2802

El

(10]

(11]

(12]

(13]

(14]

(15]
[16]
(17]
(18]

(19]

(20]

(21]

[22]

(23]

[24]
(25]

(26]

(27]
(28]

(29]

(30]

[31]

(32]

(33]

(34]

(35]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002

F. O’Sullivan, “A study of least squares and maximum likelihood for [36]
image reconstruction in positron emission tomograpinh. Statist.

vol. 23, pp. 1267-1300, 1995.

D. G. Politte and D. L. Snyder, “Corrections for accidental coincidences
and attenuation in maximume-likelihood image reconstruction for[38]
positron emission tomographyEEE Trans. Med. Imagvol. 10, pp.

82-89, Mar. 1991. [39]
B. W. Silverman, M. C. Jones, D. W. Nychka, and J. D. Wilson, “A [40]
smoothed EM algorithm to indirect estimation problems, with particular
reference to stereology and emission tomographyRoy. Statist. Soc.
Ser. B vol. 52, pp. 271-324, 1990.

D. L. Snyder and |. M. Miller, “The use of sieves to stabilize images [42]
produced with the EM algorithm for emission tomographigEE Trans.

Nucl. Sci, vol. NS-32, pp. 3864-3872, Oct. 1985.

Y. Vardi, L. A. Shepp, and L. Kaufman, “A statistical model for positron
emission tomography,J. Amer. Statist. Assqaol. 80, pp. 8-37, 1985.

J. A. Fessler, “Penalized weighted least-squares image reconstruction
for positron emission tomographyEEE Trans. Med. Imagvol. 13,

pp. 290-300, June 1994.

P. Moulin and J. Liu, “Statistical imaging and complexity regulariza-
tion,” IEEE Trans. Inform. Theoryol. 46, pp. 1762-1777, Aug. 2000.

L. Cavalier, “Asymptotically efficient estimation of a density in tomog-
raphy,” Ann. Statist.vol. 28, pp. 330-347, 2000.

——, “On the problem of local adaptive estimation in tomography,”
Bernoulli, vol. 7, pp. 63-78, 2001.

[37]

[41]

V. Solo, “Limits to estimation in stochastic ill-conditioned inverse prob-
lems,”|EEE Trans. Inform. Theoryol. 46, pp. 1872-1880, Aug. 2000.
J.-Y. Koo, “Optimal rates of convergence for nonparametric statistical
inverse problems,Ann. Statist.vol. 21, pp. 590-599, 1993.

L. Birgé, “Approximation dans les espaces métriques et théorie de I'es-
timation,” Z. Wahrsch. Verw. Geietgol. 65, pp. 181-237, 1983.

J. F. C. KingmanPoisson Processes London, U.K.: Clarendon, 1993.

R. D. ReissA Course on Point ProcessesNew York: Springer-Verlag,
1993.

W. Feller, An Introduction to Probability Theory and Its Applica-
tions New York: Wiley, 1971, vol. 2.

A. |. Sakhanenko, “Berry—Esseen type estimates for large deviation
probabilities,”Siberian Math. J.vol. 32, pp. 647—-656, 1991.

On Sampling in Shift Invariant Spaces

Wen Chen, Shuichi ItaliMember, IEEEand Junji Shiki

L. Cavalier and A. B. Tsybakov, “Sharp adaptation for inverse problems Abstract—in this correspondence, a necessary and sufficient condition

with random noise,Probab. Theory Related Field® be published.

for sampling in the general framework of shift-invariant spaces is derived.

D. L. Donoho and M. G. Low, “Renormalization exponents and optimalhen this resultis applied, respectively, to the regular sampling and the per-
pointwise rates of convergenceihn. Statist. vol. 20, pp. 944-970, turbation of regular sampling in shift-invariant spaces. A simple necessary

1992.

and sufficient condition for regular sampling in shift-invariant spaces is at-

S. Geman and D. E. McClure, “Statistical methods for tomographigined. Furthermore, an improved estimate for the perturbation is derived

image reconstruction,Proc. 46 Sect. ISI, Bull. ISkol. 52, pp. 5-21,
1987.

for the perturbation of regular sampling in shift-invariant spaces. The de-
rived estimate is easy to calculate, and shown to be optimal in some shift-in-

I. M. Johnstone, “Wavelet shrinkage for correlated data and inverse protswiant spaces. The algorithm to calculate the reconstruction frame is also

lems: Adaptivity results,Statist. Sinicavol. 9, pp. 51-83, 1999.
M. C. Jones and B. W. Silverman, “An orthogonal series density estima-
tion approach to reconstructing positron emission tomography images,”
J. Appl. Statist.vol. 16, pp. 177-191, 1989.
I. M. Johnstone and B. W. Silverman, “Speed of estimation in positron
emission tomography and related inverse problersyi. Statist.vol.

18, pp. 251-280, 1990.

J.-Y. Koo, “Convergence rates for logspline tomography, Multiv.
Anal, vol. 67, pp. 367-384, 1998.

presented in this correspondence.

