
1, Rc

2) and
P2 � (Rc

1, R p
2 +Rc

2) as Receiver 1’s and Receiver 2’s receiving
rate pairs respectively. Furthermore, define Pc � (Rc

1, Rc
2)
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as the common message rate pair. In the rest of this paper,
we refer (R p

1 , Rc
1, R p

2 , Rc
2) to a rate decomposition of P.

For the purpose of decomposing a target rate pair into a
private and common message rate tuple suitable for our partial-
joint decoding scheme, we first define the effective channel of
each receiver. For Receiver 1, its effective channel, PY1|X1W2 ,
is defined as

PY1|X1W2(y1|x1, w2) �
∑
x2

PY1|X1 X2(y1|x1, x2)PX2|W2 Q

×(x2|w2, q). (44)

Similarly, the effective channel of Receiver 2 is defined as

PY2|W1 X2(y2|w1, x2) �
∑
x1

PY2|X1 X2(y2|x1, x2)PX1|W1 Q

×(x1|w1, q). (45)

The achievable rate regions for these two MACs are

R(PY1|X1W2) =
⎧⎨
⎩

(
R1
R2

) ∣∣∣∣∣∣
0 ≤ R1 ≤ I (X1; Y1|W2)
0 ≤ R2 ≤ I (W2; Y1|X1)
R1 + R2 ≤ I (X1W2; Y1)

⎫⎬
⎭, (46)

R(PY2 |W1 X2) =
⎧⎨
⎩

(
R1
R2

) ∣∣∣∣∣∣
0 ≤ R1 ≤ I (W1; Y2|X2)
0 ≤ R2 ≤ I (X2; Y2|W1)
R1 + R2 ≤ I (X2W1; Y2)

⎫⎬
⎭. (47)

Now we can study the Han-Kobayashi coding problem in
PY1|X1W2 and PY2|W1 X2 . In these two MACs, the rate of Xk

(k = 1, 2) equals the overall rate of Sender k, while the rate of
Wk equals the common message rate of Sender k. Obviously,
P1 and P2 must lie inside R(PY1|X1W2) and R(PY2|W1 X2)
respectively in order to make reliable communication possible.

Giving only two effective channels is insufficient to deter-
mine the suitable decoding order for a target rate pair. If we
hope to use a partial-joint decoder, the following two MACs,
PY1|W1W2 and PY2|W1W2 , will be useful. For k = 1, 2, define

PYk |W1W2(yk|w1, w2)

�
∑
x1

∑
x2

PYk |X1 X2(yk|x1, x2)PX1|W1 Q(x1|w1, q)

× PX2|W2 Q(x2|w2, q), (48)

the achievable rate region of which is

R(PYk |W1W2) =
⎧⎨
⎩

(
R1
R2

) ∣∣∣∣∣∣
0 ≤ R1 ≤ I (W1; Yk |W2)
0 ≤ R2 ≤ I (W2; Yk |W1)
R1 + R2 ≤ I (W1W2; Yk)

⎫⎬
⎭. (49)

The relations between the above four achievable rate regions
are shown in Fig. 2. If the common message rate pair lies
inside R(PYk |W1W2), then Receiver k can apply the Type I
partial-joint decoding. Otherwise it will need to use the
Type II one.

B. The General Idea of Our Scheme

According to the two receivers’ different choices of partial-
joint decoding orders, we define the following two types of
points (rate pairs).

Fig. 2. Illustration for the achievable rate regions of the synthesized MACs.

Definition 5 (Type A Points): A Type A point P in
RH K (P∗1 ) is a rate pair which can be decomposed into a
private and common message rate tuple that satisfies:

(Rc
1, Rc

2) ∈ R(PY1|W1W2) ∩R(PY2|W1W2),

R p
1 = I (X1; Y1|W1W2),

R p
2 = I (X2; Y2|W1W2). (50)

Definition 6 (Type B Points): A Type B point P in
RH K (P∗1 ) is a rate pair which can be decomposed into a
private and common message rate tuple that satisfies:

(Rc
1, Rc

2) ∈ R(PYk |W1W2),

Rc
k′ ≤ I (Wk′ ; Yk′ ),

R p
k = I (Xk; Yk |W1W2),

R p
k′ = I (Xk′Wk; Yk′ |Wk′ )− Rc

k , (51)

where k, k ′ ∈ {1, 2} and k �= k ′.
To achieve a Type A point P, both receivers can apply the

Type I partial-joint decoding. We first design a polar code
for two common messages that achieves Pc in the compound
MAC composed of PY1|W1W2 and PY2|W1W2 , and then design
a point-to-point polar code for each sender’s private message
with the common messages being side information. To achieve
a Type B point, one receiver applies the Type I partial-joint
decoding while the other applies Type II. Let us consider
k = 2, k ′ = 1 as an example. The code structures for two
common messages (M1c, M2c) and Sender 1’s private message
M1p are jointly designed in such a way that, Receiver 1 can
first decode M1c (equivalently W 1:N

1 ) with Y 1:N
1 and then

jointly decode (M1p, M2c) with the estimate of W 1:N
1 , while

Receiver 2 can jointly decode (M1c, M2c) with Y 1:N
2 . The code

structure for Sender 2’s private message M2p is simply point-
to-point polar codes.

In Section II-C we have proved by random coding that
partial-joint decoding can achieve the whole Han-Kobayashi
region. The following lemma provides another evidence to
support this conclusion.

Lemma 1: Every point on the dominant faces of RH K (P∗1 )
can be classified into either Type A or Type B.

Proof: See Appendix B. �

V. PROPOSED POLAR CODING SCHEMES

In this section, we describe details of our proposed two
types of polar coding schemes for the 2-user DM-IC. We con-
sider the case when qX1 = |X1| and qX2 = |X2| are two prime
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numbers, qW1 = |W1| is the smallest prime number larger than
qX1 + 4, and qW2 = |W2| is the smallest prime number larger
than qX2 +4. For a rate pair P, let P(1) and P(2) respectively
denote its first and second component.

A. Common Message Encoding

1) Partition Scheme for Type A Points: Let Pc = (Rc
1, Rc

2)
be the common message rate pair for a Type A point P on
a dominant face of RH K (P∗1 ). Obviously, Pc must lie on
the dominant face of either R(PY1|W1W2) or R(PY2|W1W2),
otherwise we can choose a larger common message rate pair to
achieve higher rates. Without loss of generality, we assume that
Pc is on the dominant face of R(PY1|W1W2) in this subsection
as an example.

First, choose a point P̃c on the dominant face of
R(PY2|W1W2) which is larger than Pc in the sense that P̃c(1) ≥
Pc(1) and P̃c(2) ≥ Pc(2), as the target point for conduct-
ing the monotone chain rule expansion in our code design.
Let S1:2N be the monotone chain rule expansion that
achieves Pc in R(PY1|W1W2), and T 1:2N the expansion that
achieves P̃c in R(PY2|W1W2). Denote the sets of indices
in S1:2N with S j ∈ U

′1:N
1 and S j ∈ U

′1:N
2 by SU ′1 and

SU ′2 respectively, and those in T 1:2N with T j ∈ U
′1:N
1 and

T j ∈ U
′1:N
2 by TU ′1 and TU ′2 respectively. For k = 1, 2, let

fk( j) : [N] → SU ′k be the mapping from indices of U
′1:N
k

to those of S
SU ′k , and gk( j) : [N] → TU ′j the mapping

from indices of U
′1:N
k to those of T

TU ′k . Define the following
polarized sets

H(N)
SU ′k

�
{

j ∈ [N] : H (S fk( j )|S1: fk( j )−1) ≥ log2(qWk )− δN
}
,

L(N)
SU ′k |Y1

�
{

j ∈ [N] : H (S fk( j )|Y 1:N
1 , S1: fk ( j )−1) ≤ δN

}
,

H(N)
TU ′k

�
{

j ∈ [N] : H (T gk( j )|T 1:gk( j )−1) ≥ log2(qWk )− δN
}
,

L(N)
TU ′k |Y2

�
{

j ∈ [N] : H (T gk( j )|Y 1:N
2 , T 1:gk( j )−1) ≤ δN

}
. (52)

Since two senders’ common messages are independent from
each other, we have

H(N)
SU ′k
= H(N)

TU ′k
= H(N)

Wk
,

where H(N)
Wk

�
{

j ∈ [N] : H (U
′ j
k |U

′1: j−1
k ) ≥ log2(qWk )−δN

}
.

Define the following sets of indices for Sender 1,

C1
1 � H(N)

SU ′1
∩ L(N)

SU ′1 |Y1
, C2

1 � H(N)
TU ′1
∩ L(N)

TU ′1 |Y2
, (53)

and similarly define C1
2 and C2

2 for Sender 2. From (43) we
have

lim
N→∞

1

N
|C1

1 | = Pc(1),

lim
N→∞

1

N
|C2

1 | = P̃c(1) ≥ Pc(1),

lim
N→∞

1

N
|C1

2 | = Pc(2),

lim
N→∞

1

N
|C2

2 | = P̃c(2) ≥ Pc(2). (54)

Fig. 3. Graphical representation of the partition for U
′1:N
1 of Type A points.

Choose an arbitrary subset of C2
1 \C1

1 , denoted as C21
1 , such that

|C21
1 | = |C1

1 \ C2
1 |, and an arbitrary subset of C2

2 \ C1
2 , denoted

as C21
2 , such that |C21

2 | = |C1
2\C2

2 |. Partition the indices of U
′1:N
1

as follows:

I1c = C1
1 ∩ C2

1 , I1
1c = C1

1 \ C2
1 , I2

1c = C21
1 ,

F ′1r = H(N)
W1
\ (I1c ∪ I1

1c ∪ I2
1c), F ′1d = (H(N)

W1
)C , (55)

as shown in Fig. 3, and similarly define I2c, I1
2c, I2

2c, F ′2r
and F ′2d for Sender 2.

