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Polar Coding for the Cognitive Interference
Channel With Confidential Messages

Mengfan Zheng, Wen Chen, and Cong Ling

Abstract— In this paper, we propose a low-complexity, secrecy
capacity achieving polar coding scheme for the cognitive inter-
ference channel with confidential messages (CICC) under the
strong secrecy criterion. Existing polar coding schemes for
interference channels rely on the use of polar codes for the
multiple access channel, the code construction problem of which
can be complicated. We show that the whole secrecy capacity
region of the CICC can be achieved by simple point-to-point
polar codes due to the cognitivity, and our proposed scheme
requires the minimum rate of randomness at the encoder.

Index Terms— Polar codes, cognitive interference channel,
physical layer security, superposition coding.

I. INTRODUCTION

COGNITIVE radio [1] has received increasing attention
due to its capability of exploiting the under-utilized

spectrum resource, as the scale of wireless networks has
been growing drastically nowadays. The cognitive interference
channel (CIC) is a typical model for the study of cognitive
radios. In this model, a primary user (can be thought of as a
licensed user of a frequency band) and a cognitive user (can
be thought of as an unlicensed user wishing to share the
same frequency band) who has non-causal knowledge of the
primary user’s message transmit their own messages to their
own destinations at the same time. The problem of base station
cooperation, in which base stations can share information via
backhaul links of unlimited capacity, is a potential applica-
tion scenario of the CIC. Another practical scenario of the
CIC is in the problem of message retransmission, where the
cognitive user can hear and decode the first transmission,
while the primary user fails to do that. The communication
problem in the CIC has been studied in [2]–[7]. The security
issue of the CIC was first considered in [8], which gave
the capacity-equivocation region of the CIC with confidential
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messages (CICC) under the weak secrecy criterion. A more
general expression for the achievable rate region of the CICC
with additional randomness constraints was derived in [9]
under the strong secrecy criterion, which coincides with the
result of [8].

In this paper, we aim to design a polar coding scheme
to achieve the whole achievable rate region of [9]. Polar
codes [10], originally targeted for achieving the symmet-
ric capacity of point-to-point channels, have recently been
shown to work for multi-user channels as well. It is shown
that polar codes achieve the capacity regions or the known
achievable rate regions of multiple access channels (MAC)
[11]–[14], broadcast channels [15], [16], and interference
channels (IC) [17], [18]. In the area of physical layer security,
polar codes have been shown to achieve the secrecy capac-
ity of wiretap channels [19]–[24], and the secrecy capacity
regions or the known secrecy rate regions of MAC wiretap
channels [23], [25], broadcast channels with confidential mes-
sages [22]–[24], IC with confidential messages [23], two-way
wiretap channels [26], and bidirectional broadcast channels
with common and confidential messages [27]. A capacity
achieving secrecy polar coding scheme usually requires some
eavesdropper channel information at the transmitter, which can
be a drawback in practice. However, this is not a problem in
the CICC since the assumption that the cognitive transmitter
knows the channel information of both receivers is quite
reasonable. Thus, the CICC can be a scenario where secrecy
polar coding can be practically used.

The CICC differs from the IC with confidential messages
considered by [23] in that only the cognitive user has confiden-
tial messages, and the cognitive user has non-causal knowledge
about the primary user’s messages. The secrecy capacity
region of the CICC cannot be achieved by the scheme of [23]
since the coding strategy lying behind is totally different.
The scheme of [23] is more of an extension of wiretap polar
codes while our scheme involves a more complicated design
of auxiliary random variables and chaining scheme. We show
that the cognitivity not only enlarges the achievable rate region
of the IC, but also can help simplify the code design. As shown
in [17], [18], and [23], existing polar code designs for ICs that
can achieve optimal rate regions require the use of the permu-
tation based MAC polarization [11], [14], as it is currently the
only method that can achieve the whole achievable rate region
of the MAC directly without time sharing or rate splitting.
Although for some special types of permutations, MAC polar
codes can be constructed using existing efficient methods [18],
the practicality of this method remains open in general since
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the induced random variable by the permutation can be very
complicated. Existing efficient constructing methods for point-
to-point polar codes (such as [28], [29]) may not be readily
applied. In this paper, we show that the whole achievable rate
region of the CICC can be achieved by point-to-point polar
codes in conjunction with properly designed chaining schemes.

We summarize the contributions of this paper as follows.

• We propose a low-complexity polar coding scheme for
the general CICC that achieves the whole secrecy capac-
ity region under the strong secrecy criterion, without any
assumption on channel symmetry or degradation.

• We avoid using MAC polarization, which is a com-
mon ingredient of polar code designs for ICs but may
increase system complexity, and develop a secrecy capac-
ity achieving scheme which only requires point-to-point
polar codes. A novel, cross-transmitter chaining scheme
is proposed to fulfill this task.

• Secrecy coding schemes require a large amount of
randomness in order to protect the confidential mes-
sage or to perform channel prefixing. As the transmis-
sion rate of today’s communication systems increases
drastically, the required generating rate of randomness
in a secrecy coding scheme increases correspondingly,
and thus cannot be considered as an unlimited resource.
In this paper, we prove that our proposed scheme achieves
the minimum generating rate of randomness.

• We show that our proposed scheme is a general solu-
tion for several other multi-user polar coding problems,
including the CIC without secrecy requirement.

The rest of this paper is organized as follows. In Section II,
we introduce the CICC model and the achievable rate region.
In Section III, we review some background knowledge on
polar codes. Details of our proposed scheme are presented
in Section IV. We analyze the performance of our proposed
scheme in Section V. In Section VI we discuss some exten-
sions of our proposed scheme.

Notations: In this paper, [N ] denotes the index set of
{1, 2, . . . , N}. For any A ⊂ [N ], XA denotes the subvector
{X i : i ∈ A} of X1:N � {X1, X2, . . . , XN}. The generator
matrix of polar codes is defined as GN = BN F⊗n [10],
where N = 2n with n being an arbitrary integer, BN is the

bit-reversal matrix, and F =
[
1 0
1 1

]
. Hq(X) stands for the

entropy of X with q-based logarithm. δN = 2−Nβ

with some
β ∈ (0, 1/2).

II. PROBLEM STATEMENT

A. Channel Model

Definition 1: A 2-user CIC consists of two input alphabets
X1 and X2, two output alphabets Y1 and Y2, and a probability
transition function PY1Y2|X1X2(y1, y2|x1, x2), where x1 ∈ X1

and x2 ∈ X2 are channel inputs of transmitter 1 and 2,
respectively, and y1 ∈ Y1 and y2 ∈ Y2 are channel outputs of
receiver 1 and 2, respectively. The conditional joint probability
distribution of the 2-user CIC over N channel uses can be

Fig. 1. The cognitive interference channel with confidential messages.

factored as

PY 1:N
1 Y 1:N

2 |X1:N
1 X1:N

2
(y1:N

1 , y1:N
2 |x1:N

1 , x1:N
2 )

=
N∏

j=1

PY1Y2|X1X2(y
j
1, y

j
2|xj

1, x
j
2). (1)

In this channel, transmitter i (i = 1, 2) sends message
Mi to receiver i. Receiver 1 is required to decode M1

only while receiver 2 is required to decode both M1 and
M2

1. Since transmitter 2 has non-causal knowledge about
transmitter 1’s message, M1 can be jointly transmitted by the
two transmitters. If transmitter 2 wishes to keep part of its
message (denoted as M

(s)
2 ) secret from receiver 1, then this

model is called the CICC, as shown in Fig. 1.
Definition 2: A (2NR1 , 2NR2 , N) code for the 2-user CICC

consists of two message sets M1 = {1, 2, . . . , [2NR1 ]} and
M2 = {1, 2, . . . , [2NR2 ]}, two encoding functions

xN
1 (m1) :M1 �→XN

1 and xN
2 (m1, m2) :M1×M2 �→ XN

2 ,

(2)

and two decoding functions

m̂1(yN
1 ) : YN

1 �→ M1 and m̂2(yN
2 ) : YN

2 �→ M1 ×M2.