Index Terms—Frame, generator, irregular sampling, sampling, shift-in-
Variant space, Zak transform.

|. INTRODUCTION AND PRELIMINARIES

In digital signal and image processing and digital communications, a

J.-Y. Koo and H.-Y. Chung, “Log-density estimation in linear invers€0ntinuous signal is usually represented and processed by using its dis-

problems,”Ann. Statist.vol. 26, pp. 335-362, 1998.

crete samples. Then a fundamental problem is how to represent a con-

A. P. Korostelev and A. B. Tsybakov, “Optimal rates of convergencgnuous signal in terms of a discrete sequence. For a band-limited signal

of estimators in a probabilistic setup of tomography probleRrgbl.
Inform. Transm.vol. 27, pp. 73-81, 1991.

S. R. DeansThe Radon Transform and Some of Its Applicationsew
York: Wiley, 1983.
F. Natterer, The
raphy. Chichester, U.K.: Wiley, 1986.

E. J. Hoffman, S. C. Huang, M. E. Phelps, and D. E. Kuhl, “Quantit
tion in positron emission computed tomography: 4. Effect of acciden
coincidences,J. Comput. Assist. Tomggol. 5, pp. 391-400, 1981.

of finite energy, it is completely characterized by its samples, by the fa-
mous classicgshannon sampling theore@bserving that the Shannon
functionsine = >~
Mathematics of Computerized Tomogtion analysigMRA) [)11], Walter [19] first extended Shannon sampling
theorem to the setting afavelet subspaceBollowing Walter's work
?Ejrg], Janssen [13] studied the so-calldtft samplingn wavelet sub-
spaces by using th#ak transformwhich can cover some extra cases

sin w(-)

is, in fact, ascaling functiorof a multiresolu-

D. L. Snyder, J. A. O'Sullivan, B. R. Whiting, R. J. Murphy, J. Benacof Walter’s result. Walter [20], Xia [22], and the authors of [7], [8]
J. A. Cataldo, D. G. Politte, and J. F. Williamson, “Deblurring subjecy|so studied theversamplingprocedure in wavelet subspaces. On the
to nonnegativity constraints when known functions are present with 3Bther hand, Aldroubi and Unser [1]-[3], [18] studied the sampling pro-

plication to object-constrained computerized tomograptBEE Trans.
Med. Imag. vol. 20, pp. 1009-1017, Oct. 2001.

D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, “Deblurring subject to
nonnegativity constraintsJEEE Trans. Signal Processingol. 40, pp.
1143-1150, May 1992.

cedure irshift-invariant spaceChen and Itoh [9] improved the works

Manuscript received August 16, 1999; revised June 9, 2002. This work was

Y. Choi, J.-Y. Koo, and N.-Y. Lee, “Image reconstruction using thesupported by the Japan Society for the Promotion of Sciences (JSPS).

wavelet transform for positron emission tomograph\fEE Trans.
Med. Imag. vol. 20, pp. 1188-1193, Nov. 2001.

W. Chen is with the Department of Mathematical and Statistical Sciences,
University of Alberta, Edmonton, AB T6G 2G1, Canada (e-mail: wenchen@

|. Daubechies;Ten Lectures on WaveletsPhiladelphia, PA: SIAM, math.ualberta.ca).

1992.

S. Itoh and J. Shiki are with the Department of Information Network Sciences,

W. Hardle, G. Kerkyacharian, D. Picard, and A. B. Tsybakoviraduate School of Information Systems, University of Electro-Communica-

Wavelets, Approximation and Statistical ApplicationiNew York:
Springer-Verlag, 1998.

tions, Chofu, Tokyo 182-8585, Japan (e-mail: itoh@is.uec.ac.jp).
Communicated by J. A. O'Sullivan, Associate Editor for Detection and Esti-

Y. Meyer, Wavelets and Operatars Cambridge, U.K.: Cambridge mation.

Univ. Press, 1992.

Publisher Item Identifier 10.1109/TIT.2002.802646.

0018-9448/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002 2803

of Walter [19], and Aldroubi and Unser [3], and found a necessary andLet us now simply introduce the frame theory [24]. A function se-

sufficient condition for sampling in shift-invariant spaces. quence{S,}, C H is called aframeof a subspacél of L*(R) if
However, in many real applications, sampling points are not alwagfeere is a constar® > 1 such that

measured regularly. Sometimes the sampling steps need to be fluctu- 1y 2 2 2

ated according to the signals so as to reduce the number of samples CIE < Z K, Sl < CU (3)

and computational complexity. There are also many cases where unde- "

sirable jitter exists in sampling instants. Some communication systerhljéds for anyf_e H.A frame th_at ceases to be a frame when any one

may suffer from random delay due to channel traffic congestion afh Its _element_ls removed IS s_ald to be.mCt frameAn exact frame

encoding delay. In such cases, the system will become more efﬁcif@R'esz baSLSObwogst, a Riesz basis is also a frame. For any frame

when a perturbation factor is considered. For the band-limited sign Ig"'}" of H, there exists a so-callethial frame{5,. },, C H such that

of finite energy, a generalization of the Shannon sampling theorem, f= Z<f‘ §n>5n - Z (f. 5n>§n (4)

known asKadec's theorenji24], can be used. Following the work on n

sampling in wavelet subspaces, Liu and Walter [16], Liu [15], and t?@

n

) ldsinL*(R) foranyf € H. Take a linear operatdf on H defined
authors [4] tried to extend Kadec's theorem to a class of wavelet syb- &) vi P

spaces. But they actually did not get a real extension of Kadec's the-

orem. Then the authors [6] introduced a function cl&g:, b] (3‘ >0, T(f) = Z (f, Su)S..