2) Partition Scheme for Type B Points: Let P be a point
of Type B, Pc be the corresponding common message rate
pair, and P1 and P2 be Receiver 1’s and Receiver 2’s rate
pairs respectively. Without loss of generality, we consider the
case when Pc ∈ R(PY2|W1W2) \ R(PY1|W1W2) and Pc(1) ≤
I (W1; Y1) in this subsection as an example. In this case,
Receiver 1 applies the Type II partially decoding while
Receiver 2 adopts Type I.

Choose P̄1 = (
I (X1W2; Y1) − P1(2), P1(2)

)
, which is on

the dominant face of R(PY1|X1W2) and larger than P1, and
P̃c = (

I (W1W2; Y2)−Pc(2), Pc(2)
)
, which is on the dominant

face of R(PY2|W1W2) and larger than Pc, as the target points
for conducting monotone chain rule expansions in our code
design. Let S1:2N be the monotone chain rule expansion that
achieves P̄1 in R(PY1|X1W2), and T 1:2N the expansion that
achieves P̃c in R(PY2 |W1W2). Denote the sets of indices in
S1:2N with S j ∈ U1:N

1 and S j ∈ U
′1:N
2 by SU1 and SU ′2

respectively, and those in T 1:2N with T j ∈ U
′1:N
1 and T j ∈

U
′1:N
2 by TU ′1 and TU ′2 respectively. Let f1( j) : [N] → SU1

be the mapping from indices of U1:N
1 to those of SSU1 ,

f2( j) : [N] → SU ′2 the mapping from indices of U
′1:N
2 to

those of S
SU ′2 , and gk( j) : [N] → TU ′j the mapping from

indices of U
′1:N
k to those of T

TU ′k for k = 1, 2. Define H(N)
W1

,

H(N)
W2

, H(N)
SU ′2

, H(N)
TU ′1

, H(N)
TU ′2

, L(N)
SU ′2 |Y1

, L(N)
TU ′1 |Y2

and L(N)
TU ′2 |Y2

in the

same way as in the Type A case, and additionally define

L(N)
W1|Y1

�
{

j ∈ [N] : H (U
′ j
1 |Y 1:N

1 , U
′1: j−1
1 ) ≤ δN

}
. (56)

Define the following sets of indices for two senders:

C ′1 � H(N)
W1
∩ L(N)

W1|Y1
, C ′′1 � H(N)

W1
∩ L(N)

TU ′1 |Y2
,

C1
2 � H(N)

W2
∩ L(N)

SU ′2 |Y1
, C2

2 � H(N)
W2
∩ L(N)

TU ′2 |Y2
, (57)
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which satisfy

lim
N→∞

1

N
|C ′1| = I (W1; Y1) ≥ Pc(1),

lim
N→∞

1

N
|C ′′1 | = P̃c(1) ≥ Pc(1),

lim
N→∞

1

N
|C1

2 | = P̄1(2) = Pc(2),

lim
N→∞

1

N
|C2

2 | = P̃c(2) = Pc(2).

If Pc(1) = I (W1; Y1), let C1
1 = C ′1. Otherwise choose a subset

C1
1 of C ′1 such that |C1

1 | = NPc(1). Similarly, if P̃c(1) = Pc(1),
let C2

1 = C ′′1 . Otherwise choose a subset C2
1 ⊂ C ′′1 such that

|C2
1 | = NPc(1). Partition the indices of U

′1:N
1 as follows:

I1c = C1
1 ∩ C2

1 , I1
1c = C1

1 \ C2
1 , I2

1c = C2
1 \ C1

1 ,

F ′1r = H(N)
W1
\ (I1c ∪ I1

1c ∪ I2
1c), F ′1d = (H(N)

W1
)C , (58)

and similarly define I2c, I1
2c, I2

2c, F ′2r and F ′2d for Sender 2.
3) Chaining Scheme for Common Messages: Suppose the

number of chained blocks is K . Let F1c, F′1c and F′′1c
(resp. F2c, F′2c and F′′2c) be three random sequences of length
|F ′1r |, |I1

1c| and |I2
1c| (resp. |F ′2r |, |I1

2c| and |I2
2c|) respectively

and uniformly distributed over W1 (resp. W2). Sender 1
encodes its common message as follows.

(1) In Block 1,

• {u ′ j1 } j∈I1c∪I1
1c

store common message symbols.

• {u ′ j1 } j∈F ′1r
= F1c.

• {u ′ j1 } j∈I2
1c
= F′′1c.

• {u ′ j1 } j∈F ′1d
are randomly generated according to condi-

tional probability P
U
′ j
1 |U

′1: j−1
1

(u
′ j
1 |u

′1: j−1
1 ).

(2) In Block i (1 < i < K ),

• {u ′ j1 } j∈I1c∪I1
1c

, {u ′ j1 } j∈F ′1r
and {u ′ j1 } j∈F ′1d

are determined
in the same way as in Block 1.

• {u ′ j1 } j∈I2
1c

are assigned to the same value as {u ′ j1 } j∈I1
1c

in
Block i − 1.

(3) In Block K ,

• {u ′ j1 } j∈I1c , {u ′ j1 } j∈F ′1r
, {u ′ j1 } j∈I2

1c
and {u ′ j1 } j∈F ′1d

are deter-
mined in the same way as in Block i (1 < i < K ).

• {u ′ j1 } j∈I1
1c
= F′1c.

In each block, a vanishing fraction of the almost deter-
ministic symbols, {u ′ j1 } j∈D1

1
and {u ′ j1 } j∈D2

1
, are separately

transmitted to Receiver 1 and 2 respectively with some reliable
error-correcting code, where D1

1 = (H(N)
W1

)C ∩ (L(N)
SU ′1 |Y1

)C in

the Type A case and D1
1 = (H(N)

W1
)C ∩ (L(N)

W1|Y1
)C in the

Type B case, and D2
1 = (H(N)

W1
)C ∩ (L(N)

TU ′1 |Y2
)C in both cases.

Note that random sequence F1c is reused over K blocks.
Thus, the rate of frozen symbols that need to be shared
between Sender 1 and Receiver 1 in the common message
encoding, 1

K N (|F1c|+|F′1c|+|F′′1c|), can be made negligible by
increasing K .

Sender 2 encodes its common messages similarly by swap-
ping subscripts 1 and 2.

B. Private Message Encoding

1) Partition Scheme for Type A Points: Define

H(N)
X1|W1W2

�
{

j ∈ [N] : H (U j
1 |U

′1:N
1 , U

′1:N
2 , U1: j−1

1 )

≥ log2(qX1)− δN
}
,

L(N)
X1|Y1W1W2

�
{

j ∈ [N] : H (U j
1 |Y 1:N

1 , U
′1:N
1 , U

′1:N
2 ,

U1: j−1
1 ) ≤ δN

}
, (59)

and similarly define H(N)
X2|W1W2

and L(N)
X2|Y2 W1W2

. Due to the
independence between two senders’ messages, we have

H(N)
X1|W1W2

= H(N)
X1|W1

, H(N)
X2|W1W2

= H(N)
X2|W2

, (60)

where H(N)
Xk |Wk

�
{

j ∈ [N] : H (U j
i |U

′1:N
k , U1: j−1

k ) ≥
log2(qXk )− δN

}
for k = 1, 2. Then define the following sets

for U1:N
1

I1p � H(N)
X1|W1W2

∩ L(N)
X1|Y1 W1W2

,

F1r = H(N)
X1|W1W2

∩ (L(N)
X1|Y1 W1W2

)C ,

F1d = (H(N)
X1|W1W2

)C ,

D1 = (H(N)
X1|W1W2

)C ∩ (L(N)
X1|Y1W1W2

)C . (61)

For U1:N
2 , I2p , F2r , F2d and D2 are defined similarly.

2) Partition Scheme for Type B Points: From Definition 6
we know that

R p
1 = P̄1(1)− I (W1; Y1), (62)

R p
2 = I (X2; Y2|W1W2). (63)

Define H(N)
X1|W1

, H(N)
X2|W1W2

, H(N)
X2|W2

and L(N)
X2|Y2W1W2

in the
same way as in the Type A case, and additionally define

L(N)
SU1 |Y1W1

�
{

j ∈ [N] : H (S f1( j )|Y 1:N
1 , U

′1:N
1 , S1: f1( j )−1) ≤ δN

}
.

(64)

Then define I2p , F2r , F2d and D2 for U1:N
2 in the same way

as in the Type A case, and define

I1p = H(N)
X1|W1

∩ L(N)
SU1 |Y1W1

,

F1r = H(N)
X1|W1

∩ (L(N)
SU1 |Y1W1

)C ,

F1d = (H(N)
X1|W1

)C ,

D1 = (H(N)
X1|W1

)C ∩ (L(N)
SU1 |Y1W1

)C , (65)

for U1:N
1 . Note that the permutation S1:2N is chosen to achieve

P̄1 in Receiver 1’s effective channel PY1|X1W2 without the
knowledge of W1, but the code construction for U1:N

1 is deter-
mined jointly by this permutation and the side information
of W 1:N

1 .
3) Encoding for Private Messages: Let F1p (resp. F2p) be a

random sequence of length |F1p| (resp. |F2p|) and uniformly
distributed over X1 (resp. X2). Sender 1 encodes its private
message in each block as follows.
• {u j

1} j∈I1p store private message symbols.

• {u j
1} j∈F1r = F1p.



1982 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

• {u j
1} j∈F1d are randomly generated according to probabil-

ity P
U j

1 |U 1:N
1 U 1: j−1

1
(u j

1|u
′1:N
1 , u1: j−1

1 ).

• {u j
1} j∈D1 are separately transmitted to Receiver 1 with

some reliable error-correcting code.
Sender 2 encodes its private message similarly by swapping

subscripts 1 and 2. Note that random sequence F1p and F2p

are reused over K blocks. Thus, the rate of frozen symbols in
the private message encoding can also be made negligible by
increasing K .

C. Decoding

1) Decoding for Type A Points: Receiver 1 decodes two
senders’ common messages from Block 1 to Block K .

