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On Sampling in Shift Invariant Spaces

Wen Chen, Shuichi Itoh, Member, IEEE, and Junji Shiki

Abstract—In this correspondence, a necessary and sufficient condition
for sampling in the general framework of shift-invariant spaces is derived.
Then this result is applied, respectively, to the regular sampling and the per-
turbation of regular sampling in shift-invariant spaces. A simple necessary
and sufficient condition for regular sampling in shift-invariant spaces is at-
tained. Furthermore, an improved estimate for the perturbation is derived
for the perturbation of regular sampling in shift-invariant spaces. The de-
rived estimate is easy to calculate, and shown to be optimal in some shift-in-
variant spaces. The algorithm to calculate the reconstruction frame is also
presented in this correspondence.

Index Terms—Frame, generator, irregular sampling, sampling, shift-in-
variant space, Zak transform.

I. INTRODUCTION AND PRELIMINARIES

In digital signal and image processing and digital communications, a
continuous signal is usually represented and processed by using its dis-
crete samples. Then a fundamental problem is how to represent a con-
tinuous signal in terms of a discrete sequence. For a band-limited signal
of finite energy, it is completely characterized by its samples, by the fa-
mous classicalShannon sampling theorem. Observing that the Shannon
functionsinc =

sin �(�)
�(�)

is, in fact, ascaling functionof amultiresolu-
tion analysis(MRA) [11], Walter [19] first extended Shannon sampling
theorem to the setting ofwavelet subspaces. Following Walter’s work
[19], Janssen [13] studied the so-calledshift samplingin wavelet sub-
spaces by using theZak transform, which can cover some extra cases
of Walter’s result. Walter [20], Xia [22], and the authors of [7], [8]
also studied theoversamplingprocedure in wavelet subspaces. On the
other hand, Aldroubi and Unser [1]–[3], [18] studied the sampling pro-
cedure inshift-invariant spaces. Chen and Itoh [9] improved the works
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of Walter [19], and Aldroubi and Unser [3], and found a necessary and
sufficient condition for sampling in shift-invariant spaces.

However, in many real applications, sampling points are not always
measured regularly. Sometimes the sampling steps need to be fluctu-
ated according to the signals so as to reduce the number of samples
and computational complexity. There are also many cases where unde-
sirable jitter exists in sampling instants. Some communication systems
may suffer from random delay due to channel traffic congestion and
encoding delay. In such cases, the system will become more efficient
when a perturbation factor is considered. For the band-limited signals
of finite energy, a generalization of the Shannon sampling theorem,
known asKadec’s theorem[24], can be used. Following the work on
sampling in wavelet subspaces, Liu and Walter [16], Liu [15], and the
authors [4] tried to extend Kadec’s theorem to a class of wavelet sub-
spaces. But they actually did not get a real extension of Kadec’s the-
orem. Then the authors [6] introduced a function classL��[a; b] (� > 0,
� 2 [0; 1), and0 2 [a; b] � [�1; 1]), a normk � kL [a; b] of L��[a; b],
and found an algorithm to treat the perturbation of regular sampling in
wavelet subspaces as follows. Some notations used in the theorem will
be defined in the next sections.

Theorem 1 [6]: Suppose that' is a continuous scaling function of
an MRAfVmgm in L��[a; b]. If ' = O((1+ j � j)�s) for somes > 1,
and the Zak transformZ'(�; �) 6= 0, then there is anr�;' 2 (0; 1]
such that for any scalar sequencefrkgk � [�r�; '; r�;'] \ [a; b],
there is a Riesz basis1fS�; kgk of V0 such that

f =
k

f(k + � + rk)S�;k (1)

holds inL2(R) for anyf 2 V0 if

r�;' <
kZ'(�; �)G'k0kZ'(�; �)=G'k0

kq'(�; �)kL [a;b]

1=�

: (2)

Apply the theorem to calculating theB-spline of degree1

N1(t) = t�[0;1) + (2� t)�[1;2)

where�[0;1) is the characteristic function of the interval[0; 1), so is
�[1;2). From (2), we get the estimater0;N < 1=(2

p
3) whenrk � 0

(or rk � 0) for all k 2 Z. But Liu and Walter [16] showed that the
estimater0;N < 1=2 is optimal for B-spline of degree1. This implies
that the authors’ result [6] is not optimal.

Our objective in this correspondence is to find a necessary and suf-
ficient condition for general nonuniform sampling in shift-invariant
spaces by using theframe theory. By applying the results, respectively,
to regular sampling and perturbation of regular sampling in shift-in-
variant spaces, we try to find the optimal criterion for conducting reg-
ular sampling and perturbation of regular sampling in shift-invariant
spaces. Fortunately, for regular sampling in shift-invariant spaces, a
simple necessary and sufficient condition is found; for perturbation of
regular sampling, improved estimates for the perturbation are derived.
By applying the new estimate to the B-spline of degree1, we derive the
optimal estimater0;N < 1=2 whenrk � 0 (or rk � 0) for all k 2 Z.