o €0, 1),and0 € [a, b] C [~1, 1]), anorm|| - || a4, 4 OF Lz [a, ], -

and found an algorithm to treat the perturbation of regular sampling_in . . . )

wavelet subspaces as follows. Some notations used in the theorem ﬂi\?n the operatdf’ is bounded, self-conjugate, and invertible due to
e

be defined in the next sections. fact

Theorem 1 [6]: Suppose thap is a continuous scaling function of (T, fH= Z [(f, Su))?
an MRA{ Vi, }m in L3[a, B]. If o = O((1+ |- |)~°) for somes > 1, k
and the Zak transforn#.. (. -) # 0, Vthen there is an,. , € (0, 1] and the inequality (3). It is easy to see that the function sequence
such that for any scalar sequenpe.}r C [~rs. o, 7.0 N [a, 8], {T7'(S5,)}. is a dual frame of the framgS,, },.. This T is called a
there is a Riesz basigS,. « } of Vo such that frame transfornof the frame{S,, } .. The scalar sequendéf. S, )}

is called anoment sequenad the functionf to the frame{S.. }... Let

F=2 0 flto+70)S04 S . 3., ¢nSy. If the scalar sequenci:, }» is @ moment sequence
F of a function to the framéS., } ., then it must be,, = (T7'(f), S,.)
holds inL2(R) for any f € Vs if foranyn € Z. This follows from the fact that, = (. 5,.) for some
function’ € H, and inL*(R)
/A
o < (120Gl Zeo 6o T () =3 (h ST (S0) = b
”q’»ﬂ('ao—)HLé[a,,b] n

Following are some notations used in this correspondence. For two
measurable functions andg on the real lineR, let

(f.9)= Af(t)g(t) dt

Apply the theorem to calculating thigspline of degreé

Ni(t) =txp, 1+ (2 =t)x[,2)

wherey,1) is the characteristic function of the intenjal 1), so is £l = VXS5 £)
\[1,2)- From (2), we get the estimate, n, < 1/(2v/3) whenr;, > 0 2x 1/2
(orr, < 0)forall k € Z. But Liu and Walter [16] showed that the | £l = </ lF () dt)
estimaterq, v, < 1/2is optimal for B-spline of degrek This implies 0
that the authors’ result [6] is not optimal. || fllec =esssup ||

Our objective in this correspondence is to find a necessary and suf- )
ficient condition for general nonuniform sampling in shift-invariant [ fllo = essinf[f].

spaces by using tHfeame theoryBy applying the results, respectively,

to regular sampling and perturbation of regular sampling in shift-in-

variant spaces, we try to find the optimal criterion for conducting reg-

ular sampling and perturbation of regular sampling in shift-invariant For ay € L*(R), theshift-invariant spacg3], [12], [14] considered

spaces. Fortunately, for regular sampling in shift-invariant spacesinghis correspondence takes

simple necessary and sufficient condition is found; for perturbation of

regular sampling, improved estimates for the perturbation are derived. Vip) = {Z crp(- = k){cx}x € 12} C L*(R). (5)

By applying the new estimate to the B-spline of dedrese derive the k

optimal estimateo, x, < 1/2whenry > 0 (orr, < 0)forallk € Z.  Theg is called ageneratorof V (;). In general, the function sequence
{©(-—k)}« is nota Riesz basis 6f(¢). In fact, the function sequence
{o(- — k)}« is a Riesz basis df (¢) if and only if

Il. GENERAL SAMPLING IN SHIFT-INVARIANT SPACES

1A sequence of vectorgr, } in an infinite-dimensional Banach spaagis
said to be &chauder basifor X if to each vector: in the space corresponds a 0 < [|Gollo L |Gylloe < 00
unique sequence of scaldrs, }, suchthate = >77°  cpa,. The conver- N ) . .
ger?ce ofﬂ?e seriesis undirstz)od to be with res%e%tto the strong (norm) topolMlereGe = >, [4(- + 2km)|?, and is theFourier transformof ¢
of X; in other words/|z — >7_ 4]l — 0 asm, n — co. A Shauder defined by
basis for aHilbert spaceis a Riesz basisf it is equivalent to an orthonormal )
basis, that s, if it is obtained from an orthonormal basis by means of a bounded 5= | o) (—it) dt
invertible operator (see Young [24]). L 1 @iL) expl—t) at.
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In this case, the generator is callet@dble Moreover, the function se-
qguence{¢(- — k)}% is an orthonormal basis df () if and only if
Gy(w) =1 (ae.).

It is easy to see that the stable shift-invariant spe¢enc) is ex-
actly the collection of allr-band signals of finite energy. Sampling

in V (sinc) is exactly the classical Shannon sampling theory for the
band-limited signals of finite energy. Hereafter, we will study the sam-

pling procedure iV () for a general continuous stable generatas
L*(R). We also nee¢p = O((1+]-|)~*) for somes > 1/2. For any
f € V(p), thereis afci}i € I* suchthatf = 37, ckp(- — k) in
L?*(R). Since

Z crp(-—k)
k

the seried ", cro(-
in V(). Without loss of generality, we can take afiye V(¢) as a
continuous function.