• In Block 1, for k = 1, 2,

ū
′ j
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
′ j
k , if j ∈ (L(N)

SU ′k |Y1
)C

arg maxu∈{0,1} PS fk ( j)|Y 1:N
k S1: fk( j)−1

(u|y1:N
k , s1: fk ( j )−1), if j ∈ L(N)

SU ′k |Y1

(66)

• In Block i (1 < i < K ), {ū ′ j1 } j∈I2
1c

and {ū ′ j2 } j∈I2
2c

are

deduced from {ū ′ j1 } j∈I1
1c

and {ū ′ j2 } j∈I1
2c

in Block i − 1
respectively, and the rest are decoded in the same way as
in Block 1.

• In Block K , {ū ′ j1 } j∈I1
1c

and {ū ′ j2 } j∈I1
2c

are assigned to the
pre-shared value between Sender 1 and the two receivers,
and the rest are decoded in the same way as in Block i
(1 < i < K ).

Having recovered the common messages in a block,
Receiver 1 decodes its private message in that block as

ū j
1 =

⎧⎪⎪⎨
⎪⎪⎩

u j
1, if j ∈ (L(N)

X1|Y1 W1W2
)C

arg maxu∈{0,1} P
U j

1 |Y 1:N
1 U

′1:N
1 U

′1:N
2 U 1: j−1

1
(u|y1:N

1 , ū
′1:N
1 ,

ū
′1:N
2 , u1: j−1

1 ), if i ∈ L(N)
X1|Y1W1W2

(67)

Receiver 2 decodes similarly, except that it decodes from
Block K to Block 1.

2) Decoding for Type B Points: Receiver 1 decodes from
Block 1 to Block K .

• In Block 1, Sender 1 first decodes its intended common
message as

ū
′ j
1 =

⎧⎪⎪⎨
⎪⎪⎩

u
′ j
1 , if j ∈ (L(N)

W1|Y1
)C

arg maxu∈{0,1} P
U
′ j
1 |Y 1:N

1 U
′1: j−1
1

(u|y1:N
1 , ū

′1: j−1
1 ),

if i ∈ L(N)
W1|Y1

(68)

Then it decodes its private message and Sender 2’s
common message jointly as

ū j
1 =

⎧⎪⎪⎨
⎪⎪⎩

u j
1, if j ∈ (L(N)

SU1 |Y1
)C

arg maxu∈{0,1} PS f1( j)|Y 1:N
1 U

′1:N
1 S1: f1( j)−1

(u|y1:N
1 , ū

′1:N
1 , s1: f1( j )−1), if j ∈ L(N)

SU1 |Y1

(69)

ū
′ j
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
′ j
2 , if j ∈ (L(N)

SU ′2 |Y1
)C

arg maxu∈{0,1} PS f2( j)|Y 1:N
1 S1: f2( j)−1

(u|y1:N
1 , s1: f2( j )−1), if j ∈ L(N)

SU ′2 |Y1

(70)

• In Block i (1 < i < K ), {ū ′ j1 } j∈I2
1c

and {ū ′ j2 } j∈I2
2c

are

deduced from {ū ′ j1 } j∈I1
1c

and {ū ′ j2 } j∈I1
2c

in Block i − 1
respectively, and the rest are decoded in the same way as
in Block 1.

• In Block K , {ū ′ j1 } j∈I1
1c

and {ū ′ j2 } j∈I1
2c

are assigned to the
pre-shared value between Sender 1 and the two receivers,
and the rest are decoded in the same way as in Block i
(1 < i < K ).

Receiver 2 decodes from Block K to Block 1 in the same
way as in the Type A scheme.

D. Code Construction

As pointed out by a reviewer of this paper, existing efficient
construction algorithms (such as [43]) for point-to-point polar
codes may not be directly applied to the permutation based
MAC polar codes in the general case, as the permutation
introduces a random variable that involves a complicated
relation with the original pair of random variables. Thus, it is
currently not clear how much the code construction complexity
of the permutation based MAC polar codes is. Nevertheless,
as has been shown in [5], permutations of type 0i 1N 0N−i

(0 ≤ i ≤ N) are sufficient to achieve the whole achievable rate
region of a 2-user MAC. In this subsection we show how to
construct this kind of MAC polar codes with the approximation
method of [43].

Let W (Y |X1, X2) be a discrete memoryless MAC with
X1 ∈ X1 and X2 ∈ X2. Define U1:N

1 = X1:N
1 GN , U1:N

2 =
X1:N

2 GN , and S1:2N = U1:im
1 U1:N

2 Uim+1:N
1 (0 ≤ im ≤ N).4

In this case, the polarization of user 1’s first im synthesized
channels is the same as that in the equivalent point-to-point
channel when user 2’s signal is treated as noise, and the
polarization of user 1’s last N − im synthesized channels is
the same as that in the equivalent point-to-point channel when
user 2’s signal is treated as side information. Thus, the method
of [43] can be directly applied (one can also use the proposed
Algorithm 1 by swapping the roles of the two users and
considering the special cases of im = 0 and im = N). For
user 2, to apply the method of [43], the recursive channel
transformations need to be modified accordingly. Define the
following two types of channel transformations for W :

W � W (y1:2, u2
1|u1

1, u1
2)

=
∑

u2
2∈X2

W (y1|u1
1 ⊕ u2

1, u1
2 ⊕ u2

2)W (y2|u2
1, u2

2)P(u2
1)P(u2

2)

W � W (y1:2, u1
1, u1

2|u2
1, u2

2)

= W (y1|u1
1 ⊕ u2

1, u1
2 ⊕ u2

2)W (y2|u2
1, u2

2)P(u1
1)P(u1

2)

Based on the channel degrading and upgrading method of
[43, Algorithms A and B], we propose a constructing method

4In Algorithm 1 we have restricted im to be chosen from [1, N ] because
im − 1 must be non-negative. The case when im = 0 is the same as that of
im = 1 except that u1

1 needs to be averaged out in the end.
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for this type of MAC polar codes as shown in Algorithm 1.
The degrading_merge(W, μ) (resp. upgrading_merge(W, μ))
operation in this algorithm is to produce a degraded (resp.
an upgraded) version of W , whose output alphabet size is at
most μ so that it can be estimated at affordable cost. We only
present a general picture of how this algorithm goes here. For
details about the degrading and upgrading procedures, we refer
the readers to [43], [59], and [60].

Algorithm 1: Channel Degrading/Upgrading Procedure
for the MAC
Input: An underlying MAC W , a bound μ = 2ν on the
output alphabet size, a code length N = 2n , an index id

(0 ≤ id ≤ N − 1) with binary representation
id = 〈a1a2 . . . an〉2 representing the index of a
synthesized channel, and an index im (1 ≤ im ≤ N) with
im − 1 = 〈b1b2...bn〉2 representing the permutation type.
Output: A DMC that is degraded/upgraded with respect
to the (id + 1)th synthesized channel of user 2.
QW ←

degrading_merge(W, μ)/upgrading_merge(W, μ),
s = 0,
for j=1,2,…,n do

if a j = 0 then
Wa = QW � QW ,

else
Wa = QW � QW ,

if b j = 0 then
it =

〈
b1b2 . . . b j−11

〉
2,

if it �=
〈
a1 . . . a j

〉
2 then

Wa
(a)= ∑

uit+1
1 ∈X1

Wa ,

else
s = 1;

if s = 1 then
is =

〈
a1 . . . a j−1ā j

〉
2, where ā j = a j ⊕ 1

Wa
(b)= ∑

uis+1
1 ∈X1

Wa ,
s = 0

QW ←
degrading_merge(Wa, μ)/upgrading_merge(Wa, μ),

if id + 1 > im then
Qid+1(ỹ|uid+1

2 ) =∑
u

id+1
1 ∈X1

QW (ỹ|uid+1
1 , uid+1

2 )P(uid+1
1 )

else
Qid+1(ỹ|uid+1

2 ) = QW (ỹ|uid+1
1 , uid+1

2 )P(uid+1
1 )

return Qid+1

The idea of Algorithm 1 is to first approximate the synthetic
MACs in the recursive process and then synthesize the desired
DMC in the end. In this algorithm, the purpose of (a) is
to reduce the subsequent computations since u

ip
1 with i p =〈

b1 . . . b j−11b′j+1 . . . b′n
〉
2

will not be shown in the channel

outputs of user 2’s synthesized channels if b j = 0, where
b′j+1 . . . b′n is any binary sequence of length n − j . (b) is to

handle a special case when b j = 0 but uit+1
1 happens to be

TABLE I

n = 5, id = 13 (〈a1a2 . . . an 〉2 = 〈01101〉2),
im = 7 (〈b1b2 . . . bn〉2 = 〈00110〉2)

a channel input. In this case we will have to eliminate the
redundant channel output uis+1

1 in the next stage. Note that
the procedure of (b) only needs to be executed once at most.
ỹ denotes the output of channel QW . Although Algorithm 1
has some extra computations compared to [43, Algorithms A
and B], the time complexity to evaluate all N synthesized
channels can still be reduced to O(N) by sharing intermediate
calculations between different synthesized channels.

Table I shows an example of the recursive process when
n = 5, id = 13 (i.e., 〈a1a2 . . . an〉2 = 〈01101〉2), im = 7
(i.e., 〈b1b2 . . . bn〉2 = 〈00110〉2), in which we have ignored the
channel degrading/upgrading procedure and only demonstrated
the evolvement of the synthesized channels. In this example,
s = 1 is triggered in the j = 2 stage, so in the next stage u3

1
(is = 〈010〉2) is averaged out.

VI. PERFORMANCE ANALYSIS

A. Achievable Rates

1) Type A Scheme: In the Type A scheme, the common
message rates of the two senders in this scheme are

Rc
1 =

K |I1c| + (K − 1)|I1
1c|

K N
= |C

1
1 |

N
− |I

1
1c|

K N
,

Rc
2 =

K |I2c| + (K − 1)|I1
2c|

K N
= |C

1
2 |

N
− |I

1
2c|

K N
. (71)

From (54) we have

lim
N→∞,K→∞ Rc

1 = Pc(1), lim
N→∞,K→∞ Rc

2 = Pc(2). (72)

The private message rates of the two senders are

R p
1 =

1

N
|I1p|, R p

2 =
1

N
|I2p|. (73)

Since the private message encoding is just standard point-to-
point polar coding, we have

lim
N→∞ R p

1 = I (X1; Y1|W1W2), lim
N→∞ R p

2 = I (X2; Y2|W1W2).