1A sequence of vectorsfx g in an infinite-dimensional Banach spaceX is
said to be aSchauder basisforX if to each vectorx in the space corresponds a
unique sequence of scalarsfc g such thatx = c x . The conver-
gence of the series is understood to be with respect to the strong (norm) topology
of X ; in other words,kx � x k ! 0 asm; n ! 1. A Shauder
basis for aHilbert spaceis a Riesz basisif it is equivalent to an orthonormal
basis, that is, if it is obtained from an orthonormal basis by means of a bounded
invertible operator (see Young [24]).

Let us now simply introduce the frame theory [24]. A function se-
quencefSngn � H is called aframeof a subspaceH of L2(R) if
there is a constantC � 1 such that

C
�1kfk2 �

n

jhf; Snij
2 � Ckfk2 (3)

holds for anyf 2 H . A frame that ceases to be a frame when any one
of its element is removed is said to be anexact frame. An exact frame
is aRiesz basis. Obviously, a Riesz basis is also a frame. For any frame
fSngn ofH , there exists a so-calleddual framef ~Sngn � H such that

f =
n

hf; ~SniSn =
n

hf; Sni ~Sn (4)

holds inL2(R) for anyf 2 H . Take a linear operatorT onH defined
by

T (f) =
n

hf; SniSn:

Then the operatorT is bounded, self-conjugate, and invertible due to
the fact

hT (f); fi =
k

jhf; Snij
2

and the inequality (3). It is easy to see that the function sequence
fT�1(Sn)gn is a dual frame of the framefSngn. ThisT is called a
frame transformof the framefSngn. The scalar sequencefhf; Snign
is called amoment sequenceof the functionf to the framefSngn. Let
f = n cnSn. If the scalar sequencefcngn is a moment sequence
of a function to the framefSngn, then it must becn = hT�1(f); Sni
for anyn 2 Z. This follows from the fact thatcn = hh; Sni for some
functionh 2 H , and inL2(R)

T
�1(f) =

n

hh; SniT
�1(Sn) = h:

Following are some notations used in this correspondence. For two
measurable functionsf andg on the real lineR, let

hf; gi =
R

f(t)g(t)dt

kfk = hf; fi

kfk� =
2�

0

jf(t)j2 dt

1=2

kfk1 =ess sup jf j

kfk0 =ess inf jf j:

II. GENERAL SAMPLING IN SHIFT-INVARIANT SPACES

For a' 2 L2(R), theshift-invariant space[3], [12], [14] considered
in this correspondence takes

V (') =
k

ck'(� � k)jfckgk 2 l
2 � L

2(R): (5)

The' is called ageneratorof V ('). In general, the function sequence
f'(��k)gk is not a Riesz basis ofV ('). In fact, the function sequence
f'(� � k)gk is a Riesz basis ofV (') if and only if

0 < kG'k0 � kG'k1 <1

whereG' = k j'̂(�+ 2k�)j2, and'̂ is theFourier transformof '
defined by

'̂ =
R

'(t) exp(�it�) dt:
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In this case, the generator is calledstable. Moreover, the function se-
quencef'(� � k)gk is an orthonormal basis ofV (') if and only if
G'(!) = 1 (a.e.).

It is easy to see that the stable shift-invariant spaceV (sinc) is ex-
actly the collection of all�-band signals of finite energy. Sampling
in V (sinc) is exactly the classical Shannon sampling theory for the
band-limited signals of finite energy. Hereafter, we will study the sam-
pling procedure inV (') for a general continuous stable generator' 2
L2(R). We also need' = O((1+ j � j)�s) for somes > 1=2. For any
f 2 V ('), there is afckgk 2 l2 such thatf = k ck'(� � k) in
L2(R). Since

k

ck'(� � k)

2

�
k

jckj2
k

j'(� � k)j2

the series k ck'(��k)point-wise converges to a continuous function
in V ('). Without loss of generality, we can take anyf 2 V (') as a
continuous function.

When we try to find an algorithm to reconstruct a continuous signal
f 2 V (') by using its discrete samplesff(tk)gk, obviously the sam-
ples cannot be arbitrary; that is, some constraints should be imposed
on the sampling pointsftkgk or the samplesff(tk)gk. The weaker
the constraints are the better the reconstruction method is evaluated.
Our objective in this section is to find a necessary and sufficient con-
dition on the samplesff(tk)gk such that a reconstruction formula like
(1) holds. The result is formulated in the following theorem.