(3)
For a given (2NR1 , 2NR2 , N) code for the 2-user CICC,

reliability is measured by the average probability of error
Pe(N), defined as

Pe(N) =
1

2N(R1+R2)

∑
(M1,M2)∈M1×M2

Pr
{(

m̂1(Y 1:N
1 ), m̂2(Y 1:N

2 )
) �=(M1,M1,M2)|(M1,M2) sent

}
,

(4)

where (M1, M2) is assumed to be uniformly distributed over
M1 × M2. Secrecy is measured by the information leak-
age (strong secrecy)

L(N) = I(Y 1:N
1 ; M (s)

2 ), (5)

or the information leakage rate (weak secrecy)

LR(N) =
1
N

L(N). (6)

1This is a case where the capacity and capacity-equivocation regions of a
CIC is known [8]. In the general case, the capacity region of a CIC is still
unknown [7].
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B. Achievable Rate Region

Let R2s be the transmission rate of confidential message
M

(s)
2 . A rate triple (R1, R2, R2s) is said to be achievable for

the 2-user CICC if there exists a coding scheme such that

lim
N→∞

Pe(N) = 0; (7)

and

lim
N→∞

L(N) = 0 (strong secrecy), or (8)

lim
N→∞

LR(N) = 0 (weak secrecy). (9)

The capacity-equivocation region of the CICC (under
the constraint that the cognitive receiver must decode both
transmitters’ messages) was derived in [8] and is shown below.

Theorem 1 ( [8]): The capacity-equivocation region of the
CICC under the weak secrecy criterion is

R =
⋃

P∈P⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ R1

R2

R2s

⎞
⎠

∣∣∣∣∣∣∣∣∣∣

0 ≤ R1 ≤ min{I(U, X1; Y1), I(U, X1; Y2)}
0 ≤ R2 ≤ I(U, V ; Y2|X1)
R1+R2≤min{I(U, X1; Y1), I(U, X1; Y2)}

+ I(V ; Y2|U, X1)
0 ≤ R2s ≤ I(V ; Y2|U, X1) − I(V ; Y1|U, X1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where P = {PUV X1X2 factorizing as: PU,V,X1PX2|V }, and
the cardinality bounds for auxiliary random variables U and
V are

|U| ≤ |X1| · |X2| + 3,

|V| ≤ |X1|2 · |X2|2 + 4|X1| · |X2| + 3.
As we know, secrecy coding schemes require a large amount

of randomness in the encoder. Reference [9] considered
the generating rate of randomness needed by the stochas-
tic encoder as a constraint and developed a more general
achievable rate region under the strong secrecy criterion as
shown in Theorem 2. In [9], besides the common message and
the confidential message, transmitter 2’s message was further
divided into a private message, which should be decoded by
receiver 2 but not necessarily be secret from receiver 1.

Theorem 2 ([9]): Let R∗ be a closed convex set consisting
of rate quadruples (Rr, R1, R2p, R2s) for which there exist
auxiliary random variables (U, V ) such that

(U, X1) ↔ V ↔ X2, (10)

(U, V ) ↔ (X1, X2) ↔ (Y1, Y2), (11)

and

R1 ≤ min{I(U, X1; Y1), I(U, X1; Y2)}, (12)

R2p + R2s ≤ I(U, V ; Y2|X1), (13)

R1 + R2p + R2s ≤ I(V ; Y2|U, X1)
+ min{I(U, X1; Y1), I(U, X1; Y2)},

(14)

R2s ≤ I(V ; Y2|U, X1) − I(V ; Y1|U, X1), (15)

R2p + Rr ≥ I(X2; Y1|U, X1), (16)

Rr ≥ I(X2; Y1|U, V, X1), (17)

where Rr is the rate of randomness, and R2p is transmitter 2’s
private message rate. Then R∗ is an achievable rate region
for the CICC. The cardinality bounds for auxiliary random
variables U and V are the same as in Theorem 1.

III. POLAR CODING PRELIMINARIES

Polar codes were originally invented to achieve the sym-
metric capacity of discrete memoryless channels (DMC) [10].
To deal with non-uniform input distribution, one may apply
Gallager’s alphabet extension method [30, p. 208] as in [17],
the chaining construction [31], or a more direct method which
invokes results on polar coding for lossless compression [32].
Reference [33] proposed a refined method which overcomes
the major drawback of the scheme in [32] that the encoder and
decoder need to share a large amount of random mappings.
Now we briefly review this method.

Let W (Y |X) be a DMC with a qX -ary input alphabet X ,
where qX is a prime number2, and an arbitrary countable
output alphabet Y . Let U1:N = X1:NGN and define H(N)

X ,
L(N)

X , H(N)
X|Y and L(N)

X|Y as follows:

H(N)
X = {j ∈ [N ] : HqX (U j |U1:j−1) ≥ 1 − δN}, (18)

L(N)
X = {j ∈ [N ] : HqX (U j |U1:j−1) ≤ δN}, (19)

H(N)
X|Y = {j ∈ [N ] : HqX (U j |Y 1:N , U1:j−1) ≥ 1 − δN},

(20)

L(N)
X|Y = {j ∈ [N ] : HqX (U j |Y 1:N , U1:j−1) ≤ δN}, (21)

which satisfy [22], [34]

lim
N→∞

1
N

|H(N)
X | = HqX (X), (22)

lim
N→∞

1
N

|L(N)
X | = 1 − HqX (X), (23)

lim
N→∞

1
N

|H(N)
X|Y | = HqX (X |Y ), (24)

lim
N→∞

1
N

|L(N)
X|Y | = 1 − HqX (X |Y ). (25)

Define the information set (or reliable set), frozen set and
almost deterministic set respectively as follows:

I � H(N)
X ∩ L(N)

X|Y , (26)

F � H(N)
X ∩ (L(N)

X|Y )C , (27)

D � (H(N)
X )C . (28)

D is called almost deterministic because part of its indices,
(H(N)

X )C ∩ (L(N)
X )C , are not fully polarized. The encoding

procedure goes as follows:

• {uj}j∈I carry information,
• {uj}j∈F are filled with uniformly distributed frozen sym-

bols (shared between the transmitter and the receiver),
• {uj}j∈D are randomly generated according to conditional

probability PUj |U1:j−1(u|u1:j−1).

2For the prime number case, polarization is similar to the binary case. For
composite qX , one needs to use some special types of operations to guarantee
polarization [34]–[37]. We only consider the prime number case in this paper
for simplicity.
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In order for the receiver to decode successfully, [33]
proposed to send part of the almost deterministic symbols,
{uj}

j∈(H(N)
X )C∩(L(N)

X|Y )C , to the receiver with some reliable

error-correcting code separately, the rate of which is shown
to vanish as N goes to infinity.

Having received y1:N and recovered
{uj}

j∈(H(N)
X )C∩(L(N)

X|Y )C , the receiver decodes u1:N with

a successive cancellation decoder (SCD):

ūj =

⎧⎪⎨
⎪⎩

uj , if j ∈ (L(N)
X|Y )C ,

arg maxu∈{0,1},
PUj |Y 1:N U1:j−1 (u|y1:N , u1:j−1) if j ∈ L(N)

X|Y .

The transmission rate of this scheme, R = |I|/N , is shown
to achieve channel capacity [32]

lim
N→∞

R = I(X ; Y ). (29)

IV. PROPOSED POLAR CODING SCHEME

In this paper, we only discuss the case when random
variables X1, X2, U and V all have prime alphabets. Suppose
qX1 = |X1| and qX2 = |X2| are two prime numbers, qU = |U|
is the smallest prime number larger than |X1| · |X2| + 3,
and qV = |V| is the smallest prime number larger than
|X1|2 ·|X2|2+4|X1|·|X2|+3. Consider a random variable tuple
(U, V, X1, X2, Y1, Y2) with joint distribution PUV X1X2Y1Y2

that satisfy (10) and (11). The goal of our proposed scheme
is to achieve every equation in (12)–(17).

Our encoding scheme is illustrated in Fig. 2. Transmitter 1’s
message M1 is split into two parts, M

(1)
1 and M

(2)
1 , carried

by transmitter 1’s and transmitter 2’s signals respectively.
Transmitter 2’s message M2 is split into three parts, a common
message M

(c)
2 intended for both receivers, a private message

M
(p)
2 intended only for receiver 2, and a confidential message

M
(s)
2 intended only for receiver 2 and must be secured from

receiver 1. Details of transmitter 2’s encoding procedure are
as follows. M

(2)
1 and M

(c)
2 are encoded into U1:N first,

M
(p)
2 and M

(s)
2 are then superimposed on (U1:N , X1:N

1 ) and
encoded into V 1:N (known as superposition coding). Finally,
randomness MR is added to V 1:N to generate transmitter 2’s
final codeword X1:N

2 (known as channel prefixing). Note that
X1:N

1 can be seen as the known interference to transmitter 2.
Thus, this superposition coding scheme also involves the idea
of dirty paper coding. In the rest of this section, the rates
of M

(1)
1 , M

(2)
1 , M

(c)
2 , M

(p)
2 and M

(s)
2 will be denoted by

R
(1)
1 , R

(2)
1 , R

(c)
2 , R

(p)
2 and R

(s)
2 , respectively. Notice that in

Theorem 2, R2p is the sum of R
(c)
2 and R

(p)
2 defined here.