(74)

Thus, our proposed scheme achieves the target Type A
point P.

2) Type B Scheme: In the Type B scheme, the common
message rates can also be written as

Rc
1 =
|C1

1 |
N
− |I

1
1c|

K N
, Rc

2 =
|C1

2 |
N
− |I

1
2c|

K N
, (75)

with

lim
N→∞,K→∞ Rc

1 = Pc(1), lim
N→∞,K→∞ Rc

2 = Pc(2).
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Same as in the Type A case, the private message rate of
Sender 2 achieves (63). For Sender 1’s private message
rate, the following lemma shows that our proposed scheme
achieves (62).

Lemma 2: lim
N→∞

1
N |I1p| = P̄1(1)− I (W1; Y1).

Proof: See Appendix C. �

B. Total Variation Distance

Let PU (u) denote the target distribution of random
variable U , QU (u) denote the induced distribution of U
by our encoding scheme, and ‖P − Q‖ denote the total
variation distance between distributions P and Q. We have
the following lemma.

Lemma 3: For i ∈ [1, K ],
‖PW 1:N

1 W 1:N
2 X1:N

1 X1:N
2 Y 1:N

1 Y 1:N
2

− Q(W 1:N
1 W 1:N

2 X1:N
1 X1:N

2 Y 1:N
1 Y 1:N

2 )i
‖ ≤ 4

√
log 2

√
NδN , (76)

where (·)i stands for random variables in Block i (1 ≤ i ≤ K ).
Proof: See Appendix D. �

C. Error Performance

Lemma 4: The error probability of a receiver with the
Type I partial-joint decoding in the overall K blocks can be
upper bounded by

P I
e ≤

(K + 1)(K + 2)

2
NδN + 2K (K + 1)

√
log 2

√
NδN ,

(77)

while error probability of a receiver with the Type II partial-
joint decoding in the overall K blocks can be upper bounded
by

P I I
e ≤

K (K + 1)(K + 5)

6
NδN + 2K (K 2 + 6K − 1)

3
×√

log 2
√

NδN . (78)

Proof: See Appendix E. �
We can see that the chaining scheme has a more detrimental

effect on the Type II decoding than on the Type I one.
This is because in the Type I decoding, only the common
message decoding stage involves chaining, while in the Type II
decoding, both stages of decoding involve chaining.

D. Complexity

Since both our scheme and the scheme of [39] use the
monotone chain rule based MAC polar codes, their encoding
and decoding complexities are similar. As we have discussed
in Section V-D, our proposed polar codes can be constructed
with complexity O(N). Note that it is not clear whether the
3-user MAC polar codes used in [39] can also be constructed
in a similar way. Therefore the construction complexity of our
scheme is smaller than that in [39] (at least equal if the per-
mutation based m-user MAC polar codes can be constructed
at complexity O(m N)).

In the rest of this subsection, we discuss another simplifica-
tion of our proposed scheme compared to [39], i.e., the com-
plexity reduction in the design of ARVs. The Han-Kobayashi

region is expressed with ARVs. Finding suitable ARVs to
achieve a target rate pair is in fact part of the code design,
since unlike the channel statistics which are given, the ARVs
need to be designed and optimized. Consider a 2-user DM-IC
PY1Y2|X1 X2(y1, y2|x1, x2) and fixed ARV alphabets W1, W2,
V1 and V2. Denote PW1 , PW2 , PV1 and PV2 as the sets of
distributions PW1 , PW2 , PV1 and PV2 , respectively, PX1|W1V1

and PX2|W2V2 the sets of deterministic mappings PX1|W1V1 and
PX2|W2V2 , respectively, and PX1W1 and PX2W2 the sets of joint
distributions PX1 W1 and PX2W2 , respectively. Since PX1|W1V1

and PX2|W2V2 equal either 0 or 1, it is easy to see that

|PX1|W1V1| = 2|W1|·|V1|·|X1|, |PX2|W2V2 | = 2|W2|·|V2|·|X2|.

It is impractical to evaluate all the distributions in the
aforementioned sets, thus certain quantization is needed. As an
example, we assume that probabilities can only be chosen
from a quantized subset of [0, 1], say PQ , and define P∗W1

,
P∗W2

, P∗V1
, P∗V2

, P∗X1W1
and P∗X2W2

respectively as the subsets
of PW1 , PW2 , PV1 , PV2 , PX1W1 and PX2W2 when the prob-
abilities are restricted to be chosen from PQ . To evaluate
the original Han-Kobayashi region, the number of calcula-
tions for the region of Ro

H K (P∗) defined in Theorem 1
is 2|W1|·|V1|·|X1|+|W2|·|V2|·|X2| · |P∗W1

| · |P∗W2
| · |P∗V1

| · |P∗V2
|.

Meanwhile, to evaluate the compact Han-Kobayashi region,
the number of calculations for the region of RH K (P∗1 ) defined
in Theorem 2 is |P∗X1W1

| · |P∗X2W2
|. As long as |X1| ≤ |V1|

and |X2| ≤ |V2|, |P∗X1W1
| and |P∗X2W2

| will not be larger than
|P∗W1
| · |P∗V1

| and |P∗W2
| · |P∗V2

|, respectively. Due to this fact
and that the expressions for RH K (P∗1 ) is much simpler than
those of Ro

H K (P∗), we can conclude that our proposed scheme
only requires 1

2|W1|·|V1 |·|X1|+|W2 |·|V2|·|X2 | computation (at most)
compared to the scheme of [39] in the design of ARVs.
This can be quite a complexity reduction, especially for large
alphabet size cases.

VII. EXTENSION TO INTERFERENCE NETWORKS

So far we have shown that our proposed two types of
partially decoding schemes can achieve the Han-Kobayashi
region of the 2-user DM-IC via both random coding and polar
coding. A natural question is whether they can be extended to
arbitrary DM-INs. In this section, we show that partial-joint
decoding works for DM-INs as well.

A K -sender L-receiver DM-IN, denoted by (K , L)-DM-IN,
consists of K senders and L receivers. Each sender k ∈ [K ]
transmits an independent message Mk at rate Rk , while each
receiver l ∈ [L] wishes to recover a subset Dl ⊂ [K ]
of the messages. Similar to the Han-Kobayashi strategy in
the 2-user DM-IC, Mk can be split into several component
messages, each intended for a group of receivers. If a message
is intended for only one receiver, we refer to it as a private
message. Otherwise we refer to it as a common message.
We only consider the case when each sender has only one
private message intended for some receiver and (possibly)
multiple common messages intended also for this receiver.
More complicated cases can be resolved by decomposing a
sender with multiple private and common messages into a
certain number of virtual senders of this type.



ZHENG et al.: POLAR CODING STRATEGIES FOR THE INTERFERENCE CHANNEL WITH PARTIAL-JOINT DECODING 1985

Fig. 4. Sender 1’s part in the equivalent channel of the (K , L)-DM-IN.

Fig. 5. Sender 1’s part in the equivalent channel of the (K , L)-DM-IN with
the proposed approach.

Fig. 4 shows Sender 1’s part of the equivalent channel of
the (K , L)-DM-IN with a private message M11 intended for
Receiver 1, and common messages M1C1 , M1C2 , . . . , M1Ca1
(a1 ≥ 1) intended for Receiver 1 and some other receiver
groups. It is shown in [61] that the optimal achievable rate
region when the encoding is restricted to random coding
ensembles is the intersection of rate regions for its component
multiple access channels in which each receiver recovers
its private message as well as its common messages. Thus,
one can design a code for the compound MAC to achieve
the optimal rate region, which belongs to the homogeneous
superposition variant and has been realized by polar codes
in [39]. Here we discuss using the proposed partial-joint
decoding idea to design a heterogeneous one.

Firstly, consider the case when only Sender 1 uses
the heterogeneous approach. Instead of generating a code-
word for each message and then merging them with some
mapping function as in Fig. 4, now we generate code-
words for common messages first and then encode them
together with private message M11 via superposition cod-
ing, as shown in Fig. 5. Let P∗(X1|U11, U1C1, . . . , U1Ca1

)
be the deterministic mapping from U11, U1C1, . . . , U1Ca1
to X1 in Fig. 4, and let P∗1 (X1|U1C1, . . . , U1Ca1

) =∑
U11

P(U11)P∗(X1|U11, U1C1, . . . , U1Ca1
) be the conditional

distribution of random variables X1, U1C1, . . . , U1Ca1
in Fig. 5.

We can see that synthesized MACs for other receivers are not
affected with this setting since U11 plays no part in them. Thus,
the achievable rate regions of other receivers’ synthesized
MACs remain the same. Note that deterministic mapping P∗
and ARV U11 are no longer needed in this design.

Now let us discuss the achievable rates from Receiver 1’s
point of view. Denote Sender 1’s common messages as a whole
by U1c1 with rate Rc1

1 , and other senders’ common messages

which are intended for Receiver 1 by U1co with rate Rco
1 . The

private message rate is denoted by R p
1 . With the homogeneous

approach in Fig. 4, the achievable rate region of Receiver 1 is

R1
I N (P∗)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ R p

1
Rc1

1
Rco

1

⎞
⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R p
1 ≤ I (U11; Y1|U1c1, U1co)

Rc1
1 ≤ I (U1c1; Y1|U11, U1co)

Rco
1 ≤ I (U1co ; Y1|U11, U1c1)

R p
1 + Rc1

1 ≤ I (U11, U1c1; Y1|U1co)

R p
1 + Rco

1 ≤ I (U11, U1co; Y1|U1c1)
Rc1

1 + Rco
1 ≤ I (U1co , U1c1; Y1|U11)

R p
1 + Rc1

1 + Rco
1 ≤ I (U11, U1c1, U1co ; Y1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(79)

With the heterogeneous approach in Fig. 5, the achievable rate
region of Receiver 1 becomes

R1′
I N (P∗1 )=

⎧⎨
⎩
⎛
⎝ R p

1
Rc1

1
Rco

1

⎞
⎠

∣∣∣∣∣∣
Rco

1 ≤ I (U1co ; Y1|X1)

R p
1 + Rc1

1 ≤ I (X1; Y1|U1co)

R p
1 + Rc1

1 + Rco
1 ≤ I (X1, U1co ; Y1)

⎫⎬
⎭.