When we try to find an algorithm to reconstruct a continuous sign
f € V() by using its discrete samplég (¢x )}, obviously the sam-
ples cannot be arbitrary; that is, some constraints should be impo
on the sampling point$t;, }1 or the sampleq f(¢x)},. The weaker

< Z |ck|2Z lo(- = k)I?

—k) point-wise converges to a continuous function
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h— ])(?i(kJrI)»
2w

g Y ol
k

*

zlcw

»’)Z

tn

*

Z ot — k)eikw

k
1/2
A)|2> )

O((1+41-1])~") for some

IN

P
7= 167 @)l

0. (z .

Therefore {4 (t, — k)}r € I due top =

s > 1/2. Let
)= bt -
k

) is continuous inV’ (v) For any functionf € V(¢),
k)

*

e

Qe (tns k)e(-— k). (8)

dhenag(t,,
there is ascalar sequente. b € 17 suchthatf = 37, crp(- —
bolds inL?(R). Following the Parseval identity, we derive

(f. qy»(tm )

the constraints are the better the reconstruction method is evaluated.

Our objective in this section is to find a necessary and sufficient con-

dition on the sample§f (¢1) } 1 such that a reconstruction formula like
(1) holds. The result is formulated in the following theorem.

Theorem 2: Suppose that a continuous stable generatis such
thaty = O((1+ |- ])~") for somes > 1/2. Then there is a frame
{Sn }n Of V() suchthaf f (¢
{S,}. and

F=> ft)S, 6)

holds inL*(R) for any f € V() if and only if there is a constant
C' > 1 such that

AP <D0 1P < ClFIP 7
holds for anyf € V(¢).
Proof:
Sufficiency.
SinceG,' € L?[0, 27 is a2x-periodic function, we can assume

G )= 30 e
k

in L*(R) with scalar sequencly } € 1*. Definey in L?(R) by
J = 967"

Then we have

V= g — k) € V(p)
k

in L*(R). The facty = O((1 4 | - |)™*) for somes > 1/2 shows
that+) can be chosen to be continuous. Moreover, the formula

>« gre(- — k) also pointwise holds. Giveh, € R, we have
1/2
(Z o k>|2>
=
= |3 bt — e
27 T " .

k—]) thkw

n

*

) }n is@amoment sequence to the frame

oo (F et )
<¢ZCL8 Z@w(t“_ , —k>

<|'*5|2 Doeke TN apts =k —De™H
k i

k

|
)

ST o
(w); |p(w + 2km)|?
03 e S ot - ) d
: :
/ Z cpe Z ot — k)e™ dw
=" ckpltn — k)
.

= f(tn).

From (7), we derive

AR < ST HE gt )

It implies that{q¢( s ) In is @ frame ofV (). For anyn € Z, take
Sn = T; " (qp(tn. ), whereT, is the frame transform of the frame
{ge(tn, ) }n. Then{Sn}n is a dual frame of the framgy, (¢n, <) }n

in V() and such that
) = Z F(ta)Ss

holds inL*(R )for anyf € V(y). Meanwhile, for anyf € V(¢) and
anyn € Z, the fact

f(fn) = <f T7(577,)> = <Tq(f)a 577,)

shows thaf f(¢,,)} is a moment sequence to the fraf, } ...
Necessity.
On the contrary, if there is a framgS, },. of V(¢) such that
{f(tn)}. is @ moment sequence to the fraf®, },, and (6) holds in

W< ClslP.
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L*(R) forany f € V(yp), thenf(t,) = (I, '(f), S.), whereT, is SinceT, is a frame transform, the infinite-dimensional matrix =
the frame transform of the fram{es,, }.. (see Section ). Therefore, (A4,.,.) isinvertible. Denote byd ™" = (d,,) the inverse matrix ofi.
Then we derive

STFEP =D KT, Sl S =28 dunndoltu, )
2
<CITT (O foranym € Z. This is formulated in the following corollary.
<C*IfI1P Corollary 1: In Theorem 2, the reconstruction frarf,, }., is de-
and rived by
2 F = 2 K. 5T S0 =213 dunntis(tm, ) ©
B B ) n
”T" (f)” where(d., ) is the inverse matrix of the infinite-dimensional matrix
e Fil (Anmn), and
27
A = / GoH @)Y pltn —k)e ™ > p(t — k). (10)
hold for some constarit’ > 1. O 0 v ; ;
The frame{S., },. of the shift-invariant spac& () such that (6)  In the following sections, we will explore the relation between the

holds inL*(R) for any f € V (¢) is called areconstruction framein  matrix (A, ) and the reconstruction fran{es., }, in more detail.
real-world application, we need to know the expression of the recon-
struction frame{S., }... SinceT, is the frame transform of the frame

{qo(tu. )}u, we have [ll. REGULAR SAMPLING IN SHIFT-INVARIANT SPACES

An important case of sampling is the so-called regular sampling,

Ty(qo(tn, *)) i.e.,t, = nforaln € Z. As we mentioned in the Introduction,
many people have contributed to this area of research. The following
= Z (g (tns )y qo(tmy ) qo(tm, +) theorem contributes in a different direction. Since it is not so difficult

to understand, we just give a swift proof here. We will also need the
notation™ defined by

1 /. a2
9 Z <Z (t, — k)pe ik , 5= Z o (k) explik-).

k
k
" Obviously,* is a2r-periodic function inL?[0, 2.
Z u"(trn - k)¢e_l ’ qup(tma ) )
& Theorem 3: Let ¢ be a continuous stable generator such that

O((14]-])~?) forsomes > 1/2. Then the following three statements

1 Z <|/’5|2 Z Z gip(tn —k —De™ are equivalent.
T . . " 9
k 1

m 1) 0 < ||¢*||0 S ||if5*||Oo < 0.