The chaining method [38] is a commonly adopted way to
solve the problem unaligned polar indices in multi-user chan-
nels, which is also used in our scheme. Furthermore, we show
that with properly designed chaining schemes, the secrecy
capacity region of the CICC can be achieved with point-
to-point polar codes. In our scheme, m (m ≥ 1) encoding
blocks are chained into a frame, and two receivers decode a
frame in reverse orders. Our scheme is designed in such a way
that receiver 1 (the primary receiver) decodes in the natural

Fig. 2. Our encoding scheme for the CICC.

order (i.e., from block 1 to block m) while receiver 2 (the
secondary receiver) decodes in the reverse order (i.e., from
block m to block 1).

A. Common Message Encoding

Since common messages M
(1)
1 , M

(2)
1 and M

(c)
2 are encoded

into two sequences of random variables, X1:N
1 and U1:N , it is

natural to consider designing a compound MAC polar code
for the two synthetic MACs, P (Y1|X1, U) and P (Y2|X1, U).
This approach requires the use of MAC polarization or rate
splitting which will increase the complexity. Note that there
is no major difference between M

(2)
1 and M

(c)
2 in regard to

the encoding. They only affect the rate allocation between
M1 and M2. Due to this flexibility and the cognitivity of the
channel, cross-transmitter chaining schemes can be designed to
do rate allocation between the two users instead of using MAC
polar codes or rate splitting. For simplicity, define R(c) =
R

(2)
1 + R

(c)
2 . From (12) we have

R
(1)
1 + R(c) ≤ min{I(U, X1; Y1), I(U, X1; Y2)}. (30)

We first show how to achieve (30) in this subsection and
R

(p)
2 +R

(s)
2 = I(U, V ; Y2|X1) in the next subsection, and then

prove in Section V-D that other rate pairs in the achievable rate
region in Theorem 2 can be achieved by adjusting the ratio
between M

(2)
1 and M

(c)
2 .

Let U1:N
1 = X1:N

1 GN and U ′1:N = U1:NGN . Define the
following polarized sets:

H(N)
X1

�
{
j ∈ [N ] : HqX1

(U j
1 |U1:j−1

1 ) ≥ 1 − δN

}
,

L(N)
X1|Y1

�
{
j ∈ [N ] : HqX1

(U j
1 |Y 1:N

1 , U1:j−1
1 ) ≤ δN

}
,

L(N)
X1|Y2

�
{
j ∈ [N ] : HqX1

(U j
1 |Y 1:N

2 , U1:j−1
1 ) ≤ δN

}
,

H(N)
U|X1

�
{
j ∈ [N ] : HqU (U ′j |X1:N

1 , U ′1:j−1) ≥ 1 − δN

}
,

L(N)
U|Y1X1

�
{
j∈ [N ] :HqU (U ′j |Y 1:N

1 , X1:N
1 , U ′1:j−1)≤δN

}
,

L(N)
U|Y2X1

�
{
j∈ [N ] :HqU (U ′j |Y 1:N

2 , X1:N
1 , U ′1:j−1)≤δN

}
.

(31)

Then define the following sets of indices for U1:N
1 :

I(1)
1c = H(N)

X1
∩ L(N)

X1|Y1
,

I(2)
1c = H(N)

X1
∩ L(N)

X1|Y2
,

F1c = H(N)
X1

∩ (L(N)
X1|Y1

)C ∩ (L(N)
X1|Y2

)C
,

D1c =
(H(N)

X1

)C
, (32)

where I(1)
1c and I(2)

1c are the reliable sets for receiver 1 and 2
respectively, F1c is the intersection of two receivers’ frozen
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sets, and D1c is the almost deterministic set. Similarly define

I(1)
2c = H(N)

U|X1
∩ L(N)

U|Y1X1
,

I(2)
2c = H(N)

U|X1
∩ L(N)

U|Y2X1
,

F2c = H(N)
U|X1

∩ (L(N)
U|Y1X1

)C ∩ (L(N)
U|Y2X1

)C
,

D2c =
(H(N)

U|X1

)C
. (33)

for U ′1:N . From (29) we have

lim
N→∞

1
N

|I(1)
1c |= I(X1; Y1), lim

N→∞
1
N

|I(1)
2c |=I(U ; Y1|X1),

lim
N→∞

1
N

|I(2)
1c |= I(X1; Y2), lim

N→∞
1
N

|I(2)
2c |=I(U ; Y2|X1).

(34)

If we design two separate chaining schemes for U1:N and
U ′1:N respectively, it is easy to verify that the achievable
common message rate is

R
(1)
1 + R(c) ≤ min{I(X1; Y1), I(X1; Y2)}

+ min{I(U ; Y1|X1), I(U ; Y2|X1)}. (35)

Such a scheme achieves (30) only in the following two cases:

• (Case 1) I(X1; Y1) ≤ I(X1; Y2) and I(U ; Y1|X1) ≤
I(U ; Y2|X1),

• (Case 2) I(X1; Y1) ≥ I(X1; Y2) and I(U ; Y1|X1) ≥
I(U ; Y2|X1).

In the following two other cases of

• (Case 3) I(X1; Y1) < I(X1; Y2) and I(U ; Y1|X1) >
I(U ; Y2|X1),

• (Case 4) I(X1; Y1) > I(X1; Y2) and I(U ; Y1|X1) <
I(U ; Y2|X1),

the achievable rate in (35) is strictly smaller than that in (30).
In these cases, the chaining scheme should be jointly designed
for U1:N and U ′1:N , which we refer to as cross-transmitter
chaining.

1) Case 1 and Case 2: Since Case 2 is similar to Case 1 by
swapping the roles of two transmitters, we only describe the
chaining scheme in Case 1 for brevity. From (34) we know
that given sufficiently large N , we always have |I(1)

1c | ≤ |I(2)
1c |

and |I(1)
2c | ≤ |I(2)

2c |. Define

I(0)
1c = I(1)

1c ∩ I(2)
1c , I(1a)

1c = I(1)
1c \ I(2)

1c ,

I(0)
2c = I(1)

2c ∩ I(2)
2c , I(1a)

2c = I(1)
2c \ I(2)

2c . (36)

Choose an arbitrary subset I(2a)
1c of I(2)

1c \ I(1)
1c such that

|I(2a)
1c | = |I(1a)

1c |, and an arbitrary subset I(2a)
2c of I(2)

2c \ I(1)
2c

such that |I(2a)
2c | = |I(1a)

2c |. The chaining scheme goes as
follows.

(I) In the 1st block, transmitter 1 encodes its common
message as:

• {uj
1}j∈I(0)

1c ∪I(1a)
1c

store message symbols from M
(1)
1 ,

• {uj
1}j∈(I(0)

1c ∪I(1a)
1c ∪D1c)C carry frozen symbols uniformly

distributed over X1,
• {uj

1}j∈D1c are randomly generated according to condi-
tional probability PUj

1 |U1:j−1
1

(u|u1:j−1
1 ),

and transmitter 2 encodes its common message as:

Fig. 3. The chaining scheme of transmitter k (k = 1, 2) for common
messages in Case 1.

• {u′j}
j∈I(0)

2c ∪I(1a)
2c

store message symbols from M
(2)
1 and

M
(c)
2 ,

• {u′j}
j∈(I(0)

2c ∪I(1a)
2c ∪D2c)C carry frozen symbols uniformly

distributed over U ,
• {u′j}j∈D2c are randomly generated according to condi-

tional probability PU ′j |U ′1:j−1 (u|u′1:j−1).

(II) In the ith (1 < i < m) block, transmitter 1 assigns
{uj

1}j∈I(2a)
1c

with the same value of {uj
1}j∈I(1a)

1c
in block i−1,

and transmitter 2 assigns {u′j}
j∈I(2a)

2c
with the same value of

{u′j}
j∈I(1a)

2c
in block i − 1. The rest of u1:N

1 and u′1:N are
determined in the same way as in (I).