(80)

Since (U11, U1c1)→ X1 is a deterministic mapping, we can
readily see that upper bounds for Rco

1 , R1 = R p
1 + Rc1

1 and
Rall

1 = R p
1 + Rc1

1 + Rco
1 are invariant with the heterogeneous

approach. Thus, if we are interested in the overall rate between
the user pair of Sender 1 and Receiver 1 rather than each com-
ponent message rate, the heterogeneous approach can achieve
the same or even a larger rate region than the homogeneous
approach for a given joint distribution.

Similar to the 2-user DM-IC case, when we apply polar
codes to realize the heterogeneous scheme, the design of fully-
joint decoders is a problem as a sender’s common messages
must be decoded before its private message. Now consider
using the proposed partial-joint decoding scheme. With the
Type I decoding order, all common messages intended for
Receiver 1 are jointly decoded before the private message.
The achievable rate region is

RPar I
I N (P∗1 )=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎝ R p

1
Rc1

1
Rco

1

⎞
⎠

∣∣∣∣∣∣∣∣

R p
1 ≤ I (X1; Y1|U1c1, U1co)
Rc1

1 ≤ I (U1c1; Y1|U1co)
Rco

1 ≤ I (U1co ; Y1|U1c1)
Rc1

1 + Rco
1 ≤ I (U1c1 , U1co; Y1)

⎫⎪⎪⎬
⎪⎪⎭

.

(81)

With the Type II decoding order, Sender 1’s common mes-
sages are decoded first, and then the private message and
other senders’ common messages are jointly decoded. The
achievable rate region is

RPar I I
I N (P∗1 )=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎝ R p

1
Rc1

1
Rco

1

⎞
⎠

∣∣∣∣∣∣∣∣

Rc1
1 ≤ I (U1c1 ; Y1)

R p
1 ≤ I (X1; Y1|U1c1, U1co)
Rco

1 ≤ I (U1co ; Y1|X1)

R p
1 + Rco

1 ≤ I (X1, U1co; Y1|U1c1)

⎫⎪⎪⎬
⎪⎪⎭

.

(82)

It is easy to verify that the following two regions, {(R1, Rco
1 ) :

R1 = R p
1 + Rc1

1 , (R p
1 , Rc1

1 , Rco
1 ) ∈ RPar I

I N (P∗1 )∪RPar I I
I N (P∗1 )}

and {(R1, Rco
1 ) : R1 = R p

1 + Rc1
1 , (R p

1 , Rc1
1 , Rco

1 ) ∈ R1′
I N (P∗1 )},

are equivalent.
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In the above we have discussed the case when only one user
pair applies heterogeneous superposition coding and partial-
joint decoding. More complicated cases can be extended from
this case by adding one user pair with the proposed scheme
at a time. To apply polar coding, one simply needs to adopt
MAC polarization with more than 2 users and follow our
proposed scheme for the 2-user DM-IC. To conclude, we have
the following proposition.

Proposition 3: The proposed heterogeneous superposition
polar coding scheme with the two types of partial-joint
decoding achieves the optimal rate region of DM-INs
when the encoding is restricted to random coding
ensembles.

Remark 3: Comparing (79) and (80) we can see that the
heterogeneous approach has a much simpler expression of
achievable rate region. Since we have shown that these two
superposition schemes result in the same achievable rate
region with respect to the overall rate between each user pair,
the heterogeneous approach can serve as an useful tool for
deriving simplified achievable rate regions for DM-INs.

VIII. CONCLUSION REMARKS

Based on the compact description of the Han-Kobayashi
region and the coding strategy lying behind [35], we have
shown that every point on the dominant faces of the Han-
Kobayashi region can be achieved by polar codes in a simpler
way compared to the scheme of [39]. We prove that the
fully-joint decoding requirement in the Han-Kobayashi coding
strategy can be loosened to partial-joint decoding, which
is more friendly to polar code designs. This result reveals
more insights on the roles of ARVs and coding strategies
for DM-INs.

The chaining method we used in this paper and the polar
alignment technique used in [39] both make polar coding
schemes lengthy, as a much larger block length is needed to
achieve close-to-optimal rates. It is shown in [42] that the
non-universality of polar codes is a property of the successive
cancellation decoding algorithm. Under ML decoding, a polar
code constructed for the binary symmetric channel (BSC)
universally achieves the capacity for any binary memoryless
symmetric (BMS) channel. Also, as we have mentioned in
Remark 2, fully-joint decoding in the heterogeneous super-
position coding scheme is possible with ML decoding. This
makes us wonder if there exist ML-like decoding algorithms
and the corresponding code structures for polar codes which
maintain universality while still enjoying low complexity.
If the answer is yes, our proposed scheme may be further
simplified as well as polar coding schemes for other multi-user
channels.

APPENDIX A
PROOF OF THEOREM 3

Definition 7 [58, p. 521]: Let (X1, X2, . . . , Xk) denote
a finite collection of discrete random variables with
some fixed joint distribution, PX1 X2...Xk (x1, x2, . . . , xk),
(x1, x2, . . . , xk) ∈ X1×X2×· · ·×Xk . Let S denote an ordered

subset of these random variables and consider N independent
copies of S. Thus,

Pr(SN = sN ) =
N∏

i=1

Pr(Si = si ), sN ∈ SN .

The set T (N)
ε of ε-typical N-sequences (xN

1 , xN
2 , . . . , xN

k ) is
defined as

T (N)
ε (X1, X2, . . . , Xk)

=
{
(xN

1 , xN
2 , . . . , xN

k ) :
∣∣∣− 1

N
log PSN (sN )− H (S)

∣∣∣ < ε,

∀S ⊆ (X1, X2, . . . , Xk)

}
.

Codebook Generation: Consider a fixed PQ(q)PX1W1|Q
(x1, w1|q)PX2W2|Q(x2, w2|q). Generate a sequence q1:N ∼∏N

j=1 PQ(q). For k = 1, 2, randomly and independently
generate 2N Rc

k codewords w1:N
k (mkc), mkc ∈ [1 : 2N Rc

k ], each
according to

∏N
j=1 PWk |Q(w

j
k |q j ). For each mkc, randomly

and conditionally independently generate 2N R p
k codewords

x1:N
k (mkc, mkp), mkp ∈ [1 : 2N R p

k ], each according to∏N
j=1 PXk |Wk Q(x j

k |w j
k (mkc), q j ).

Encoding: To send mk = (mkc, mkp), Sender k (k = 1, 2)
transmits x1:N

k (mkc, mkp).
Decoding: In the Type I partial-joint decoding, Receiver k

(k = 1, 2) decodes in the following two steps:

• (Simultaneous decoding for two senders’ common mes-
sages) The decoder declares that (m̂1c, m̂2c) is sent if it
is the unique message pair such that

(
q1:N , w1:N

1 (m̂1c),w
1:N
2 (m̂2c), y1:N

k

) ∈ T (N)
ε ;

otherwise it declares an error.
• (Private message decoding) If such a (m̂1c, m̂2c) is found,

the decoder finds the unique m̂kp such that
(
q1:N , w1:N

1 (m̂1c),w
1:N
2 (m̂2c), x1:N

k (m̂kc, m̂kp), y1:N
k

)
∈ T (N)

ε ;
otherwise it declares an error.

In the Type II partial-joint decoding, Receiver k decodes in
the following two steps:

• (Intended common message decoding) The decoder
declares that m̂kc is sent if it is the unique message such
that

(
q1:N , w1:N

k (m̂kc), y1:N
k

) ∈ T (N)
ε ;

otherwise it declares an error.
• (Simultaneous decoding for the unintended common mes-

sage and the private message) If such a m̂kc is found,
the decoder finds the unique (m̂k′c, m̂kp) such that
(
q1:N , w1:N

k (m̂kc),w
1:N
k′ (m̂k′c), x1:N

k (m̂kc, m̂kp), y1:N
k

)
∈ T (N)

ε ,

where k ′ = mod (k, 2) + 1; otherwise it declares an
error.
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Error Analysis: First we consider Type I. Assume that
message pair ((1, 1), (1, 1)) is sent and Receiver 1 applies
the Type I decoding. Define the following error events

E (I )
10 � {(q1:N , w1:N

1 (1),w1:N
2 (1), x1:N

1 (1, 1), y1:N
1 ) /∈ T (N)

ε },
E (I )

11 � {(q1:N , w1:N
1 (m1c),w

1:N
2 (1), y1:N

1 ) ∈ T (N)
ε

for some m1c �= 1},
E (I )

12 � {(q1:N , w1:N
1 (1),w1:N

2 (m2c), y1:N
1 ) ∈ T (N)

ε

for some m2c �= 1},
E (I )

13 � {(q1:N , w1:N
1 (m1c),w

1:N
2 (m2c), y1:N

1 ) ∈ T (N)
ε

for some m1c �= 1, m2c �= 1},
E (I )

14 � {(q1:N , w1:N
1 (1),w1:N

2 (1), x1:N
1 (1, m1p), y1:N

1 ) ∈ T (N)
ε

for some m1p �= 1},
E (I )

15 � {(q1:N ,w1:N
1 (1),w1:N

2 (m2c), x1:N
1 (1, m1p), y1:N

1 )∈T (N)
ε

for some m2c �=!1, m1p �=1}.
The average probability of error for Receiver 1 can be upper
bounded as

P(E (I )
1 ) ≤ P(E (I )

10 )+ P(E (I )
11 )+ P(E (I )

13 )+ P(E (I )
14 )+ P(E (I )

15 )

≤ P(E (I )
10 )+ P(E (I )

11 )+ P(E (I )
12 )+ P(E (I )

13 )+ P(E (I )
14 ),

(83)

where (83) holds because P(E (I )
15 ) ≤ P(E (I )

12 ). By the law of
large numbers (LLN), P(E (I )

10 ) tends to 0 as N →∞. By the
packing lemma, P(E (I )

11 ), P(E (I )
12 ), P(E (I )

13 ) and P(E (I )
14 ) tend

to 0 as N →∞ if the conditions

Rc
1 ≤ I (W1; Y1|W2 Q)

Rc
2 ≤ I (W2; Y1|W1 Q)

Rc
1 + Rc

2 ≤ I (W1W2; Y1|Q)

R p
1 ≤ I (X1; Y1|W1W2 Q) (84)

are satisfied, respectively. The rate constraints when
Receiver 2 applies Type I decoding are similar by swapping
subscripts 1 and 2 in (84).