Theorem 2: Suppose that a continuous stable generator' is such
that' = O((1 + j � j)�s) for somes > 1=2. Then there is a frame
fSngn of V (') such thatff(tn)gn is a moment sequence to the frame
fSngn and

f =
n

f(tn)Sn (6)

holds inL2(R) for any f 2 V (') if and only if there is a constant
C � 1 such that

C�1kfk2 �
n

jf(tn)j2 � Ckfk2 (7)

holds for anyf 2 V (').
Proof:

Sufficiency.
SinceG�1' 2 L2[0; 2�] is a2�-periodic function, we can assume

G�1' (!) =
k

gke
�ik!

in L2(R) with scalar sequencefgkg 2 l2. Define in L2(R) by

 ̂ = '̂G�1' :

Then we have

 =
k

gk'(� � k) 2 V (')

in L2(R). The fact' = O((1 + j � j)�s) for somes > 1=2 shows
that can be chosen to be continuous. Moreover, the formula =

k gk'(� � k) also pointwise holds. Giventn 2 R, we have

k

j (tn � k)j2
1=2

=
1p
2�

k

 (tn � k)eik!

�

=
1p
2�

k l

gl'(tn � k � l)eik!

�

=
1p
2�

l

gle
�il!

k

'(tn � k � l)ei(k+l)!

�

=
1p
2�

G�1
' (!)

k

'(tn � k)eik!

�

� 1p
2�

G�1
' (!)

1

k

'(tn � k)eik!

�

= G�1
' (!)

1

k

j'(tn � k)j2
1=2

:

Therefore,f (tn � k)gk 2 l2 due to' = O((1 + j � j)�s) for some
s > 1=2. Let

q'(tn; �) =
k

 (tn � k)'(� � k): (8)

Thenq'(tn; �) is continuous inV ('). For any functionf 2 V ('),
there is a scalar sequencefckgk 2 l2 such thatf = k ck'(� � k)
holds inL2(R). Following the Parseval identity, we derive

hf; q'(tn; �)i

=
1

2�
f̂ ; q̂'(tn; �)

=
1

2�
'̂

k

cke
�ik�;

k

'̂ (tn � k)e�ik�

=
1

2�
j'̂j2

k

cke
�ik�;

k l

gl'(tn � k � l)e�ik�

=
1

2�
j'̂j2

k

cke
�ik�;

l

gle
�ik�

k

'(tn � k)e�ik�

=
1

2�

2�

0

G�1
' (!)

k

j'̂(! + 2k�)j2

�
k

cke
�ik!

k

'(tn � k)eik! d!

=
1

2�

2�

0 k

cke
�ik!

k

'(tn � k)eik! d!

=
k

ck'(tn � k)

= f(tn):

From (7), we derive

C�1kfk2 �
n

jhf; q'(tn; �)ij2 � Ckfk2:

It implies thatfq'(tn; �)gn is a frame ofV ('). For anyn 2 Z, take
Sn = T�1

q (q'(tn; �)), whereTq is the frame transform of the frame
fq'(tn; �)gn. ThenfSngn is a dual frame of the framefq'(tn; �)gn
in V (') and such that

f =
n

Sn(t)hf; q'(tn; �)i =
n

f(tn)Sn

holds inL2(R) for anyf 2 V ('). Meanwhile, for anyf 2 V (') and
anyn 2 Z, the fact

f(tn) = hf; Tq(Sn)i = hTq(f); Sni
shows thatff(tn)g is a moment sequence to the framefSngn.

Necessity.
On the contrary, if there is a framefSngn of V (') such that

ff(tn)gn is a moment sequence to the framefSngn and (6) holds in
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L2(R) for anyf 2 V ('), thenf(tn) = hT�1s (f); Sni, whereTs is
the frame transform of the framefSngn (see Section I). Therefore,

n

jf(tn)j
2 =

n

jhT�1s (f); Snij
2

�CkT�1s (f)k2

�C2kfk2

and

n

jf(tn)j
2 =

n

jhT�1s (f); Snij
2

�C�1kT�1s (f)k2

�C�2kfk2

hold for some constantC � 1.

The framefSngn of the shift-invariant spaceV (') such that (6)
holds inL2(R) for anyf 2 V (') is called areconstruction frame. In
real-world application, we need to know the expression of the recon-
struction framefSngn. SinceTq is the frame transform of the frame
fq'(tn; �)gn, we have

Tq(q'(tn; �))

=
m

hq'(tn; �); q'(tm; �)i q'(tm; �)

=
1

2�
m k

 (tn � k)'̂e�ik�;

k

 (tm � k)'̂e�ik� q'(tm; �)

=
1

2�
m

j'̂j2

k l

gl'(tn � k � l)e�ik�;

k l

gl'(tm � k � l)e�ik� q'(tm; �)

=
1

2�
m

j'̂j2

l

gle
ik�

2

k

'(tn � k)e�ik�;

k

'(tm � k)e�ik� q'(tm; �)

=
1

2�
m

q'(tm; �)
2�

0

G�1

' (!)
k

'(tn � k)e�ik!