(III) In the mth block, transmitter 1 assigns {uj
1}j∈I(1a)

1c

with frozen symbols uniformly distributed over X1, and trans-
mitter 2 assigns {u′j}

j∈I(1a)
2c

with frozen symbols uniformly

distributed over U . The rest of u1:N
1 and u′1:N are determined

in the same way as in (II).
The chaining scheme in Case 1 is shown

in Fig. 3. After each transmission block, transmitter
1 additionally sends a vanishing fraction of the almost
deterministic symbols, {uj

1}j∈ (H(N)
X1

)C∩(L(N)
X1|Y1

)C and

{uj
1}j∈(H(N)

X1
)C∩(L(N)

X1|Y2
)C , to receiver 1 and 2 respectively

with some reliable error-correcting code. Similarly,
transmitter 2 sends {u′j}

j∈(H(N)
U|X1

)C∩(L(N)
U|Y1X1

)C and

{u′j}
j∈(H(N)

U|X1
)C∩(L(N)

U|Y2X1
)C to the two receivers respectively

after each block. From Section III we know that the rate for
transmitting these symbols vanishes as N increases. Thus,
the cost for these extra transmissions can be made negligible.

Also note that frozen symbols at Fkc ∪ (I(2)
kc \ (I(1)

kc ∪
I(2a)

kc )
)

(k = 1, 2) can be reused since they only need to
be independently and uniformly distributed. Thus, the rate of
frozen symbols which must be shared between transmitters
and receivers can be made negligible as well by reusing them
over sufficient number of blocks. In the secrecy analysis we
will prove that the reuse of frozen symbols does not harm
secrecy.

2) Case 3 and Case 4: Since Case 4 is similar to Case 3 by
swapping the roles of two transmitters, we only describe the
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Fig. 4. The chaining scheme for common messages in Case 3-1.

chaining scheme in Case 3 for brevity. In this case, given
sufficiently large N , we always have |I(1)

1c | ≤ |I(2)
1c | and

|I(1)
2c | ≥ |I(2)

2c |.
If min{I(U, X1; Y1), I(U, X1; Y2)} = I(U, X1; Y1), which

we refer to as Case 3-1, we have |I(2)
1c |−|I(1)

1c | ≥ |I(1)
2c |−|I(2)

2c |
for sufficiently large N . In this case, define I(0)

1c , I(0)
2c , I(1a)

1c

and I(1a)
2c in the same way as in (36), and define

I(2a)
2c = I(2)

2c \ I(1)
2c . (37)

Choose an arbitrary subset I(1b)
2c of I(1a)

2c with |I(1b)
2c | =

|I(1)
2c |−|I(2)

2c |, and an arbitrary subset I(2a)
1c of I(2)

1c \I(1)
1c with

|I(2a)
1c | = |I(1a)

1c |+ |I(1b)
2c |. Let I(2b)

1c be a subset of I(2a)
1c with

the same size as I(1b)
2c . The chaining scheme in Case 3-1 goes

as follows and is illustrated in Fig. 4.
(I) In the 1st block, the encoding procedure is similar to

Case 1, except that {u′j}
j∈I(1b)

2c
of transmitter 2 are filled with

message symbols from M
(1)
1 only, as they will be chained with

transmitter 1’s next encoding block.
(II) In the ith (1 < i < m) block, transmitter 1 assigns

{uj
1}j∈I(2a)

1c \I(2b)
1c

with the same value of {uj
1}j∈I(1a)

1c
in block

i− 1, and {uj
1}j∈I(2b)

1c
with the same value of {u′j}

j∈I(1b)
2c

in

block i − 1, while transmitter 2 assigns {u′j}
j∈I(2a)

2c
with the

same value of {u′j}
j∈I(1a)

2c \I(1b)
2c

in block i − 1. The rest of

u1:N
1 and u′1:N are determined in the same way as in (I).
(III) In the mth block, transmitter 1 assigns {uj

1}j∈I(1a)
1c

with frozen symbols uniformly distributed over X1, and trans-
mitter 2 assigns {u′j}

j∈I(1a)
2c

with frozen symbols uniformly

distributed over U . The rest of u1:N
1 and u′1:N are determined

in the same way as in (II).
Otherwise if min{I(U, X1; Y1), I(U, X1; Y2)} =

I(U, X1; Y2), which we refer to as Case 3-2, we have
|I(2)

1c | − |I(1)
1c | ≤ |I(1)

2c | − |I(2)
2c | given sufficiently large N .

The chaining scheme in this case is similar to that in Fig. 4
with the two transmitters exchanging their roles.

Similar to Case 1, two transmitters send part of their almost
deterministic symbols to the two receivers with some reliable
error-correcting code after each block. Also, transmitter 1’s
frozen symbols at F1c∪

(I(2)
1c \ (I(1)

1c ∪I(2a)
1c )

)
and transmitter

2’s frozen symbols at F2c can be reused over different blocks.

B. Private and Confidential Message Encoding

Since private message M
(p)
2 and confidential message M

(s)
2

are superimposed on (U1:N , X1:N
1 ) by auxiliary random vari-

able V 1:N , we treat (U1:N , X1:N
1 ) as side information when

applying polarization on V 1:N . Let V ′1:N = V 1:NGN and
define

H(N)
V |X1U �

{
j ∈ [N ] : HqV (V ′j |X1:N

1 , U1:N , V ′1:j−1)

≥ 1 − δN

}
,

H(N)
V |Y1X1U �

{
j∈ [N ] :HqV(V ′j |Y 1:N

1 , X1:N
1 , U1:N , V ′1:j−1)

≥ 1 − δN

}
,

L(N)
V |Y2X1U �

{
j∈ [N ] :HqV(V ′j |Y 1:N

2 , X1:N
1 , U1:N , V ′1:j−1)

≤ δN

}
. (38)

Partition the indices of V ′1:N as follows:

I2s = H(N)
V |X1U ∩ L(N)

V |Y2X1U ∩H(N)
V |Y1X1U ,

I2p = H(N)
V |X1U ∩ L(N)

V |Y2X1U ∩ (H(N)
V |Y1X1U

)C
,

F2 = H(N)
V |X1U ∩ (L(N)

V |Y2X1U

)C ∩H(N)
V |Y1X1U ,

R2 = H(N)
V |X1U ∩ (L(N)

V |Y2X1U

)C ∩ (H(N)
V |Y1X1U

)C
,

D2 =
(H(N)

V |X1U

)C
, (39)

where I2s is the reliable and secure set, I2p is the reliable but
insecure set, R2 is the unreliable and insecure set, F2 is the
frozen set, and D2c is the almost deterministic set.

The aim of using the chaining method here is to deal
with the unreliable and insecure set R2. Consider the positive
secrecy rate case (i.e., the right-hand-side of (15) is positive).
In this case, |I2s| > |R2| always holds for sufficiently large N .
Choose a subset I(2)

2s of I2s such that |I(2)
2s | = |R2|. Denote

I(1)
2s = I2s \ I(2)

2s . The chaining scheme for transmitter 2’s
private and confidential messages is also designed in such a
way that receiver 2 decodes from block m to block 1, same
as its decoding order for common messages. Details of the
scheme are as follows and shown in Fig. 5.

(I) In the 1st block,

• {v′j}
j∈I(1)

2s
store confidential message symbols from

M
(s)
2 ,

• {v′j}
j∈I2p∪I(2)

2s ∪R2
carry private message symbols from

M
(p)
2 ,

• {v′j}j∈F2 are filled with frozen symbols uniformly dis-
tributed over V ,

• {v′j}j∈D2 are randomly generated according to condi-
tional probability PV ′j |X1:N

1 U1:N V ′1:j−1 ,

(II) In the ith (1 < i < m) block, {v′j}
i∈I(2)

2s
are assigned

with the same value as {v′j}i∈R2 in the (i − 1)th block, and
the rest of v′1:N are determined in the same way as in (I).
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Fig. 5. The chaining scheme for transmitter 2’s private and confidential
messages.

(III) In the mth block, {v′j}j∈R2 carry some uniformly
distributed random symbols that are shared only between
transmitter 2 and receiver 2 (known as secret seed), and the
rest of v′1:N are determined in the same way as in (II).