Next we consider Type II. We also assume that message
pair ((1, 1), (1, 1)) is sent and Receiver 1 applies the Type II
decoding. Define the following error events

E (I I )
10 � {(q1:N , w1:N

1 (1),w1:N
2 (1), x1:N

1 (1, 1), y1:N
1 ) /∈ T (N)

ε },
E (I I )

11 � {(q1:N , w1:N
1 (m1c), y1:N

1 ) ∈ T (N)
ε for some m1c �= 1},

E (I I )
12 � {(q1:N , w1:N

1 (1),w1:N
2 (1), x1:N

1 (1, m1p), y1:N
1 )∈T (N)

ε

for some m1p �= 1},
E (I I )

13 � {(q1:N, w1:N
1 (1),w1:N

2 (m2c), x1:N
1 (1, m1p), y1:N

1 )∈T (N)
ε

for some m2c �= 1, m1p �= 1}.
The average probability of error for Receiver 1 can be upper
bounded as

P(E (I I )
1 ) ≤ P(E (I I )

10 )+ P(E (I I )
11 )+ P(E (I I )

12 )+ P(E (I I )
13 ). (85)

Similarly, by the LLN, P(E (I I )
10 ) tends to 0 as N →∞. By the

packing lemma, P(E (I I )
11 ), P(E (I I )

12 ), and P(E (I I )
13 ) tend to 0 as

N →∞ if the conditions

Rc
1 ≤ I (W1; Y1|Q)

R p
1 ≤ I (X1; Y1|W1W2 Q)

R p
1 + Rc

2 ≤ I (X1W2; Y1|W1 Q) (86)

are satisfied, respectively. The rate constraints when Receiver 2
applies the Type II decoding are similar by swapping
subscripts 1 and 2 in (86).

Suppose both receivers adopt the Type I decoding.
From (84) and its counterpart for Receiver 2 we know that
the achievable rate region is

R1
Par(P∗1 )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Rc
1

Rc
2

R p
1

R p
2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

Rc
1 ≤ min{I (W1; Y1|W2 Q), I (W1; Y2|W2 Q)}

Rc
2 ≤ min{I (W2; Y1|W1 Q), I (W2; Y2|W1 Q)}

Rc
1 + Rc

2 ≤ min{I (W1W2; Y1|Q),
I (W1W2; Y2|Q)}

R p
1 ≤ I (X1; Y1|W1W2 Q)

R p
2 ≤ I (X2; Y2|W1W2 Q)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(87)

Now suppose Receiver 1 uses Type I while Receiver 2 adopts
Type II. From (84) and the counterpart of (86) for Receiver 2
we have

R2
Par(P∗1 )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Rc
1

Rc
2

R p
1

R p
2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

Rc
1 ≤ I (W1; Y1|W2 Q)

Rc
2 ≤ min{I (W2; Y1|W1 Q), I (W2; Y2|Q)}

Rc
1 + Rc

2 ≤ I (W1W2; Y1|Q)

R p
1 ≤ I (X1; Y1|W1W2 Q)

R p
2 ≤ I (X2; Y2|W1W2 Q)

R p
2 + Rc

1 ≤ I (X2W1; Y2|W2 Q)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(88)

Similarly if Receiver 2 uses Type I while Receiver 1 adopts
Type II, we have

R3
Par(P∗1 )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Rc
1

Rc
2

R p
1

R p
2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

Rc
1 ≤ min{I (W1; Y2|W2 Q), I (W1; Y1|Q)}

Rc
2 ≤ I (W2; Y2|W1 Q)

Rc
1 + Rc

2 ≤ I (W1W2; Y2|Q)

R p
1 ≤ I (X1; Y1|W1W2 Q)

R p
2 ≤ I (X2; Y2|W1W2 Q)

R p
1 + Rc

2 ≤ I (X1W2; Y1|W1 Q)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(89)

From (87) we have

R p
1 + Rc

1 + Rc
2 ≤ min{I (X1W2; Y1|Q), I (X1; Y1|W1W2 Q)

+ I (W1W2; Y2|Q)},
R p

2 + Rc
1 + Rc

2 ≤ min{I (X2W1; Y2|Q), I (X2; Y2|W1W2 Q)

+ I (W1W2; Y1|Q)}.
From (88) we have

R p
1 +Rc

1 + Rc
2 ≤ I (X1W2; Y1|Q),

R p
2 +Rc

1 + Rc
2

≤ min

⎧⎨
⎩

I (X2W1; Y2|Q)
I (X2W1; Y2|W2 Q)+ I (W2; Y1|W1 Q),
I (X2; Y2|W1W2 Q)+ I (W1W2; Y1|Q)

⎫⎬
⎭.
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From (89) we have

R p
1 + Rc

1 + Rc
2

≤ min

⎧⎨
⎩

I (X1W2; Y1|Q)
I (X1W2; Y1|W1 Q)+ I (W1; Y2|W2 Q),
I (X1; Y1|W1W2 Q)+ I (W1W2; Y2|Q)

⎫⎬
⎭,

R p
2 + Rc

1 + Rc
2 ≤ I (X2W1; Y2|Q).

Then we can obtain the following achievable rate region

RPar(P∗1 )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

Rc
1

Rc
2

R p
1

R p
2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Rc
1 ≤ I (W1; Y1|W2 Q)

R p
1 ≤ I (X1; Y1|W1W2 Q)

R p
1 + Rc

2 ≤ I (X1W2; Y1|W1 Q)

R p
1 + Rc

1 + Rc
2 ≤ I (X1W2; Y1|Q)

Rc
2 ≤ I (W2; Y2|W1 Q)

R p
2 ≤ I (X2; Y2|W1W2 Q)

R p
2 + Rc

1 ≤ I (X2W1; Y2|W2 Q)
R p

2 + Rc
1 + Rc

2 ≤ I (X2W1; Y2|Q)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(90)

Using the Fourier-Motzkin elimination we can readily
show that (90) results in the same region as in Theorem 2
with the following two additional constraints (same as the
Chong-Motani-Garg region shown in [35, Lemma 4]):

R1 ≤ I (X1; Y1|W1W2 Q)+ I (X2W1; Y2|W2 Q),

R2 ≤ I (X2; Y2|W1W2 Q)+ I (X1W2; Y1|W1 Q). (91)

From [35] we know that the Chong-Motani-Garg region is
smaller than the compact Han-Kobayashi region for a P1 only
if

I (X2W1; Y1|W2 Q) < I (W1; Y1|Q)

or

I (X1W2; Y2|W1 Q) < I (W2; Y2|Q). (92)

For the former case, an intuitive interpretation is that
Receiver 2 is unable to achieve the unintended common
message rate of Rc

1 = I (W1; Y1|Q) even if it tries its best.
In this case, Sender 1 will not transmit any common message
(i.e., W1 = ∅) [50, Problem 6.12]. Similarly, for the latter case,
we will set W2 = ∅. Thus, these rates are still achievable with
the proposed scheme. This completes the proof.

APPENDIX B
PROOF OF LEMMA 1

Since R1+R2 = c, R1+R2 = d , R1+R2 = e, 2R1+R2 = f
and R1 + 2R2 = g are the possible dominant faces of the
Han-Kobayashi region, we prove Lemma 1 by deriving value
ranges of common message rates for points on each of them.

A. Points on R1 + R2 = c and R1 + R2 = d

Suppose P ∈ RH K (P∗1 ) is a point on line

R1 + R2 = c. (93)

Let (R p
1 , Rc

1, R p
2 , Rc

2) be a rate decomposition of P. The
equality of (93) forces those in the counterpart of (8) for
Receiver 2 and (14) to hold. Thus,

R p
2 = I (X2; Y2|W1W2 Q), (94)

R p
1 + Rc

1 + Rc
2 = I (X1W2; Y1|Q). (95)

From (95) and (17) we have

Rc
2 ≥ I (W2; Y1|Q).

From (94) and (18) we have

Rc
2 ≤ I (W2; Y2|W1 Q). (96)

From (93) and (22) we have

R2 ≥ 2c − f

= I (X2; Y2|W1W2 Q)+ I (W1W2; Y1|Q)− I (W1; Y2|W2 Q).

From (93) and (23) we have

R2 ≤ g − c = I (X2W1; Y2|Q)− I (W1; Y1|Q).

Thus,

I (W1W2; Y1|Q)− I (W1; Y2|W2 Q) ≤ Rc
2 ≤ I (W1W2; Y2|Q)

I (W1; Y1|Q).

If R1 + R2 = c is a dominant face of the Han-Kobayashi
region, c ≤ d and c ≤ e must hold. From (19), (20) and (21)
we have

I (W1; Y2|W2 Q) ≥ I (W1; Y1|Q),

I (W1W2; Y2|Q) ≥ I (W1W2; Y1|Q). (97)

1) For max{I (W2; Y1|Q), I (W1W2; Y1|Q) − I (W1; Y2
|W2 Q)} ≤ Rc

2 ≤ I (W2; Y1|W1 Q) (if not null), let

Rc
1 = I (W1W2; Y1|Q)− Rc

2,

R p
1 = I (X1; Y1|W1W2 Q).

Obviously (Rc
1, Rc

2) ∈ R(PY1|W1W2) and Rc
1 ≤ I (W1; Y2

|W2 Q). Then from (96) and (97) we know that (Rc
1, Rc

2) ∈
R(PY2|W1W2). Therefore P is of Type A.