‘ 2) Thereisaframé¢S,},. of V() suchthaf f(n)}, isamoment
Z Z grp(tm — k — l)elk'>q¢(tm, 3 sequence to the framgS,.}.. andf = >, f(n)S. for any
koot fevie).
1 » 2 i 3) There is a Riesz basi$S.}. of V() such thatf =
=5 Z <|’P| Z o(tn —k)e ™, >, f(n)S, forany f € V(p).
" k In these cases, thes,, } ., is defined by the formula$,, = So(- — n)
— (a.e) andSo = $/¢* (a.e.).
Z tin — >q¢(tm, ) Proof: Foranyf € V(¢), there is a scalar sequengs. },. € I*
k such thatf = 3, exp(- — k) holds both inL*(R) and pointwise.
1 " ke Since
= — Go(tm, - 7, (W th — ke
3w Tttne) [ 6T ot 191 = 2 |
X Z o(tm — E)et ™ duw. 1. 7”‘ |2
k = o % ; cie

2

Let 1
= . GL/Z Z ckeﬂk'

Anm = /‘2 Gy Z (tn = k)e Z ot — k)e ¥ de, g . )
0 - a | |
Z |f(k)|2:E ;ZCW(’V—I)G’“*

Then we have P

Q’W(tnv ) = % Z Anmsm- = E 95* Z Ckﬁiik'
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we can conclude that the fact This theorem implies that for regular sampling in shift-invariant
CHIfI1? < Z 1F(B)? < CIf| spaces, the reconstruction frafi, }, is an exact frame, i.e., a Riesz
T basis. This fact is also determined by the samglesk)}; of the
forany f € V() is equivalent to the fact generator, i.e.,C~" < |¢*| < C for some constard® > 1.

—1y~1/2 e 1/2 When ¢ is a stable continuousardinal generatoy that is, ™ =
NG < 971 < CliG, ”?‘)' 1 (a.e.). ThenSy = ¢, i.e.,So = . Therefore, the reconstruction
By Theorem 2, these arguments show the equivalenstatément 1) 5rmula becomeg = 3", f(k)o(- — k) forany f € V(y). By the
andstatement 2) _ way, the fact thastatement 1)mplies statement 3)s also found by

Consider they, defined by(8). For any scalar sequerfee} € I*,  walter [19] when, = O((1 + | - |)~*) for somes > 1. The formula
we have Sm = So(- — m) for anym € Z has also been found by Walter [19],

] Aldroubi and Unser [3], and Chen and Itoh [9] under their assumed
Z crde (ks ) conditions on the generatgr.

* Takey = sinc. Theng is a stable continuous cardinal generator.

2

1. , ik The shift-invariant spac¥ (¢) is the collection of allr-band signals
=517 E (n — k)cre of finite energy. Then, the classical Shannon sampling formula
) oosinw(- — k)
2 = E)y——~
: EDORILE-

1 . »
=5 GL/Z Z ge'* Z o(n — k)cpe*
' 1

’ automatically follows from Theorem 3.

2

! =12 Z il IV. PERTURBATION OF REGULAR SAMPLING IN
= ERN cke

27 - SHIFT-INVARIANT SPACES
Thenstatement 13hows Another important case of sampling is the perturbation of regular
2 sampling,t, = n+r, (r, € (=1, 1)) foranyn € Z. A funda-

1" IENGollo Y lexl” <

k

S cegelh. )

k
<N NGl 3 el
k

for any scalar sequende; }, € I°. It implies that the function se-
qguence{q.(n, -)}. is a Riesz basis of (). Then there is a unique
dual Riesz basi§S;, } of the Riesz basi§g..(n, -)}. biorthogonal to
{g.+(n, -)}» such thasstatement 3jolds. Sincestatement 3)mplies
statement 2)thereafterstatement 1automatically, it shows the equiv-

mental question in this case is to estimate the range of the perturbation
{r}«. Following Kadec’s theorem for the band-limited signals of fi-
nite energy, we have found an estimate for perturbation in the setting
of wavelet subspaces by using Riesz basis theory. In the following, we
will derive a sharp estimate by using frame theory.