The secret seed rate can be made arbitrarily small by
increasing the number of chained blocks in a frame. After
each transmission block, transmitter 2 additionally sends
a vanishing fraction of the almost deterministic symbols,
{v′j}

j∈ (H(N)
V |X1U

)C∩ (L(N)
V |Y2X1U

)C , to receiver 2 secretly with

some reliable error-correcting code. Note that unlike in the
common message encoding, the additional transmission here
must be kept secret from receiver 1. Nevertheless, the rate of
this transmission can be made arbitrarily small by increasing
N . Similar to the common message encoding, frozen symbols
at F2 can also be reused over different blocks.

C. Channel Prefixing

To generate the final codeword X1:N
2 for transmitter 2, one

can transmit (X1:N
1 , U1:N , V 1:N ) through a virtual channel

with transition probability PX2|X1UV . Also, one can consider
X2 and (X1, U, V ) as correlated sources and apply polar
source coding to obtain the final codeword. To design a scheme
that requires the minimum generating rate of randomness,
we take the latter approach in this paper. Let U1:N

2 =
X1:N

2 GN and define

H(N)
X2|X1UV

�
{
j ∈ [N ] : HqX2

(U j
2 |X1:N

1 , U1:N , V 1:N , U1:j−1
2 )

≥ 1 − δN

}
,

H(N)
X2|Y1X1UV

�
{
j ∈ [N ] : HqX2

(U j
2 |Y 1:N

1 , X1:N
1 , U1:N , V 1:N , U1:j−1

2 )

≥ 1 − δN

}
,

L(N)
X2|Y1X1UV

�
{
j ∈ [N ] : HqX2

(U j
2 |Y 1:N

1 , X1:N
1 , U1:N , V 1:N , U1:j−1

2 )

≤ δN

}
. (40)

Let wr be a random sequence uniformly distributed over X2

and of length |H(N)
X2|Y1X1UV |. Once (X1:N

1 , U1:N , V 1:N ) is
determined, X1:N

2 can be obtained as follows:

• {uj
2}j∈H(N)

X2|Y1X1UV

= wr ,

• {uj
2}j∈H(N)

X2|X1UV
\H(N)

X2|Y1X1UV

are filled with random

symbols uniformly distributed over X2,
• {uj

2}j∈(H(N)
X2|X1UV

)C are randomly generated according to

conditional probability PUj
2 |X1:N

1 U1:N V 1:N U1:j−1
2

,
• Compute x1:N

2 = u1:N
2 GN .

An intuitive explanation for why random symbols in
H(N)

X2|Y1X1UV can be reused but not those in H(N)
X2|X1UV \

H(N)
X2|Y1X1UV is that {uj

2}j∈H(N)
X2|Y1X1UV

are very unreliable for

receiver 1, thus reusing them does not harm security. We will
show in the next section that with such a channel prefixing
approach, our proposed scheme can achieve strong secrecy.

D. Decoding

1) Common Message Decoding: We first consider
receiver 1, who decodes from block 1 to block m. Although
we have considered different cases in Section IV-A,
the decoding procedure can be summarized in a unified form
as follows:

(I) In the 1st block, receiver 1 first decodes {uj
1}j∈I(0)

1c ∪I(1a)
1c

with a SCD and obtains an estimate of ū1:N
1 . Then it decodes

{u′j}
j∈I(0)

2c ∪I(1a)
2c

with a SCD, in which ū1:N
1 is treated as side

information, and obtains an estimate of ū′1:N .
(II) In the ith (1 < i < m) block, {ūj

1}j∈I(2a)
1c

and

{ū′j}
j∈I(2a)

2c
are deduced from ū1:N

1 and ū′1:N in block i − 1
according to different cases (see Fig. 3 and Fig. 4), and the
rest are decoded in the same way as in (I).

(III) In the mth block, {ūj
1}j∈I(1a)

1c
and {ūj

1}j∈I(1a)
2c

are
decoded as frozen symbols, and the rest are decoded in the
same way as in (II).

Receiver 2 decodes the common messages similarly, except
that it decodes from block m to block 1.

2) Private and Confidential Messages Decoding: Receiver
2 decodes the private and confidential messages from block
m to block 1 as follows.

(I) In the mth block, receiver 2 decodes {v′j}j∈I2p∪I2s

with û1:N
1 and û′1:N in the same block being treated as side

information, where û1:N
1 and û′1:N are its decoding results of

the common messages, and obtains an estimate of v̂′1:N .
(II) In the ith (1 ≤ i < m) block, {v′j}i∈R2 are deduced

from {v̂′j}
i∈I(2)

2s
in block i + 1, and the rest are decoded in

the same way as in (I).

V. PERFORMANCE ANALYSIS

A. Total Variation Distance

Let Ũ1:N , Ṽ 1:N , X̃1:N
1 , X̃1:N

2 , Ỹ 1:N
1 and Ỹ 1:N

2 be the
vectors generated by our encoding scheme. The follow-
ing lemma shows that the joint distribution of random
variables induced by our encoding scheme is asymptoti-
cally indistinguishable from the target joint distribution of
PU1:N V 1:N X1:N

1 X1:N
2 Y 1:N

1 Y 1:N
2

.
Lemma 1:

‖ PU1:N V 1:N X1:N
1 X1:N

2 Y 1:N
1 Y 1:N

2

−PŨ1:N Ṽ 1:N X̃1:N
1 X̃1:N

2 Ỹ 1:N
1 Ỹ 1:N

2
‖≤ δc

N . (41)
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where δc
N �

√
2 log 2

√
NδN(2 + 2

√
3).

Proof: See Appendix A. �

B. Error Performance

Lemma 2: The error probability of receiver 1 (resp. 2) in
decoding all common messages in a whole frame can be upper
bounded by

Pe1 (resp. P
(c)
e2 ) ≤ O(3m

√
NδN ), (42)

while the error probability of receiver 2 in decoding all private
and confidential messages in a frame can be upper bounded
by

P
(p,s)
e2 ≤ O(m3m

√
NδN). (43)

Proof: See Appendix B. �

C. Secrecy

We first introduce some notations used in this subsection.
In the ith (1 ≤ i ≤ m) block, the outputs of Enc 1, 2a and
2b (see Fig. 2) are denoted by X1,i, Ui and Vi, respectively.
Transmitter 2’s confidential message at I(1)

2s is denoted by Mi,
and private message at I(2)

2s (which is used for chaining) by
Ei. Receiver 1’s channel output is denoted by Y1,i. The addi-
tionally transmitted almost deterministic symbols in U1:N

1 and
U ′1:N are denoted by D1c,i and D2c,i, respectively. The reused
frozen symbols in U1:N

1 , U ′1:N and V ′1:N are denoted by F1c,
F2c and F2p, respectively. The non-reused frozen symbols (see
Fig. 3 and 4) in U1:N

1 in the 1st and mth blocks are denoted
by F11 and F1m respectively, and those in U ′1:N by F21 and
F2m respectively. The reused randomness at H(N)

X2|Y1X1UV in
the channel prefixing scheme is denoted by W . For brevity,
denote F � {F1c, F2c, F11, F1m, F21, F2m, F2p}, Di �
{D1c,i, D2c,i}, M i:m � {Mi, . . . , Mm}, etc.

Lemma 3: For any i ∈ [m], we have

I(Mi, Ei;Y1,i, Di, F ) ≤ O(N2
√

NδN). (44)
Proof: See Appendix C.

�
Lemma 4: For any i ∈ [1, m − 1],

I(W ;Yi:m
1 , Di:m, F |M i:m, Ei)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F |M i+1:m)≤O(N2

√
NδN).

(45)
Proof: See Appendix D. �

Lemma 5: For any i ∈ [1, m − 1], let

Li = I(M i:m, Ei, W ;Yi:m
1 , Di:m, F ). (46)

Then we have

Li − Li+1 ≤ O(N2
√

NδN ). (47)
Proof: See Appendix E. �

Suppose receiver 1 has perfect knowledge of the frozen
symbols in each block. Then the information leakage is

L(N) = I(M1:m;Y1:m
1 , D1:m, F )

≤ I(M1:m, Em, W ;Y1:m
1 , D1:m, F ).

From the proof of Lemma 5 and the fact that receiver
1 has no knowledge about the secret seed we have Lm ≤
O(N5/22−Nβ/2). Thus, by induction hypothesis we have

L(N) ≤
m−1∑
i=1

(
Li − Li+1

)
+ Lm ≤ O(mN2

√
NδN ).