2) For I (W2; Y1|W1 Q) ≤ Rc
2 ≤ min{I (W1W2; Y2|Q) −

I (W1; Y1|Q), I (W2; Y2|W1 Q)} (if not null), let

Rc
1 = I (W1; Y1|Q),

R p
1 = I (X1W2; Y1|W1 Q)− Rc

2.

In this case, P belongs to Type B.
For a point P ∈ RH K (P∗1 ) on line R1+R2 = d , the analysis

is similar.

B. Points on R1 + R2 = e

Suppose P ∈ RH K (P∗1 ) is a point on line

R1 + R2 = e. (98)

Let (R p
1 , Rc

1, R p
2 , Rc

2) be a rate decomposition of P. The
equality of (98) forces those in (12) and its counterpart for
Receiver 2 to hold. Thus,

R p
1 + Rc

2 = I (X1W2; Y1|W1 Q),

R p
2 + Rc

1 = I (X2W1; Y2|W2 Q).

Then from (8), (14) and their counterparts for Receiver 2,
we have

I (W1; Y2|W2 Q) ≤ Rc
1 ≤ I (W1; Y1|Q), (99)

I (W2; Y1|W1 Q) ≤ Rc
2 ≤ I (W2; Y2|Q). (100)
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From (22) and (98) we have

R p
1 + Rc

1 ≤ I (X1; Y1|W1W2 Q)+ I (W1; Y1|Q),

R p
2 + Rc

2 ≥ I (X2W1; Y2|W2 Q)+ I (W2; Y1|W1 Q)

− I (W1; Y1|Q).

From (23) and (98) we have

R p
1 + Rc

1 ≥ I (X1W2; Y1|W1 Q)+ I (W1; Y2|W2 Q)

− I (W2; Y2|Q),

R p
2 + Rc

2 ≤ I (X2; Y2|W1W2 Q)+ I (W2; Y2|Q).

1) If I (X2; Y2|W1W2 Q)+ I (W2; Y1|W1 Q) ≤ P(2) ≤ I (X2;
Y2|W1W2 Q) + I (W2; Y2|Q), let R p

2 = I (X2; Y2|W1W2 Q).
Then

Rc
2 = P(2)− I (X2; Y2|W1W2 Q),

Rc
1 = I (W1; Y2|W2 Q),

R p
1 = I (X1W2; Y1|W1 Q)− Rc

2.

From (99) we know that Rc
1 ≤ I (W1; Y1|Q). Thus, P belongs

to Type B.
2) If I (X2W1; Y2|W2 Q)+I (W2; Y1|W1 Q)−I (W1; Y1|Q) ≤

P(2) < I (X2; Y2|W1W2 Q) + I (W2; Y1|W1 Q), let R p
1 =

I (X1; Y1|W1W2 Q). Then

Rc
2 = I (W2; Y1|W1 Q),

R p
2 = P(2)− I (W2; Y1|W1 Q),

Rc
1 = I (X2W1; Y2|W2 Q)+ I (W2; Y1|W1 Q)− P(2).

From (100) we know that Rc
2 ≤ I (W2; Y2|Q). Thus, P belongs

to Type B.

C. Points on 2R1 + R2 = f and R1 + 2R2 = g

Suppose P ∈ RH K (P∗1 ) is a point on line

2R1 + R2 = f. (101)

Let (R p
1 , Rc

1, R p
2 , Rc

2) be a rate decomposition of P. The
equality of (101) forces those in (8), (14) and the counterpart
of (12) to hold. Thus,

R p
1 = I (X1; Y1|W1W2 Q), (102)

Rc
1 + R p

2 = I (X2W1; Y2|W2 Q), (103)

Rc
1 + Rc

2 = I (W1W2; Y1|Q). (104)

Then we obtain from (11) that

Rc
1 ≤ I (W1; Y1|W2 Q). (105)

From (19)–(21), (101) and (102) we have

Rc
1 ≥ max

⎧⎨
⎩

I (W1; Y2|W2 Q)
I (W1W2; Y1|Q)− I (W2; Y2|Q)

I (W1; Y1|Q)

⎫⎬
⎭.

Thus,

Rc
2 ≤ min

⎧⎨
⎩

I (W1W2; Y1|Q)− I (W1; Y2|W2 Q)
I (W2; Y2|Q)

I (W2; Y1|W1 Q)

⎫⎬
⎭.

We can see that (Rc
1, Rc

2) ∈ R(PY1|W1W2) and Rc
2 ≤

I (W2; Y2|Q). Thus, P belongs to Type B.

For a point P ∈ RH K (P∗1 ) on line R1 + 2R2 = g,
the analysis is similar.

Now we have completed the proof.

APPENDIX C
PROOF OF LEMMA 2

Define

H(N)
SU1 |Y1W1

�
{

j ∈ [N] : H (S f1( j )|Y 1:N
1 , U

′1:N
1 , S1: f1( j )−1)

≥ log2(qX1)− δN
}
, (106)

and let B(N)
SU1 |Y1W1

� (H(N)
SU1 |Y1W1

∪L(N)
SU1 |Y1W1

)C . Then we have

1

N
|I1p| = 1

N
|H(N)

X1|W1
∩ (H(N)

SU1 |Y1 W1
∪ B(N)

SU1 |Y1 W1
)C |

= 1

N
|H(N)

X1|W1
∩ (H(N)

SU1 |Y1 W1
)C ∩ (B(N)

SU1 |Y1W1
)C |

≥ 1

N
|H(N)

X1|W1
∩ (H(N)

SU1 |Y1 W1
)C | − 1

N
|B(N)

SU1 |Y1W1
|

= 1

N
|H(N)

X1|W1
| − 1

N
|H(N)

SU1 |Y1W1
| − 1

N
|B(N)

SU1 |Y1W1
|.

From (28) we have

lim
N→∞

1

N
|H(N)

X1|W1
| = HqX1

(X1|W1).

From [62, Lemma 1] we have

lim
N→∞

1

N
|B(N)

SU1 |Y1W1
| = 0.

From (39) we have

lim
N→∞

1

N
|H(N)

SU1 |Y1 W1
|

= lim
N→∞

1

N

∑
j∈SU1

HqX1
(S j |Y 1:N

1 , W 1:N
1 , S1: j−1)

= lim
N→∞

( 1

N
HqX1

(S1:2N |Y 1:N
1 , W 1:N

1 )

− 1

N

∑
j∈SU ′2

HqX1
(S j |Y 1:N

1 , W 1:N
1 , S1: j−1)

)

= lim
N→∞

( 1

N
HqX1

(S1:2N , W 1:N
1 |Y 1:N

1 )− 1

N
HqX1

(W 1:N
1 |Y 1:N

1 )

− 1

N

∑
j∈SU ′2

HqX1
(S j |Y 1:N

1 , W 1:N
1 , S1: j−1)

)

= lim
N→∞

1

N
HqX1

(S1:2N |Y 1:N
1 )

+ lim
N→∞

1

N
HqX1

(W 1:N
1 |Y 1:N

1 , S1:2N )− HqX1
(W1|Y1)

− lim
N→∞

1

N

∑
j∈SU ′2

HqX1
(S j |Y 1:N

1 , W 1:N
1 , S1: j−1)

= HqX1
(X1W2|Y1)− HqX1

(W1|Y1)

− lim
N→∞

1

N

∑
j∈SU ′2

HqX1
(S j |Y 1:N

1 , S1: j−1) (107)

= HqX1
(X1W2|Y1)− HqX1

(W1|Y1)

− (
HqX1

(W2)− I (X1W2; Y1)+ P̄1(1)
)

= HqX1
(X1)− HqX1

(W1|Y1)− P̄1(1), (108)



1990 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

where (107) holds because HqX1
(W 1:N

1 |Y 1:N
1 , S1:2N ) = 0, and

(108) holds by

lim
N→∞

1

N

∑
j∈SU ′2

HqX1
(S j |Y 1:N

1 , S1: j−1)

= HqX1
(W2)− P̄1(2)

= HqX1
(W2)−

(
I (X1W2; Y1)− P̄1(1)

)
.

Thus,

lim
N→∞

1

N
|I1p|

= HqX1
(X1|W1)−

(
HqX1

(X1)− HqX1
(W1|Y1)− P̄1(1)

)
= HqX1

(X1W1)− HqX1
(W1)− HqX1

(X1)

+ HqX1
(W1|Y1)+ P̄1(1)

= P̄1(1)− I (W1; Y1), (109)

where (109) holds because HqX1
(X1W1) = HqX1

(X1).

APPENDIX D
PROOF OF LEMMA 3

We drop the subscript (·)i for simplicity here as the analysis
for any i is the same. Since GN is an invertible mapping,
by the chain rule for the Kullback-Leibler divergence we have

D(PW 1:N
1
||QW 1:N

1
) (110)

= D(PU
′1:N
1
||QU

′1:N
1

)

=
N∑

j=1

D(P
U
′ j
1 |U

′1: j−1
1
||Q

U
′ j
1 |U

′1: j−1
1

)

=
∑

j∈H(N)
W1

D(P
U
′ j
1 |U

′1: j−1
1
||Q

U
′ j
1 |U

′1: j−1
1

) (111)

=
∑

j∈H(N)
W1

(
log2(qW1)− H (U

′ j
1 |U

′1: j−1
1 )

)
(112)

≤ NδN , (113)

where (111) holds by our common message encoding scheme,
(112) holds by the fact that information symbols and frozen
symbols are uniformly distributed, and (113) holds by the
definition of set H(N)

W1
. Similarly,

D(PU 1:N
1 |W 1:N

1
||QU 1:N

1 |W 1:N
1

)

=
N∑

j=1

D(P
U j

1 |U 1: j−1
1 W 1:N

1
||Q

U j
1 |U 1: j−1

1 W 1:N
1

)

=
∑

j∈H(N)
X1|W1

D(P
U j

1 |U 1: j−1
1 W 1:N

1
||Q

U j
1 |U 1: j−1

1 W 1:N
1

)

=
∑

j∈H(N)
X1|W1

(
log2(qX1)− HqX1

(U j
1 |U1: j−1

1 W 1:N
1 )

)