�
k

'(tm � k)eik! d!:

Let

Anm =
2�

0

G�1

' (!)
k

'(tn � k)e�ik!

k

'(tm � k)eik!d!:

Then we have

q'(tn; �) =
1

2�
m

AnmSm:

SinceTq is a frame transform, the infinite-dimensional matrixA =
(Anm) is invertible. Denote byA�1 = (dmn) the inverse matrix ofA.
Then we derive

Sm = 2�
n

dmnq'(tn; �)

for anym 2 Z. This is formulated in the following corollary.

Corollary 1: In Theorem 2, the reconstruction framefSngn is de-
rived by

Sn = 2�
n

dmnq'(tm; �) (9)

where(dmn) is the inverse matrix of the infinite-dimensional matrix
(Amn), and

Amn =
2�

0

G�1

' (!)
k

'(tn � k)e�ik!

k

'(tm � k): (10)

In the following sections, we will explore the relation between the
matrix (Amn) and the reconstruction framefSngn in more detail.

III. REGULAR SAMPLING IN SHIFT-INVARIANT SPACES

An important case of sampling is the so-called regular sampling,
i.e., tn = n for all n 2 Z. As we mentioned in the Introduction,
many people have contributed to this area of research. The following
theorem contributes in a different direction. Since it is not so difficult
to understand, we just give a swift proof here. We will also need the
notation'̂� defined by

'̂� =
k

'(k) exp(ik�):

Obviously,'̂� is a2�-periodic function inL2[0; 2�].

Theorem 3: Let ' be a continuous stable generator such that' =
O((1+ j � j)�s) for somes > 1=2. Then the following three statements
are equivalent.

1) 0 < k'̂�k0 � k'̂�k1 < 1.

2) There is a framefSngn of V (') such thatff(n)gn is a moment
sequence to the framefSngn andf = n f(n)Sn for any
f 2 V (').

3) There is a Riesz basisfSngn of V (') such that f =

n f(n)Sn for anyf 2 V (').

In these cases, thefSngn is defined by the formulasSn = S0(� � n)
(a.e.) andŜ0 = '̂='̂� (a.e.).

Proof: For anyf 2 V ('), there is a scalar sequencefckgk 2 l2

such thatf = k ck'(� � k) holds both inL2(R) and pointwise.
Since

kfk2 =
1

2�
f̂

2

=
1

2�
'̂

k

cke
�ik�

2

=
1

2�
G1=2
'

k

cke
�ik�

2

�

;

and

k

jf(k)j2 =
1

2�
k l

cl'(k � l)e�ik�
2

�

=
1

2�
'̂�

k

cke
�ik�

2

�
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we can conclude that the fact

C�1kfk2 �
k

jf(k)j2 � Ckfk2

for anyf 2 V (') is equivalent to the fact

C�1kG1=2
' k0 � j'̂�j � CkG1=2

' k1:

By Theorem 2, these arguments show the equivalence ofstatement 1)
andstatement 2).

Consider theq' defined by(8). For any scalar sequencefckg 2 l2,
we have

k

ckq'(k; �)

2

=
1

2�
'̂

k

 (n� k)cke
�ik�

2

=
1

2�
G1=2
'

l

gle
ik�

k

'(n� k)cke
�ik�

2

�

=
1

2�
G�1=2
' '̂�

k

cke
�ik�

2

�

:

Thenstatement 1)shows

k'̂�k20kG'k0
k

jckj
2 �

k

ckq'(k; �)

2

�k'̂�k21kG'k1
k

jckj
2

for any scalar sequencefckgk 2 l2. It implies that the function se-
quencefq'(n; �)gn is a Riesz basis ofV ('). Then there is a unique
dual Riesz basisfSngn of the Riesz basisfq'(n; �)gn biorthogonal to
fq'(n; �)gn such thatstatement 3)holds. Sincestatement 3)implies
statement 2), thereafter,statement 1)automatically, it shows the equiv-
alence ofstatement 1)andstatement 3).

Finally, the formulaSn = S0(� � n) andŜ0 = '̂='̂� can follow
from [9] and [19]. But we would like to use Corollary 1 to derive it so
as to show the potential of Corollary 1. From (10), we have

Anm =
2�

0

j'̂�j2

G'
e�i(n�m)! d!:

Suppose thatfckgk are the Fourier coefficients of the2�-periodic func-
tion j'̂ j

G
inL2[0; 2�]. Then, we deriveAnm = cn�m for anym; n 2

Z, and

m

cn�mŜm = q̂'(n; �) =
j'̂�j2

G'
�

'̂

'̂�
e�in�:

Suppose that the scalar sequencefdngn is the Fourier coefficients of
the2�-periodic function G

j'̂ j
in L2[0; 2�]. Make an infinite-dimen-

sional matrixD = (dm�n). Then the matrixD is the inverse matrix
of the matrixA, because the formula n ck�ndn�j = �k�j is equiv-
alent to the formula

k

cke
ik!

n

dne
in!eij! = eij! (11)

and (11) automatically holds. The�k�j used here is the Dirac function,
which takes value1 wheneverk = j and takes value0 otherwise.
Define the functionS0 by the formulaŜ0 = '̂='̂� in L2(R). From
(11), we have

Ŝm =
j'̂�j2

G'
Ŝ0

k

dm�ne
�in� = Ŝ0e

�im�:

It showsSm = S0(� �m) for anym 2 Z.