In order to establish the algorithm for perturbation of regular sam-
pling in shift-invariant spaces, we need to introduce the function class
L)a,b] (A > 0,0 € [0,1),0 € [a, b] C [~1, 1]) defined and
used in our previous work [6]. We have reasoned that this class is an
appropriate collection by giving some propositions in that paper. Here
alence ofstatement 1andstatement 3) we will recall the definition and give an additional proposition, which

Finally, the formulaS, = So(- — n) andSy = 3/¢* can follow : . . . .
from [9] and [19]. But we would like to use Corollary 1 to derive it soare useful to the piecewise differentiable stable generators in many real

as to show the potential of Corollary 1. From (10), we have applications.
SR Definition 1: L} [a, b] (A >0, 0 €[0, 1) and0 € [a, b] C [~1, 1])
Apm = / E e~ Hnmmw g consists of all the measurable functighsfor which the norm
oot . . Yoo f(kto+r)—f(k+o)
Suppose thacx. } 1. are the Fourier coefficients of ther-periodic func- 1fll231a, 01 Y, }5‘15 . supy e < oo
. 5|2 . . TkreCla, B TR
tion '*g—' in L*[0, 27]. Then, we derivel,.., = c,—,, foranym, n €
Z,and The following proposition is very useful to the piecewise differen-
2% |2 N tiable generators in many real applications.
fn,mSm =qg,(n, )= ket X hat T, . . . . .
Z ‘ = el ) G, p* ¢ Proposition 1: Let functionf on R be differentialable on the inter-

" ) ) o valsk + o +[a, ] (¢ €10, 1),0 € [a, b] C [-1, 1]) foranyk € Z.

Suppose that the scalar(gequel{lde},L is the Fourier coefficients of |f ihe seriesy,, supp, 4 If'(-+ k4 0)| < oo thenf € Llla, b]

P . . . 7o . 2 P e . X c ! a,,_ Y o bl ’
the 2w-periodic functlonw in L]0, 2x]. Make an infinite-dimen- where ' is the derivative off.

sional matrixD = (dm—=). Then the matrixD is the inverse matrix Proof: Since
of the matrix4, because the formul’,, cx—nd,—; = 6 is equiv- oy
alent to the formula Z |,f(k+a+rk)—j'(k+a)|:z / f(k+o+t) dt‘
ikw nw _1jw 1jw k k 0
Z cre Z dp,e'™“e = eV (11) N
k K SZ/ |f' (k+o+t)|dt
and (11) automatically holds. Tlg_; used here is the Dirac function, x 70
which takes value wheneverk = j and takes valu® otherwise. .
Define the functionS, by the formulaS, = ¢/¢* in L*(R). From Ss‘;p I7el Z [5:15 |f (kto+)]
(11), we have ko
o itimplies f € Li[a, b]. O
S = “’Z;% So Z dim—ne™" = Soe” Now we show the theorem for perturbation of regular sampling in
P

shift-invariant spaces. We will also discuss some special cases after the
It showsS,,, = So(- — m) foranym € Z. O  proof.
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Theorem 4: Suppose thap is a continuous stable generator suctidence
thaty = O((1 +|-])~") for somes > 1/2, and

Do <&l < [[¢7lloe < o0

2) ¢ € Ly[a, D).
Then for any{ri. }». C [—7,, 7] N [a, ], there is a framd Sy }+. of
V() suchthatthe scalar sequerdgék+r1) } . isamoment sequence
to the frame{Si. }+ andf = 3>, f(k+7;)Sk holdsinL?(R) for any

FeVi(p)if
1/
()

Proof: Lett, = k + ri. By Theorem 2, we only need to show
that there is a constant > 1 such that

A < S It P
k

holds for anyf € V(). If we can show that there is a positive number

2
E cL

k

Recall the proof of Theorem 3. We know
613D ek <D IF I
k k

Therefore, we only need to show

2
<Z ) (hellgresuploal ) < #2071

k,
that is,||¢||La[a’b] sup g [rs|> < 8]|3*||o. This is exactly implied by
(12) O

A
>(||9:||Lé‘[a,b] sup |rs | ).
{

9

k

8™ (w)llo
||<r9||r,3[a,,h]

Zc

k

(12)

Once again, we are interested in the expression of the reconstruction

< ClIAIr?
frame{S,, }... By Corollary 1

# < 1 such that
K)F <> [F)P (13)
k

> 1f(te) = £
k
holds for anyf € V (), then
Q=0 S 1B <D 1F P <1463 |F (b
k k k

By Theorem 3statement 1implies that there is a constafit> 1 such
that

AP < IR <l
k,
forany f € V(¢). These arguments show that
CTHL=0|IFIP < X0 Il <+ o)1
k

forany f € V(y). By Theorem 2, Theorem 4 is shown.

All that remains to be shown is (13). For gn€ V(¢), there is a
scalar sequenciy }. € 17 such thatf = 3, cwe(- — k) holds both
in L?(R) and pointwise. Let

A= If) -
k

FoF

2

- Z Z cilp(ty — 1) — ok — 1))
k {
— Z Z ckcl tn - )

X (pltn = 1) = p(n = 1))
=Y ke Y (pltn —k) = p(n— k)
k,l n

pn—1)).

pn = k)

X (p(tn =1) =

Take

ag,1 = Z (p(tn = k) =
Thenax,: = aq, « holds for anyk, I € Z. Following the argument in
[6], we have

A= Z agicper < (Z fk) sup Z k]

e(n— k) (p(t, —1) —p(n=10)).

and

2
p 3 ol < (Il el )

Apyn = /‘M G5! 99(71, +rn — k)e_ikw
%
27 L y

G, (I +7n)e"™
[ey

« Z 99(1 + Tm)efilwei(m,fn)w dow.
]
Letm —n = k. Then

27 . T
Atk :/O G;l Z c,c(l+'rn)e”‘“ Z 99(1+7',L+k)67’[“6 k@ dw.
[

i

“,) the dw

7n+7n7 -

Let
Bn k

_ —lw

I+ (I+ rotr)e

) »’)Z

Then we have the formulas

27 .
-471(17,+Ie‘) :/ Bnk(w)ﬁlkw(w)(lw'
0

zlwz :

!

and

it
g -471 m et =
k

Z 4_/].n(n_’»k)ez‘(vrl*k)t

int Z /

tkw

Bok(w)e™™ dw.