(48)

D. Achievable Rate Region

1) Randomness Rate: Since wr is reused in a frame,
the generating rate of randomness required by our channel
prefixing scheme is

Rr =
1

mN

(|H(N)
X2|Y1X1UV |+m|H(N)

X2|X1UV \H(N)
X2|Y1X1UV |).

(49)

From [39, Lemma 1] we have

lim
N→∞

1
N

|H(N)
X2|Y1X1UV )C \ L(N)

X2|Y1X1UV | = 0. (50)

Then we have

lim
N→∞,m→∞

Rr = lim
N→∞

1
N

|H(N)
X2|X1UV ∩ (H(N)

X2|Y1X1UV )C |

= lim
N→∞

1
N

|H(N)
X2|X1UV ∩ L(N)

X2|Y1X1UV |
= I(X2; Y1|U, V, X1). (51)

Thus, (17) is achievable with our proposed scheme.
2) Private and Confidential Message Rates: From Fig. 5

we can see that the private and confidential message rates in
our proposed scheme are

R
(p)
2 =

1
N

(|I2p| + |R2|
)
, R

(s)
2 =

1
N

|I(1)
2s |, (52)

respectively. By a similar analysis to the general wiretap polar
code [24], we have

lim
N→∞

R
(p)
2 = I(V ; Y1|U, X1), (53)

lim
N→∞

R
(s)
2 = I(V ; Y2|U, X1) − I(V ; Y1|U, X1). (54)

Thus, (15) is achieved. Since the difference between trans-
mitter 2’s private message and the randomness required
by the encoder is just whether it carries information [9],
from (51), (53) and the Markov chain of (11) we can see
that (16) is achieved.

3) Common Message Rate: We first consider Case 1. In this
case, the common message rates of the two transmitters in our
proposed scheme are

R
(1)
1 =

m|I(0)
1c | + (m − 1)|I(1a)

1c |
mN

=
|I(1)

1c |
N

− |I(1a)
1c |

mN
,

R(c) =
m|I(0)

2c | + (m − 1)|I(1a)
2c |

mN
=

|I(1)
2c |
N

− |I(1a)
2c |

mN
, (55)

respectively. From (34) we have

lim
N→∞,m→∞

R
(1)
1 = I(X1; Y1),

lim
N→∞,m→∞

R(c) = I(U ; Y1|X1). (56)
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Since min{I(U, X1; Y1), I(U, X1; Y2)} = I(U, X1; Y1) in this
case, if we allocate all of R(c) to transmitter 1’s message,
then (12) is achieved. No matter how we allocate two transmit-
ters’ common messages, the sum rate of all messages always
achieves (14).

To prove the achievability of (13) in Case 1 requires some
changes in the coding scheme. If we wish to maximize the
sum rate of private and confidential messages, transmitter 2
will not help transmit M1 at all. Therefore, whether receiver 1
can decode U does not matter. Then transmitter 2 can use
all of I(2)

2c to transmit its own message at any rate below
I(U ; Y2|X1) (now this message becomes private message).
Then from (53) and (54) we can see that (13) is achieved.

Another thing worth noting is that, in the above case,
in order for both receivers to decode transmitter 1’s message,
R1 ≤ min{I(X1; Y1), I(X1; Y2)} must hold. Then the sum
rate of all messages satisfies

R1 + R2p + R2s ≤ min{I(X1; Y1), I(X1; Y2)}
+ I(U, V ; Y2|X1),

which may seem to violate (14). However, since U in fact
carries private message in this case, it is equivalent to remove
auxiliary random variable U and simply design a code on V .
We can also see this problem from the mutual information
aspect. Due to the Markov chains of (10) and (11), we have

I(U, V ; Y2|X1) = I(V ; Y2|X1) + I(U ; Y2|V, X1)
= I(V ; Y2|X1).

With auxiliary random variable U being removed, we can
readily see that (14) still holds.

Next we consider Case 3-1. In this case, R
(1)
1 and R(c)

are the same as in Case 1, thus (12) and (14) are achievable.
As we have explained in Section IV-A.2, {u′j}

j∈I(1b)
2c

must
be assigned to transmitter 1’s common message. Thus, in this
case,

R
(c)
2 ≤ I(U ; Y1|X1) −

(
I(U ; Y1|X1) − I(U ; Y2|X1)

)
= I(U ; Y2|X1). (57)

Then from (53), (54) and (57) we can see that (13) is
achieved (R2p in Theorem 2 is the sum of R

(c)
2 and R

(p)
2

here).
Since Case 2 (resp. 4) is similar to Case 1 (resp. 3), and

Case 3-2 is similar to Case 3-1, we can now conclude that
our proposed scheme achieves the whole region in Theorem 2
under the strong secrecy criterion with randomness constraint.

VI. DISCUSSION

Although our proposed polar coding scheme is designed
under secrecy constraints, it can be readily modified for the
case without secrecy and achieve the capacity region of the
CIC given by [8, Th. 4], since the capacity region is just a
special case of the capacity-equivocation region when secrecy
constraints are removed.

We note some relations between our work and [22], which
considers polar coding for the broadcast channel with con-
fidential messages. From Theorem 2 and [22, Th. 1] we

can see that the rate region in [22, Th. 1] is a special case
of that in Theorem 2 when transmitter 1 is removed. Also,
as shown in [8], the region defined in Theorem 1 reduces to
the capacity region of the MAC with degraded message sets
if we set Y1 = Y2. Thus, our proposed scheme can be seen
as a general solution for the aforementioned multi-user polar
coding problems.

APPENDIX A
PROOF OF LEMMA 1

Similar to the proof of [22, Lemma 5], we have

D(PX1:N
1

||PX̃1:N
1

) ≤ NδN ,

D(PU1:N X1:N
1

||PŨ1:N X̃1:N
1

) ≤ 2NδN ,

D(PU1:N V 1:N X1:N
1

||PŨ1:N Ṽ 1:N X̃1:N
1

) ≤ 3NδN ,

D(PX1:N
2 V 1:N ||PX̃1:N

2 Ṽ 1:N ) ≤ 4NδN .

Then we have

‖ PU1:N V 1:N X1:N
1 X1:N

2 Y 1:N
1 Y 1:N

2

−PŨ1:N Ṽ 1:N X̃1:N
1 X̃1:N

2 Ỹ 1:N
1 Ỹ 1:N

2
‖

= ‖ PX1:N
2 |V 1:N PU1:N V 1:N X1:N

1

−PX̃1:N
2 |Ṽ 1:N PŨ1:N Ṽ 1:N X̃1:N

1
‖ (58)

≤ ‖ PX1:N
2 |V 1:N PU1:N V 1:N X1:N

1

−PX̃1:N
2 |Ṽ 1:N PU1:N V 1:N X1:N

1
‖

+ ‖ PX̃1:N
2 |Ṽ 1:N PU1:N V 1:N X1:N

1

−PX̃1:N
2 |Ṽ 1:N PŨ1:N Ṽ 1:N X̃1:N

1
‖ (59)

= ‖ PX1:N
2 |V 1:N PV 1:N − PX̃1:N

2 |Ṽ 1:N PV 1:N ‖
+ ‖ PU1:N V 1:N X1:N

1
− PŨ1:N Ṽ 1:N X̃1:N

1
‖ (60)

≤ ‖ PX1:N
2 V 1:N − PX̃1:N

2 Ṽ 1:N ‖
+ ‖ PX̃1:N

2 Ṽ 1:N − PX̃1:N
2 |Ṽ 1:N PV 1:N ‖

+ ‖ PU1:N V 1:N X1:N
1

− PŨ1:N Ṽ 1:N X̃1:N
1

‖ (61)

≤ ‖ PX1:N
2 V 1:N − PX̃1:N

2 Ṽ 1:N ‖ + ‖ PV 1:N − PṼ 1:N ‖
+ ‖ PU1:N V 1:N X1:N

1
− PŨ1:N Ṽ 1:N X̃1:N

1
‖ (62)

≤
√

2 log 2
√

NδN (2 + 2
√

3), (63)

where (58), (60) and (62) hold by [40, Lemma 17], and (59)
and (61) hold by the triangle inequality.