This theorem implies that for regular sampling in shift-invariant
spaces, the reconstruction framefSngn is an exact frame, i.e., a Riesz
basis. This fact is also determined by the samplesf'(k)gk of the
generator', i.e.,C�1 � j'̂�j � C for some constantC � 1.

When' is a stable continuouscardinal generator, that is,'̂� =
1 (a.e.). ThenŜ0 = '̂, i.e.,S0 = '. Therefore, the reconstruction
formula becomesf = k f(k)'(� � k) for anyf 2 V ('). By the
way, the fact thatstatement 1)implies statement 3)is also found by
Walter [19] when' = O((1 + j � j)�s) for somes > 1. The formula
Sm = S0(� �m) for anym 2 Z has also been found by Walter [19],
Aldroubi and Unser [3], and Chen and Itoh [9] under their assumed
conditions on the generator'.

Take' = sinc. Then' is a stable continuous cardinal generator.
The shift-invariant spaceV (') is the collection of all�-band signals
of finite energy. Then, the classical Shannon sampling formula

f =
k

f(k)
sin�(� � k)

�(� � k)

automatically follows from Theorem 3.

IV. PERTURBATION OF REGULAR SAMPLING IN

SHIFT-INVARIANT SPACES

Another important case of sampling is the perturbation of regular
sampling,tn = n + rn (rn 2 (�1; 1)) for anyn 2 Z. A funda-
mental question in this case is to estimate the range of the perturbation
frkgk. Following Kadec’s theorem for the band-limited signals of fi-
nite energy, we have found an estimate for perturbation in the setting
of wavelet subspaces by using Riesz basis theory. In the following, we
will derive a sharp estimate by using frame theory.

In order to establish the algorithm for perturbation of regular sam-
pling in shift-invariant spaces, we need to introduce the function class
L��[a; b] (� > 0, � 2 [0; 1), 0 2 [a; b] � [�1; 1]) defined and
used in our previous work [6]. We have reasoned that this class is an
appropriate collection by giving some propositions in that paper. Here
we will recall the definition and give an additional proposition, which
are useful to the piecewise differentiable stable generators in many real
applications.

Definition 1: L��[a; b] (�> 0, �2 [0; 1) and02 [a; b]� [�1; 1])
consists of all the measurable functionsf , for which the norm

kfkL [a; b]= sup
fr g �[a;b]

k jf(k+�+rk)�f(k+�)j

supk jrkj
�

<1:

The following proposition is very useful to the piecewise differen-
tiable generators in many real applications.

Proposition 1: Let functionf onR be differentialable on the inter-
valsk + � + [a; b] (� 2 [0; 1), 0 2 [a; b] � [�1; 1]) for anyk 2 Z.
If the series k sup[a;b] jf

0(� + k + �)j < 1 thenf 2 L1
�[a; b],

wheref 0 is the derivative off .
Proof: Since

k

jf(k+�+rk)�f(k+�)j=
k

r

0

f 0(k+�+t)dt

�
k

sup jr j

0

jf 0(k+�+t)jdt

�sup
k

jrkj
k

sup
[a;b]

jf 0(k+�+�)j

it impliesf 2 L1
�[a; b].

Now we show the theorem for perturbation of regular sampling in
shift-invariant spaces. We will also discuss some special cases after the
proof.
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Theorem 4: Suppose that' is a continuous stable generator such
that' = O((1 + j � j)�s) for somes > 1=2, and

1) 0 < k'̂�k0 � k'̂�k1 < 1.

2) ' 2 L�0 [a; b].