Let
e [T ik
C, = E e'” / B (w)e™ dw.
- 0

Then{C., }. are the eigenvalues of the matrix Since the matrixd
is invertible with the inverse matrix " = (C, 'r.—..), from Corol-
lary 1, we haveS,, = 27C,, *§.(n + 1y, -) foranyn € Z. Simple

calculation shows that the formula

Go(n 415, )= c_i'l'G,_
holds for anyn € Z. Finally, we get the formula to calculate the re-
construction framg S, },, as
27 > ek + et
CnGy,
In a regular sampling case, =0 for anyn € Z, andC,, =G, /[’

Then we haves, = e~"“3/¢* and S, = ¢/¢*, that is, exactly the
result of Theorem 3.

e(l+r)e

A —in-
)

n

|2
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The estimate (12) is also derived in our previous work [6] wheholds inL*(R) forany f € V() if
the continuous stable generatoris orthonormal and satisfies = 1/A
O((1+]-])~*) for somes > 1. But in Theorem 4, the estimate (12) v < [1Zela: o _ (15)
also holds for a nonorthonormal continuous stable generator whenever v ||95||Lg[a,,b]
it satisfiesp = O((1 + | - |)7") for somes > 1/2. The authors
[6] also derived an estimate for perturbation of regular sampling in
shift-invariant spaces with a nonorthonormal continuous stable gener-
ator wheny satisfiesp = O((1 4 |- |)~7) for somes > 1. But that Since the Daubechies mother wavelets and the Meyer mother
estimate of [6] is somewhat awkward and rough. The examples in Se@velet are all the orthonormal continuous stable generators [11],
tion VI will make it more clear. [17], [21], the estimates by theorems in this correspondence are the
It is also worth noting that the reconstruction frame may turn out &ame to those derived by our previous works (see the discussion after
be a Riesz basis under the assumption of Theorem 4. It is also possitiieorem 4). We here calculate the B-spline of dedrédenoted by
to derive the result of Theorem 4 directly by Riesz basis theory. Bit;). We derive the estimatex, < 1/2, which is better than our
we do not touch Riesz basis in the preceding argument, and derive phevious estimatey, < 1/(2v/3), and which is shown by Liu and
result swiftly from Theorem 2. We leave the Riesz basis discussion\igalter to be optimal [16]. Unfortunately, we are not yet sure that the
future work. estimate

VI. EXAMPLES TO SHOW THE ALGORITHM

‘ 1Z¢ (o, w)llo
V. SHIFT SAMPLING IN SHIFT-INVARIANT SPACES sup e —
ce(—1,1) ||P||L;}[a,b]

Unfortunately, there are some important continuous stable genera- ] )
tors’s with [|*|Jo = 0. An obvious example is the B-spline of degredS optimal for a general continuous stable generator; and a question
2, which has been calculated in our previous works [4]-[6]. As dor&mains of what is the optimal estimate for a general continuous stable
by Janssen [13] for Walter's sampling theorem [19], and the authd#§nerator.

[6] for irregqlar sampling the_orem, we als_o treat it by shift samplin_g. Example 1 [10]: Take the B-spline of degree
Then the shift-sampling versions of sampling theorems can be attained -
by using the Zak transfori,.(c, -) (¢ € [0, 1)) defined by Ni(t) = txpo,1) + (2 = D)x[,2)-
. ThenN; = ™. Since||N1|| 1 = 3, we derive the estimate
Zy(o,-) =) (o +n)exp(in-). 14 ! Lol=1.1]
e(o:) ; #(o F ) explin) (14) rn, < 1/3.Suppose > 0 (orork <0)forallk € Z. Then

Since the proofs of the shift sampling theorems are very similar to those INUla—1,00 = 1Nl L2go, 0 = 2-

of Theor(_ams 3 ar!d 4, respectively, we here only to give the Stateme?ﬁserefore, the estimate#s;, < 1/2. Liu and Walter [16] have shown
of the shift sampling theorems by omitting the proofs. that the estimatey, < 1/2 is optimal whenr, > 0 (or r < 0) for
Theorem 5: Supposey is a continuous stable generator such thall k € Z. Compared to the estimate,, < 1/(2v/3) derived in our
© =O((1+|-)"*) for somes > 1/2. Then, for ar € [0, 1), the previous work, the present result does improve our previous one [6].
following three items are equivalent. Again, we want to know the structure of the reconstruction
] ] frame. For regular sampling i (1), from Theorem 3 we have
D0 <liZo(o Illo < 12500 e < o0- S, = Nyem /™, Thereforesn(: Ny(-—n—1)foranyn € Z.