≤ NδN . (114)

Then by the chain rule for the Kullback-Leibler divergence we
have

D(PW 1:N
1 X1:N

1
||QW 1:N

1 X1:N
1

)

= D(PW 1:N
1 U 1:N

1
||QW 1:N

1 U 1:N
1

) (115)

= D(PU 1:N
1 |W 1:N

1
||QU 1:N

1 |W 1:N
1

)+ D(PW 1:N
1
||QW 1:N

1
) (116)

≤ 2NδN . (117)

Similarly,

D(PW 1:N
2 X1:N

2
||QW 1:N

2 X1:N
2

) ≤ 2NδN . (118)

Then we have

‖PW 1:N
1 W 1:N

2 X1:N
1 X1:N

2
− QW 1:N

1 W 1:N
2 X1:N

1 X1:N
2
‖

= ‖PW 1:N
1 X1:N

1
PW 1:N

2 X1:N
2
− QW 1:N

1 X1:N
1

QW 1:N
2 X1:N

2
‖

≤ ‖PW 1:N
1 X1:N

1
PW 1:N

2 X1:N
2
− QW 1:N

1 X1:N
1

PW 1:N
2 X1:N

2
‖

+‖QW 1:N
1 X1:N

1
PW 1:N

2 X1:N
2
− QW 1:N

1 X1:N
1

QW 1:N
2 X1:N

2
‖ (119)

= ‖PW 1:N
1 X1:N

1
− QW 1:N

1 X1:N
1
‖ + ‖PW 1:N

2 X1:N
2
− QW 1:N

2 X1:N
2
‖

(120)

≤ 4
√

log 2
√

NδN , (121)

where (119) holds by the triangle inequality, (120) holds by
[63, Lemma 17], and (121) holds by (117), (118) and Pinsker’s
inequality.

Since PY 1:N
1 Y 1:N

2 |X1:N
1 X1:N

2
= QY 1:N

1 Y 1:N
2 |X1:N

1 X1:N
2

, by

[63, Lemma 17] we have

‖PW 1:N
1 W 1:N

2 X1:N
1 X1:N

2 Y 1:N
1 Y 1:N

2
− QW 1:N

1 W 1:N
2 X1:N

1 X1:N
2 Y 1:N

1 Y 1:N
2
‖

= ‖PW 1:N
1 W 1:N

2 X1:N
1 X1:N

2
− QW 1:N

1 W 1:N
2 X1:N

1 X1:N
2
‖

≤ 4
√

log 2
√

NδN . (122)

APPENDIX E
PROOF OF LEMMA 4

To evaluate all error events in the proposed scheme, we
denote the random variables drawn from the target distribution
as U1, X1, Y1, etc., those induced by our encoding scheme as
Ũ1, X̃1, Ỹ1, etc., and those of the decoding results as Ū1, X̄1,
Ȳ1, etc.

We first bound the error probability of a receiver with the
Type I partial-joint decoding. As an example, we consider
Receiver 1 in the Type A scheme. Define the following error
events

E1,i � {(W̃ 1:N
1 W̃ 1:N

2 X̃1:N
1 Ỹ 1:N

1 )i

�= (W 1:N
1 W 1:N

2 X1:N
1 Y 1:N

1 )},
Ech

W1W2,i−1 � {(Ū ′chaining
1 Ū

′chaining
2 )i−1

�= (Ũ
′chaining
1 Ũ

′chaining
2 )i−1},

EW1W2,i � {(Ū ′1:N1 Ū
′1:N
2 )i �= (Ũ

′1:N
1 Ũ

′1:N
2 )i },

EX1,i � {(Ū1:N
1 )i �= (Ũ1:N

1 )i },
where “chaining” in the superscript stands for the elements
used for chaining.
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The error probability of Receiver 1 when decoding messages
in Block i (1 ≤ i ≤ K ) can be upper bounded by

P I
e,i ≤ P[EX1,i or EW1W2,i ]
= P[EX1,i or EW1W2,i |E1,i ]P[E1,i ]
+ P[EX1,i or EW1W2,i |EC

1,i ]P[EC
1,i ]

≤ P[E1,i ] + P[EX1,i or EW1W2,i |EC
1,i ]

= P[E1,i ] + P[EW1W2,i |EC
1,i ]

+ P[EX1,i |EC
1,i , EC

W1W2,i
]P[EC

W1W2,i
|EC

1,i ]
≤ P[E1,i ] + P[EW1W2,i |EC

1,i ] + P[EX1,i |EC
1,i , EC

W1W2,i ].
(123)

Using optimal coupling [64, Lemma 3.6] we have

P[E1,i ] = ‖PW 1:N
1 W 1:N

2 X1:N
1 Y 1:N

1
− Q(W 1:N

1 W 1:N
2 X1:N

1 Y 1:N
1 )i
‖.
(124)

For i ≥ 2, we have

P[EW1W2,i |EC
1,i ]

= P[EW1W2,i |EC
1,i , Ech

W1W2,i−1]P[Ech
W1W2,i−1]

+ P[EW1W2,i |EC
c,i , (Ech

W1W2,i−1)
C ]P[(Ech

W1W2,i−1)
C ]

≤ P[Ech
W1W2,i−1] + P[EW1W2,i |EC

c,i , (Ech
W1W2,i−1)

C ]
≤ P[EW1W2,i−1] + NδN , (125)

where (125) holds by the error probability of source polar
coding [2]. Since

P[EW1W2,i−1] = P[EW1W2,i−1|EC
1,i−1]P[EC

1,i−1]
+ P[EW1W2,i−1|E1,i−1]P[E1,i−1]

≤ P[EW1W2,i−1|EC
1,i−1] + P[E1,i−1],

we have

P[EW1W2,i |EC
1,i ] ≤ P[EW1W2,i−1|EC

1,i−1] + NδN

+ 4
√

log 2
√

NδN .

For i = 1, from our chaining scheme we know that

P[EW1W2,1|EC
1,1] ≤ NδN .

Then by induction we have

P[EW1W2,i |EC
1,i ] ≤ i NδN + 4(i − 1)

√
log 2

√
NδN .

By the error probability of source polar coding [2] we have

P[EX1,i |EC
1,i , EC

W1W2,i ] ≤ NδN .

Thus,

Pe1,i ≤ (i + 1)NδN + 4i
√

log 2
√

NδN .

Then error probability of Receiver 1 in the overall K blocks
can be upper bounded by

P I
e ≤

K∑
i=1

P I
e,i ≤

(K + 1)(K + 2)

2
NδN + 2K (K + 1)

√
log 2

×√
NδN . (126)

Next we bound the error probability of a receiver with the
Type II partial-joint decoding. As an example, we consider
Receiver 1 in the Type B scheme. Define the following error
events

E1,i � {(W̃ 1:N
1 W̃ 1:N

2 X̃1:N
1 Ỹ 1:N

1 )i �=(W 1:N
1 W 1:N

2 X1:N
1 Y 1:N

1 )},
Ech

W1,i−1 � {(Ū ′chaining
1 )i−1 �=(Ũ

′chaining
1 )i−1},

Ech
W2,i−1 � {(Ū ′chaining

2 )i−1 �=(Ũ
′chaining
2 )i−1},

EW1,i � {(Ū ′1:N1 )i �=(Ũ
′1:N
1 )i },

EX1W2,i � {(Ū1:N
1 Ū

′1:N
2 )i �=(Ũ1:N

1 Ũ
′1:N
2 )i }.

Similar to (123), the error probability of Receiver 1 when
decoding messages in Block i (1 ≤ i ≤ K ) can be upper
bounded by

P I I
e,i ≤ P[EX1W2,i or EW1,i ]
≤ P[E1,i ] + P[EW1,i |EC

1,i ] + P[EX1W2,i |EC
1,i , EC

W1,i ].
(127)

Similar to the analysis for P[EW1W2,i |EC
1,i ] in the Type I case,

we have

P[EW1,i |EC
1,i ] ≤ i NδN + 4(i − 1)

√
log 2

√
NδN , (128)

and

P[EW1,i ] ≤ P[EW1,i |EC
1,i ]P[EC

1,i ] + P[E1,i ]
≤ i NδN + 4i

√
log 2

√
NδN .

For i ≥ 2, we have

P[EX1W2,i |EC
1,i , EC

W1,i
]

= P[EX1W2,i |EC
1,i , EC

W1,i , (E
ch
W2,i−1)

C ]P[(Ech
W2,i−1)

C ]
+P[EX1W2,i |EC

1,i , EC
W1,i

, Ech
W2,i−1]P[Ech

W2,i−1]
≤ P[EX1W2,i |EC

1,i , EC
W1,i , (E

ch
W2,i−1)

C ] + P[Ech
W2,i−1]

≤ NδN + P[EX1 W2,i−1]
= NδN + P[EX1 W2,i−1|EC

1,i−1]P[EC
1,i−1]

+ P[EX1W2,i−1|E1,i−1]P[E1,i−1]
≤ P[EX1W2,i−1|EC

1,i−1] + NδN + 4
√

log 2
√

NδN

≤ P[EX1W2,i−1|EC
1,i−1, EC

W1,i−1] + P[EW1,i−1]
+NδN + 4

√
log 2

√
NδN

≤ P[EX1W2,i−1|EC
1,i−1, EC

W1,i−1] + i NδN + 4i
√

log 2
√

NδN .

For i = 1, from our chaining scheme we have

P[EX1W2,1|EC
1,1, EC

W1,1] ≤ NδN .

Thus, by induction we have

P[EX1W2,i |EC
1,i , EC

W1,i ]
≤ (i + 2)(i − 1)

2
(NδN + 4

√
log 2

√
NδN )+ NδN . (129)

From (127), (124), (128) and (129) we have

P I I
e,i ≤

i2 + 3i − 2

2
(NδN + 4

√
log 2

√
NδN )+ NδN ..
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Then we have

P I I
e ≤

K∑
i=1

P I I
e,i

≤ K (K + 1)(K + 5)

6
NδN

+2K (K 2 + 6K − 1)

3

√
log 2

√
NδN .
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