Then for anyfrkgk � [�r'; r'] \ [a; b], there is a framefSkgk of
V (') such that the scalar sequenceff(k+rk)gk is a moment sequence
to the framefSkgk andf = k f(k+rk)Sk holds inL2(R) for any
f 2 V (') if

r' <
k'̂�(!)k0
k'kL [a;b]

1=�

: (12)

Proof: Let tk = k + rk. By Theorem 2, we only need to show
that there is a constantC � 1 such that

C�1kfk2 �
k

jf(tk)j
2 � Ckfk2

holds for anyf 2 V ('). If we can show that there is a positive number
� < 1 such that

k

jf(tk)� f(k)j2 � �2

k

jf(k)j2 (13)

holds for anyf 2 V ('), then

(1� �)2

k

jf(k)j2 �
k

jf(tk)j
2 � (1 + �)2

k

jf(k)j2:

By Theorem 3,statement 1)implies that there is a constantC � 1 such
that

C�1kfk2 �
k

jf(k)j2 � Ckfk2

for anyf 2 V ('). These arguments show that

C�1(1� �)2kfk2 �
k

jf(tk)j
2 � C(1 + �)2kfk2

for anyf 2 V ('). By Theorem 2, Theorem 4 is shown.
All that remains to be shown is (13). For anf 2 V ('), there is a

scalar sequencefckgk 2 l2 such thatf = k ck'(� � k) holds both
in L2(R) and pointwise. Let

� =
k

jf(tk)� f(k)j2

=
k l

cl('(tk � l)� '(k � l))

2

=
n k; l

ckcl('(tn � k)� '(n� k))

� ('(tn � l)� '(n� l))

=
k; l

ckcl
n

('(tn � k)� '(n� k))

� ('(tn � l)� '(n� l)):

Take

ak; l =
n

('(tn � k)� '(n� k))('(tn � l)� '(n� l)):

Thenak; l = al; k holds for anyk; l 2 Z. Following the argument in
[6], we have

� =
k; l

aklckcl �
k

c2k sup
k

l

jaklj

and

sup
k

l

jaklj � k'kL [a; b] sup
�
jr� j

�
2

:

Hence

� �
k

c2k (k'kL [a; b] sup
�
jr� j

�)2:

Recall the proof of Theorem 3. We know

k'̂�k20
k

c2k �
k

jf(k)j2:

Therefore, we only need to show

k

c2k k'kL [a; b] sup
�
jr� j

�
2

� �2k'̂�k20
k

c2k

that is,k'kL [a; b] sup� jr� j
� � �k'̂�k0. This is exactly implied by

(12).

Once again, we are interested in the expression of the reconstruction
framefSngn. By Corollary 1

Anm =
2�

0

G�1
'

k

'(n+ rn � k)e�ik!

�
k

'(m+ rm � k)eik! d!

=
2�

0

G�1
'

l

'(l+ rn)e
il!

�
l

'(l+ rm)e�il!ei(m�n)! d!:

Let m � n = k. Then

An(n+k)=
2�

0

G�1
'

l

'(l+rn)e
il!

l

'(l+rn+k)e
�il!eik! d!:

Let

Bnk(!) = G�1
' (!)

l

'(l+ rn)e
il!

l

'(l+ rn+k)e
�il!:

Then we have the formulas

An(n+k) =
2�

0

Bnk(!)e
ik!(!)d!

and

k

Anme
imt =

k

An(n+k)e
i(n+k)t

= eint

k

eikt
2�

0

Bnk(!)e
ik! d!:

Let

Cn =
k

eikt
2�

0

Bnk(!)e
ik! d!:

ThenfCngn are the eigenvalues of the matrixA. Since the matrixA
is invertible with the inverse matrixA�1 = (C�1

n rn�m), from Corol-
lary 1, we haveŜn = 2�C�1

n q̂'(n + rn; �) for anyn 2 Z. Simple
calculation shows that the formula

q̂'(n+ rn; �) = e�in�G�1
' '̂

l

'(l+ rn)e
il�

holds for anyn 2 Z. Finally, we get the formula to calculate the re-
construction framefSngn as

Ŝn =
2� k '(k + rn)e

ik�

CnG'
'̂e�in�:

In a regular sampling case,rn=0 for anyn2Z, andCn=G'=j'̂
�j2.

Then we havêSn = e�in!'̂='̂� andŜ0 = '̂='̂�, that is, exactly the
result of Theorem 3.
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The estimate (12) is also derived in our previous work [6] when
the continuous stable generator' is orthonormal and satisfies' =
O((1 + j � j)�s) for somes > 1. But in Theorem 4, the estimate (12)
also holds for a nonorthonormal continuous stable generator whenever
it satisfies' = O((1 + j � j)�s) for somes > 1=2. The authors
[6] also derived an estimate for perturbation of regular sampling in
shift-invariant spaces with a nonorthonormal continuous stable gener-
ator when' satisfies' = O((1 + j � j)�s) for somes > 1. But that
estimate of [6] is somewhat awkward and rough. The examples in Sec-
tion VI will make it more clear.

It is also worth noting that the reconstruction frame may turn out to
be a Riesz basis under the assumption of Theorem 4. It is also possible
to derive the result of Theorem 4 directly by Riesz basis theory. But
we do not touch Riesz basis in the preceding argument, and derive the
result swiftly from Theorem 2. We leave the Riesz basis discussion to
future work.