2) Thereis a framg S, . }» of V() such that{f(n+0)}n iS@ Eor perturbation of regular sampling (N, ), from Corollary 1,

moment sequence to the frarfi§,, ., },, and

we have
f=3 f(n+0)Ss.n Su =27 N1e™ " 3" Ni(k +12)e™ [ (CuGny).
n k
holds inL*(R) for any f € V(¢). Suppose,, > 0foralln € Z. Then
. . 7(on . 27
3) There is a Riesz bas{®, » }» 0f V(¢) such that c. = Z e”"t/
F=3Y fm)S, g °
" Z N (I+ 7‘n)6ilwz N (1 + 7'n,+k-,)6ilw
holds inL?*(R) forany f € V(). o 1 ] RUE
In these cases, the reconstruction fraffig, » }» is derived by the for- Gy

2m

mulasS,.» = Sy 0(- — n) andS,. o = 3/Z,.(a, -).

ikt "
= (&4
The following is the shift-sampling version of the algorithm for per- LZ /0

turbation of regular sampling in shift-invariant spaces. , o , i
(rn + (]- + 7’71)6 )("n+k + (1 + "'n+k)6 ) tkw

Theorem 6: Supposey is a continuous stable generator such that x Gn, ¢

¢ =0((1l+]|-])"?°) for somes > 1/2, and

1) 0<|1Zes(o, o < (1240 )l < 00

2) p € L3a, b]. Cu@) =D e tnrtnin + 37 €™ unany (T4 ags)
k k

dw.

Letuy, = 027r (rn + (14 'rn)(fi”)GX,icik“’dw. Then

Then, for any{ri}r C [=70, 4, 7o, »] N [a, ], there is a frame ‘
{55,k }x of V(@) suchtha f(k + o + )}« is @ moment sequence —g it (I+75)e™ i
to the frame{ S, & }+ and Gn, '

f= Z flk4+0+4+7k)Ss + Z e Uk (Propk + Tngro1e” ).
k k
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Let Then we have 27 /27 +2/e < K* < 1/v/27+2. From Theorem
N . 3, for regular sampling iV’ (K), the reconstruction framgS,, },, is
B, = Z (Potk + Pogr—1e upre’™. given by
k

Sp =" 27r07“’2/2c7i"“’/z o (whzkm)?/2.
Since V4 )

For perturbation of regular sampling ¥ (K), the fact K’ =
2 /¢
1/V2xtet /% impliesK € Li[-1, 1] and

1K N3,y < 1/V27 (V2™ 4 4e712),
Therefore, we derive an estimate

Gy = lsin(-/2)[' ST |- /2 + ka| ™
I‘»

finally we have
& 2m(r, + (1 + 'I‘n)ei”)fvlef’."“ o )
" T (rpe @+ (14 70)) + Gry B ri < (VPP 422w ) (V2T 4 4) % 0,35,

. . . The right-hand side is larger thari4. It is difficult to give an explicit
The next example shows the importance of shift sampling theore@(pression of the reconstruction frarf§, }... But a computer-based

Example 2 [10]: Take the B-spline of degre® solution of{S,, }, can be derived from Corollary 1.

. t* 6t —2t> — 3 (3 -1 The next example is calculated to compare to the traditional Kadec’s
Na(t) = EX[D,L) + f){,u,z) + 5 X[2,3)- theorem.

Then s (w) = e’ (e +1)/2 = 0 atthe pointo = 7. Sowe have  Example 4: Take the Shannon sampling functisime = =°7C)

. . ; " >N ()
to use the shift sampling theorem. The Zak transfornVefis Thensine = \[_».o], sinc’ = 1, andGune = 1. This implies

Zny(1/2, w) = 1/8 + 3™ J4 4 ¥ /8. thatsinc is a continuous cardinal orthonormal stable generator of the
shift-invariant spac& (sinc). For regular sampling if (sinc), the re-

The facts construction framg S, }.. is given byS,, = sin(w(-—n))/(x(-—n)).
|Zny(1/2, w)| >3/4—-1/8—-1/8=1/2 For perturbation of regular sampling ¥i(sinc), Theorem 4 cannot
and be used, since the seri®$, |sin(rem)/((k+ re)w)| is generally di-

, vergent. To find a theorem like Theorem 4 that covers the Shannon
Zn,(1/2, m) = 1/2 sampling function is also a very interesting open problem. At present ,
imply || Zx, (15‘, J|lo = 1/2. Since the derivative however, we can only use Theorem 2. For gng V (siuc), a simple
o calculation shows
No(t) =txp, 1) + (3= 4t)xp,2) + (3 —t)X[2,3) .
N _ . A= fk+re) = F(R)
by Proposition 1, we havgV, ||L1/2[,1/47 174) = 2. Finally, we derive .
the estimate'; /5, v, < 1/4. ) B R
For regular/sanfpling i’ (N2), by Theorem 3, the reconstruction < (1= cosmr +sinmr)” Z | (R
frame{S., },. is determined bys,, = 8 Noe ™" /(146¢™ +¢2“) for k
anyn € Z. For perturbation of regular sampling (V2 ), since the Wherer = 7. Sincel — cosmr + sinmr < 1 whenr < 1/4, it
calculation to find an explicit expression of the reconstruction franfé€duces the estimate... < 1/4. Kadec [24] has shown that the esti-
{5}, is very complicated, we leave it to future work. Anyway, théNatersine < 1/4 is optimal. The reconstruction frame can be derived
computer-based solution can follow from Corollary 1. Shifting by difffom Corollary 1.
ferento, the estimate derived by shift sampling theorem is, in general,

different. To find a shift to derive an optimal estimate is a useful and ACKNOWLEDGMENT
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