APPENDIX B
PROOF OF LEMMA 2

Denote receiver 1’s error probability when decoding mes-
sage M

(1)
1 in block i by P

(1)
e1,i, and that when decoding

(M (2)
1 , M

(c)
2 ) by P

(2)
e1,i. For i = [2, m], define the following

error events

EX1Y1,i � {(X1:N
1 Y 1:N

1 ) �= (X̃1:N
1 Ỹ 1:N

1 )i},
Ech

X1,i−1 � {(Ū chaining
1 )i−1 �= (Ũ chaining

1 )i−1},
Ech

U,i−1 � {(Ū ′chaining)i−1 �= (Ũ ′chaining)i−1},
EX1,i � {(X̄1:N

1 )i �= (X̃1:N
1 )i},

Ei � EX1Y1,i ∪ Ech
X1,i−1 ∪ Ech

U,i−1,

E ′
i � EX1Y1,i ∪ Ech

X1,i−1 ∪ Ech
U,i−1 ∪ EX1,i,
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where (·)i denotes vectors in block i, Ū denotes the decoding
result of U , and “chaining” in the superscript stands for
the elements used for chaining. Using optimal coupling [41,
Lemma 3.6] we have

P [EX1Y1,i] =‖ PX1:N
1 Y 1:N

1
− PX̃1:N

1 Ỹ 1:N
1

‖ .

Then we have

P
(1)
e1,i ≤ P [(X̄1:N

1 )i �= (X̃1:N
1 )i]

= P [(X̄1:N
1 )i �= (X̃1:N

1 )i|Ei]P [Ei]
+P [(X̄1:N

1 )i �= (X̃1:N
1 )i|EC

i ]P [EC
i ]

≤ P [Ei] + P [(X̄1:N
1 )i �= (X̃1:N

1 )i|EC
i ]

≤ P (EX1Y1,i) + P (Ech
X1,i−1) + P (Ech

U,i−1)

+P [(X̄1:N
1 )i �= (X̃1:N

1 )i|EC
i ]

≤ δc
N + NδN + P [(X̄1:N

1 )i−1 �= (X̃1:N
1 )i−1]

+P [(Ū1:N)i−1 �= (Ũ1:N )i−1], (64)

where (64) holds from (63) and the error probability of source
polar coding [42]. Similarly we have

P
(2)
e1,i ≤ P [(Ū1:N )i �= (Ũ1:N )i]

≤ P (EX1Y1,i) + P (Ech
X1,i−1) + P (Ech

U,i−1) + P (EX1,i)

+P [(Ū1:N )i �= (Ũ1:N )i|E ′C
i ]

≤ δc
N + NδN + P [(X̄1:N

1 )i−1 �= (X̃1:N
1 )i−1]

+P [(Ū1:N )i−1 �=(Ũ1:N )i−1]+P [(X̄1:N
1 )i �=(X̃1:N

1 )i].
(65)

From (64) and (65) we have

P [(X̄1:N
1 )i �= (X̃1:N

1 )i] + P [(Ū1:N )i �= (Ũ1:N )i]

≤ 3
(
δc
N + NδN + P [(X̄1:N

1 )i−1 �= (X̃1:N
1 )i−1]

+ P [(Ū1:N)i−1 �= (Ũ1:N)i−1]
)
,

By induction we have

P [(X̄1:N
1 )i �= (X̃1:N

1 )i] + P [(Ū1:N)i �= (Ũ1:N )i]

≤
i−1∑
k=1

3k(δc
N + NδN ) + 3i−1P [(X̄1:N

1 )1 �= (X̃1:N
1 )1]

+3i−1P [(Ū1:N)1 �= (Ũ1:N)1]. (66)

From the above analysis and the assumption that receivers
have perfect knowledge of frozen symbols we have

P [(X̄1:N
1 )1 �= (X̃1:N

1 )1] + P [(Ū1:N)1 �= (Ũ1:N )1]
≤ 3(δc

N + NδN ).

Thus, the overall error probability of receiver 1 in a frame can
be upper bounded by

Pe1 ≤
m∑

k=1

(
P

(1)
e1,k + P

(2)
e1,k

)

≤
m∑

i′=1

i′∑
k=1

3k(δc
N + NδN )

= O(3m
√

NδN ). (67)

For receiver 2, the error probability of decoding common
messages in a frame can be similarly upper bounded by

P
(c)
e2 ≤ O(3m

√
NδN ). (68)

To estimate receiver 2’s error probability in decoding its
private and confidential messages in block i, P

(p,s)
e2,i , we define

the following error events:

EUV X1Y2,i � {(U1:NX1:N
1 V 1:NY 1:N

2 )
�= (Ũ1:N X̃1:N

1 Ṽ 1:N Ỹ 1:N
2 )i},

EU,i � {(Ū1:N)i �= (Ũ1:N )i},
EX1,i � {(X̄1:N

1 )i �= (X̃1:N
1 )i},

EV,i+1 � {(V̄ 1:N)i+1 �= (Ṽ 1:N )i+1},
Ei � EUV X1Y2,i ∪ EU,i ∪ EX1,i ∪ EV,i+1.

Using optimal coupling [41, Lemma 3.6] we have

P [EUV X1Y2,i]
=‖ PU1:N V 1:N X1:N

1 Y 1:N
1

− PŨ1:N Ṽ 1:N X̃1:N
1 Ỹ 1:N

1
‖ .

Similar to the analysis for common message decoding,
P

(p,s)
e2,i can be upper bounded by

P
(p,s)
e2,i ≤ P [EV,i]

≤ δc
N + NδN + P [EU,i] + P [EX1,i] + P [EV,i+1]

≤
m∑

k=i

(3m−k + 1)(δc
N + NδN ) + P [EV,i+1].

By induction and the counterpart of (66) for receiver 2 we
have

P
(p,s)
e2,i ≤ ∑m

i′=i

∑m
k=i′ (3

m−k + 1)(δc
N + NδN )). (69)

Then

P
(p,s)
e2 ≤

m∑
k=1

P
(p,s)
e2,k = O(m3m

√
NδN ). (70)

APPENDIX C
PROOF OF LEMMA 3

Let t = |I2s| + |I2p| and w = |F2|. Denote
{a1, a2, . . . , at} = I2s with a1 < . . . < at, {b1, b2, . . . , bw} =
F2 with b1 < . . . < bw, and {c1, c2, . . . , ct+w} =
{a1, . . . , at, b1, . . . , bw} with c1 < . . . < ct+w. Let Fc be
short for {F1c, F2c, F11, F1m, F21, F2m}. Then we have

I(Mi, Ei;Y1,i, Di, F )
= HqV (Mi, Ei) − HqV (Mi, Ei|Y1,i, Di, F )
= HqV (Mi, Ei) − HqV (Mi, Ei, F2p|Y1,i, Di, Fc)

+ HqV (F2p|Y1,i, Di, Fc)
≤ t + w − HqV (Mi, Ei, F2p|Y1,i,X1,i,Ui) (71)

= t + w −
t+w∑
j=1

HqV (Ṽ ′cj |Ỹ 1:N
1 , X̃1:N

1 , Ũ1:N , Ṽ ′{c1,...,cj−1})

≤
t+w∑
j=1

(
1 − HqV (Ṽ ′cj |Ỹ 1:N

1 , X̃1:N
1 , Ũ1:N , Ṽ ′1:cj−1)

)
, (72)
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where (71) holds because

HqV (Mi, Ei) ≤ t, HqV (F2p|Y1,i, Di, Fc) ≤ w,

and

HqV (Mi, Ei, F2p|Y1,i, Di, Fc)
≥ HqV (Mi, Ei, F2p|Y1,i,X1,i,Ui), (73)

which is shown in more details as follows. For i = 1,

HqV (Mi, Ei, F2p|Y1,i, Di, Fc)
= HqV (Mi, Ei, F2p|Y1,i, Di, F1c, F2c, F11, F21)

because (F1m, F2m) is independent of the rest items in the
left-hand-side of (73). Similarly, for i = m, we have

HqV (Mi, Ei, F2p|Y1,i, Di, Fc)
= HqV (Mi, Ei, F2p|Y1,i, Di, F1c, F2c, F1m, F2m).