V. SHIFT SAMPLING IN SHIFT-INVARIANT SPACES

Unfortunately, there are some important continuous stable genera-
tors'’s with k'̂�k0 = 0. An obvious example is the B-spline of degree
2, which has been calculated in our previous works [4]–[6]. As done
by Janssen [13] for Walter’s sampling theorem [19], and the authors
[6] for irregular sampling theorem, we also treat it by shift sampling.
Then the shift-sampling versions of sampling theorems can be attained
by using the Zak transformZ'(�; �) (� 2 [0; 1)) defined by

Z'(�; �) =
n

'(� + n) exp(in�): (14)

Since the proofs of the shift sampling theorems are very similar to those
of Theorems 3 and 4, respectively, we here only to give the statements
of the shift sampling theorems by omitting the proofs.

Theorem 5: Suppose' is a continuous stable generator such that
' = O((1 + j � j)�s) for somes > 1=2. Then, for a� 2 [0; 1), the
following three items are equivalent.

1) 0 < kZ'(�; �)k0 � kZ'(�; �)k1 < 1.

2) There is a framefS�; ngn of V (') such thatff(n+�)gn is a
moment sequence to the framefS�;ngn and

f=
n

f(n+�)S�;n

holds inL2(R) for anyf 2 V (').

3) There is a Riesz basisfS�;ngn of V (') such that

f =
n

f(n)Sn

holds inL2(R) for anyf 2 V (').

In these cases, the reconstruction framefS�;ngn is derived by the for-
mulasS�;n = S�; 0(� � n) andŜ�; 0 = '̂=Z'(�; �).

The following is the shift-sampling version of the algorithm for per-
turbation of regular sampling in shift-invariant spaces.

Theorem 6: Suppose' is a continuous stable generator such that
' = O((1 + j � j)�s) for somes > 1=2, and

1) 0 < kZ'(�; �)k0 � kZ'(�; �)k1 < 1.

2) ' 2 L�
�[a; b].

Then, for anyfrkgk � [�r�; '; r�;'] \ [a; b], there is a frame
fS�;kgk of V (') such thatff(k + � + rk)gk is a moment sequence
to the framefS�;kgk and

f =
k

f(k + � + rk)S�;k

holds inL2(R) for anyf 2 V (') if

r�;' <
kZ'(�; �)k0
k'kL [a;b]

1=�

: (15)

VI. EXAMPLES TO SHOW THE ALGORITHM

Since the Daubechies mother wavelets and the Meyer mother
wavelet are all the orthonormal continuous stable generators [11],
[17], [21], the estimates by theorems in this correspondence are the
same to those derived by our previous works (see the discussion after
Theorem 4). We here calculate the B-spline of degree1 (denoted by
N1). We derive the estimaterN < 1=2, which is better than our
previous estimaterN < 1=(2

p
3), and which is shown by Liu and

Walter to be optimal [16]. Unfortunately, we are not yet sure that the
estimate

sup
�2(�1;1)

kZ'(�; !)k0
k'kL [a; b]

is optimal for a general continuous stable generator; and a question
remains of what is the optimal estimate for a general continuous stable
generator.

Example 1 [10]: Take the B-spline of degree1

N1(t) = t�[0;1) + (2� t)�[1;2):

Then N̂�
1 = ei! . SincekN1kL [�1;1] = 3, we derive the estimate

rN < 1=3. Supposerk � 0 (or rk � 0) for all k 2 Z. Then

kN1kL [�1;0] = kN1kL [0; 1] = 2:

Therefore, the estimate isrN < 1=2. Liu and Walter [16] have shown
that the estimaterN < 1=2 is optimal whenrk � 0 (or rk � 0) for
all k 2 Z. Compared to the estimaterN < 1=(2

p
3) derived in our

previous work, the present result does improve our previous one [6].
Again, we want to know the structure of the reconstruction

frame. For regular sampling inV (N1), from Theorem 3 we have
Ŝn = N̂1e

�in!=ei!. Therefore,Sn = N1(� � n� 1) for anyn 2 Z.
For perturbation of regular sampling inV (N1), from Corollary 1,

we have

Ŝn = 2�N̂1e
�in!

k

N1(k + rn)e
ik!=(CnGN ):

Supposern � 0 for all n 2 Z. Then

Cn =
k

eikt
2�

0

� l

N1(l+ rn)e
il!

l

N1(l+ rn+k)e
il!

GN
eik! d!

=
k

eikt
2�

0

� (rn + (1 + rn)e
i!)(rn+k + (1 + rn+k)e

i!)

GN
eik! d!:

Let unk =
2�

0
(rn + (1 + rn)e

i!)G�1
N eik!d!. Then

Cn(!) =
k

eik!unkrn+k +
k

eik!un(k+1)(1 + rn+k)

= 2�
rn + (1 + rn)e

i!

GN
e�i!

+
k

eik!unk(rn+k + rn+k�1e
�i!):
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Let

Bn =
k

(rn+k + rn+k�1e
�i!)unke

ik!:

Since

GN = j sin(�=2)j4
k

j � =2 + k�j�4

finally we have

Ŝn =
2�(rn + (1 + rn)e

i!)N̂1e
�in!

2�(rne�i! + (1 + rn)) +GN Bn
:

The next example shows the importance of shift sampling theorem.

Example 2 [10]: Take the B-spline of degree2

N2(t) =
t2

2
�[0; 1) +

6t� 2t2 � 3

2
�[1;2) +

(3� t)2

2
�[2;3):

ThenN̂�

2 (!) = ei!(ei! + 1)=2 = 0 at the point! = �. So we have
to use the shift sampling theorem. The Zak transform ofN2 is

ZN (1=2; !) = 1=8 + 3ei!=4 + e2i!=8:

The facts

jZN (1=2; !)j � 3=4� 1=8� 1=8 = 1=2

and

ZN (1=2; �) = 1=2

imply kZN ( 1
2
; �)k0 = 1=2. Since the derivative

N 0

2(t) = t�[0;1) + (3� 4t)�[1;2) + (3� t)�[2;3)

by Proposition 1, we havekN2kL [�1=4; 1=4] = 2. Finally, we derive

the estimater1=2;N < 1=4.
For regular sampling inV (N2), by Theorem 3, the reconstruction

framefSngn is determined bŷSn = 8N̂2e
�in!=(1+6ei!+e2i!) for

anyn 2 Z. For perturbation of regular sampling inV (N2), since the
calculation to find an explicit expression of the reconstruction frame
fSngn is very complicated, we leave it to future work. Anyway, the
computer-based solution can follow from Corollary 1. Shifting by dif-
ferent�, the estimate derived by shift sampling theorem is, in general,
different. To find a shift to derive an optimal estimate is a useful and
interesting future work.

The Daubechies mother wavelets, the Meyer mother wavelet, and
the B-splines are all scaling functions of some MRAs. But the next
continuous stable generator ceases to be a scaling function of an MRA.

Example 3: Take the Gaussian kernelK = 1=
p
2� e�t =2. Then

K̂ = e�! =2. Therefore,K is not a scaling function of any MRA since
K̂(2k�) 6= 0 for anyk 6= 0. However,

GK =
k

e�(!+2k�) = e�! + 2

1

k=1

e�(!+2k�)

For any! 2 [0; 2�], we derive

GK � e�4� + 2
1

2

e�x dx = e�4� +
p
2�=e2

and

GK � 1 + 2
1

0

e�x dx = 1 +
p
2�:

It shows thatK is a stable generator of the shift-invariant spaceV (K).
By Poisson summation formula, we know that

K̂� = 1=
p
2�

k

e�(!+2k�) =2:

Then we havee�2�=
p
2�+2=e � K̂� � 1=

p
2�+2. From Theorem

3, for regular sampling inV (K), the reconstruction framefSngn is
given by

Ŝn =
p
2�e�! =2e�in!=

k

e�(!+2k�) =2:

For perturbation of regular sampling inV (K), the factK 0 =

1=
p
2�tet =2 impliesK 2 L1

0[�1; 1] and

kKkL [�1;1] � 1=
p
2� (

p
2e�1=4 + 4e�1=2):

Therefore, we derive an estimate

rK < (e1=2�2� + 2e�1=2
p
2� )=(

p
2e1=4 + 4) � 0:35:

The right-hand side is larger than1=4. It is difficult to give an explicit
expression of the reconstruction framefSngn. But a computer-based
solution offSngn can be derived from Corollary 1.

The next example is calculated to compare to the traditional Kadec’s
theorem.

Example 4: Take the Shannon sampling functionsinc = sin�(�)
�(�)

.

Then ^sinc = �[��;�], ^sinc
�

= 1, andGsinc = 1. This implies
that sinc is a continuous cardinal orthonormal stable generator of the
shift-invariant spaceV (sinc). For regular sampling inV (sinc), the re-
construction framefSngn is given bySn = sin(�(��n))=(�(��n)).
For perturbation of regular sampling inV (sinc), Theorem 4 cannot
be used, since the seriesk j sin(rk�)=((k+ rk)�)j is generally di-
vergent. To find a theorem like Theorem 4 that covers the Shannon
sampling function is also a very interesting open problem. At present ,
however, we can only use Theorem 2. For anyf 2 V (sinc), a simple
calculation shows

� =
k

jf(k+ rk)� f(k)j2

� (1� cos�r + sin�r)2

k

jf(k)j2

wherer = rsinc. Since1 � cos�r + sin�r < 1 whenr < 1=4, it
deduces the estimatersinc < 1=4. Kadec [24] has shown that the esti-
matersinc < 1=4 is optimal. The reconstruction frame can be derived
from Corollary 1.
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