For 1 < i < m, we have

HqV (Mi, Ei, F2p|Y1,i, Di, Fc)
= HqV (Mi, Ei, F2p|Y1,i, Di, F1c, F2c)

Thus, (73) always holds.
Note that the entropies above are calculated under the

induced distribution by the encoding scheme. Under the target
distribution PU1:N V 1:N X1:N

1 Y 1:N
1

, from (39) we have

HqV (V ′cj |Y 1:N
1 , X1:N

1 , U1:N , V ′1:cj−1) ≥ 1 − δN . (74)

From [43, Theorem 17.3.3] we have

|HqV (Ṽ ′cj |Ỹ 1:N
1 , X̃1:N

1 , Ũ1:N , Ṽ ′1:cj−1)
−HqV (V ′cj |Y 1:N

1 , X1:N
1 , U1:N , V ′1:cj−1)|

≤ ‖ PU1:N V 1:N X1:N
1 Y 1:N

1
− PŨ1:N Ṽ 1:N X̃1:N

1 Ỹ 1:N
1

‖

× log
|U|N |V|N |X1|N |Y1|N

‖ PU1:N V 1:N X1:N
1 Y 1:N

1
− PŨ1:N Ṽ 1:N X̃1:N

1 Ỹ 1:N
1

‖
= O(N

√
NδN ). (75)

From (72), (74) and (75) we have

I(Mi, Ei;Y1,i, Di, F ) ≤ O(N2
√

NδN). (76)

APPENDIX D
PROOF OF LEMMA 4

To prove Lemma 4, we first prove the following two
lemmas.

Lemma 6: For any i ∈ [1, m],

I(Ei; W |Yi:m
1 , Di:m, M i:m) ≤ O(N2

√
NδN ). (77)

Proof: Since Ei is independent of
(Yi+1:m

1 , Di+1:m, M i+1:m), we have

I(Ei; W |Yi:m
1 , Di:m, M i:m)

= I(Ei; W |Y1,i, Di, Mi)
= HqX2

(W |Y1,i, Di, Mi) − HqX2
(W |Y1,i, Di, Mi, Ei)

≤ HqX2
(W ) − HqX2

(W |Y1,i,X1,i,Ui,Vi).

Then we can prove (77) similar to the proof of Lemma 3.
�

Lemma 7: For any i ∈ [1, m − 1],

I(Y1,i, Di, F, Mi, Ei;Yi+1:m
1 , Di+1:m, M i+1:m|W )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m)

−I(Y1,i, Di, F, Mi, Ei;Yi+1:m
1 , Di+1:m, M i+1:m)

+I(W ;Yi+1:m
1 , Di+1:m, M i+1:m)

≤ O(N2
√

NδN).
Proof:

I(Y1,i, Di, F, Mi, Ei;Yi+1:m
1 , Di+1:m, M i+1:m|W )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m)

≤I(Y1,i, Di, F, Mi, Ei, Ei+1;Yi+1:m
1 , Di+1:m, M i+1:m|W )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m)

= I(Y1,i, Di, Mi, Ei;Yi+1:m
1 , Di+1:m, M i+1:m|W, F, Ei+1)

+I(F, Ei+1;Yi+1:m
1 , Di+1:m, M i+1:m|W )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m)

= I(F, Ei+1;Yi+1:m
1 , Di+1:m, M i+1:m, W )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m) (78)

= I(F, Ei+1;Yi+1:m
1 , Di+1:m, M i+1:m)

+I(F, Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1, W ; F |Yi+1:m
1 , Di+1:m, M i+1:m)

= I(F ;Yi+1:m
1 , Di+1:m, M i+1:m|Ei+1)

−I(W ;Yi+1:m
1 , Di+1:m, M i+1:m|Ei+1)

+I(F, Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1, W ; F |Yi+1:m
1 , Di+1:m, M i+1:m)

= I(F ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1)

−I(W ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1)

+I(F, Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1, W ; F |Yi+1:m
1 , Di+1:m, M i+1:m) (79)

= I(F ;Yi+1:m
1 , Di+1:m, M i+1:m)

+I(F ; Ei+1|Yi+1:m
1 , Di+1:m, M i+1:m)

−I(W ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1)

+I(F, Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1, W ; F |Yi+1:m
1 , Di+1:m, M i+1:m)

= I(F ;Yi+1:m
1 , Di+1:m, M i+1:m)

−I(W ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1)

+I(Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

−I(Ei+1; F |Yi+1:m
1 , Di+1:m, M i+1:m) (80)

≤ I(F ;Yi+1:m
1 , Di+1:m, M i+1:m)

−I(W ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1),

+I(Ei+1; W |Yi+1:m
1 , Di+1:m, M i+1:m)

where (78) holds because block i and the next m − i blocks
are independent conditioned on (W, F, Ei+1) and W is inde-
pendent of (F, Ei+1), (79) and (80) hold because Ei+1 and
(F, W ) are independent.

Since

I(F ;Yi+1:m
1 , Di+1:m, M i+1:m)

≤ I(Y1,i, Di, F, Mi, Ei;Yi+1:m
1 , Di+1:m, M i+1:m)

and

I(W ;Yi+1:m
1 , Di+1:m, M i+1:m, Ei+1)

≥ I(W ;Yi+1:m
1 , Di+1:m, M i+1:m),

by Lemma 6 we can readily prove Lemma 7. �
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Now we can prove Lemma 4. Since W , Mi and Ei are
independent of one another, we have

I(W ;Yi:m
1 , Di:m, F |M i:m, Ei)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F |M i+1:m)

= I(W ;Yi:m
1 , Di:m, F, M i:m, Ei)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F, M i+1:m)

= I(W ;Y1,i, Di, F, Mi, Ei)
+I(W ;Yi+1:m

1 , Di+1:m, M i+1:m|Y1,i, Di, F, Mi, Ei)
−I(Ei+1, W ;Yi+1:m

1 , Di+1:m, F, M i+1:m)
= I(W ;Y1,i,Di, F,Mi, Ei)+I(W ;Yi+1:m

1 ,Di+1:m,M i+1:m)
+I(Y1,i, Di, F, Mi, Ei;Yi+1:m

1 , Di+1:m, M i+1:m|W )
−I(Y1,i, Di, F, Mi, Ei;Yi+1:m

1 , Di+1:m, M i+1:m)
−I(Ei+1, W ;Yi+1:m

1 , Di+1:m, F, M i+1:m)

≤ I(W ;Y1,i, Di, F, Mi, Ei) + O(N5/22−Nβ/2), (81)

where (81) holds due to Lemma 7. Similarly to the proof of
Lemma 3, we have

I(W ;Y1,i, Di, F, Mi, Ei) ≤ I(W ;Y1,i,X1,i,Ui,Vi)

≤ O(N2
√

NδN ).

This proves Lemma 4.

APPENDIX E
PROOF OF LEMMA 5

Li − Li+1

= I(Mi, Ei, W ;Yi:m
1 , Di:m, F |M i+1:m)

+I(M i+1:m;Y1,i, Di|Yi+1:m
1 , Di+1:m, F )

+I(M i+1:m;Yi+1:m
1 , Di+1:m, F )

−I(M i+1:m, Ei+1, W ;Yi+1:m
1 , Di+1:m, F )

= I(Mi, Ei, W ;Yi:m
1 , Di:m, F |M i+1:m)

+I(M i+1:m;Y1,i, Di|Yi+1:m
1 , Di+1:m, F )

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F |M i+1:m)

= I(Mi, Ei, W ;Yi:m
1 , Di:m, F |M i+1:m)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F |M i+1:m) (82)

= I(Mi, Ei;Yi:m
1 , Di:m, F |M i+1:m)

+I(W ;Yi:m
1 , Di:m, F |M i:m, Ei)

−I(Ei+1, W ;Yi+1:m
1 , Di+1:m, F |M i+1:m)

= I(Mi, Ei;Y1,i, Di, F |M i+1:m)
+I(W ;Yi:m

1 , Di:m, F |M i:m, Ei)
+I(Mi, Ei;Yi+1:m

1 , Di+1:m|M i+1:m,Y1,i, Di, F )
−I(Ei+1, W ;Yi+1:m

1 , Di+1:m, F |M i+1:m)
= I(Mi, Ei;Y1,i, Di, F ) + I(W ;Yi:m

1 , Di:m, F |M i:m, Ei)
−I(Ei+1, W ;Yi+1:m

1 , Di+1:m, F |M i+1:m), (83)

where (82) holds due to the independence between
M i+1:m and (Y1,i, Di), and (83) holds because (Mi, Ei)
and (Yi+1:m

1 , Di+1:m) are independent, and M i+1:m is
independent of both (Mi, Ei) and (Y1,i, Di, F ), thus

I(Mi, Ei;Y1,i, Di, F |M i+1:m) = I(Mi, Ei;Y1,i, Di, F ).
Then by Lemma 3 and 4 we have

Li − Li+1 ≤ O(N2
√

NδN ). (84)
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