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On Simple Oversampled A/D Conversion in
Shift-Invariant Spaces

Wen Chen, Member, IEEE, Bin Han, and Rong-Qing Jia

Abstract—It has been found that the quantization error for
a conventional oversampled analog-to-digital (A/D) conversion
behaves like 2 = ( 2) with respect to the sampling rate

. Recently, conventional A/D conversion has been extended to
A/D conversion based on shift-invariant spaces. As consequences
of such extension, it offers rich choices to build a nonideal A/D
conversion system of high accuracy and low computational com-
plexity, as well as reduces the noise sensitivity and computational
complexity in digital-to-analog (D/A) conversion. Therefore, it is
necessary to establish the estimate of quantization error for the
extended A/D conversion based on shift-invariant spaces. In this
paper, we introduce a constructive method to establish an estimate
of the quantization error as 2 = ( 2) for oversampled A/D
conversion in shift-invariant spaces. Meanwhile, we demonstrate
that the bit rate required to encode the converted digital signal
in such A/D conversion scheme only increases as the logarithm of
the sampling ratio. Therefore, the quantization error is an expo-
nentially decaying function of the bit rate. In order to establish
such an estimate, we need the nonuniform sampling theorem for
shift-invariant spaces, which, as the necessary preparation, is
studied prior to introducing the constructive method.

Index Terms—Analog-to-digital (A/D) conversion, bit rate, gen-
erator, prefiltering, quantization error, reconstruction frame, sam-
pling, shift-invariant space.

I. INTRODUCTION

D IGITIZING an analog signal requires discretization in
both time and amplitude. In a simple analog-to-digital

(A/D) conversion, the signal is first discretized in time using
regular sampling with a sampling interval , followed by
a uniform scalar quantization with a quantization step as
illustrated by

Analog signal Sampling

Digital signal Quantization

A signal is of finite energy if , where is the
square norm of defined by

(1)
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We also denote by the signal space of finite energy, that
is, . is band limited if
whenever for some , where is the Fourier
transform of defined by

(2)

In this case, is also called a -band signal. In a simple A/D
conversion device, for a -band input analog signal of finite
energy, if the sampling interval is smaller than the Nyquist
sampling interval , then the discretization in time
is reversible by Nyquist sampling theorem [57]. However, the
discretization in amplitude leads to an irreversible loss of infor-
mation. Consequently, the reconstructed analog signal is gen-
erally different from the original signal, and the error
is referred to as quantization error.

In the 1940s, by modeling the quantization error as an uncor-
related uniformly distributed additive noise independent of the
input, Bennett [8] proved that the deviation of the additive noise
model is given by

(3)

This formula suggests that the conversion accuracy can be im-
proved by refining resolution of either discretization in time or
discretization in amplitude. Due to the costs involved in building
high-resolution quantizers, high accuracy of modern techniques
for A/D conversion is achieved by refining time discretization
instead. This technique is referred to as an oversampled A/D
conversion. The reasons to use an oversampled A/D conver-
sion also include resilience to additive noise [25], resilience
to quantization [40], numerical stability of reconstruction [25],
greater freedom to capture significant signal characteristics [6],
[7], [61], as well as mitigating the effect of losses in packet-
based communication systems [38], [39]. But refining the res-
olution in time only reduces the quantization error by a linear
factor while refining that in amplitude reduces the quantization
error by a quadratic factor as suggested by (3). This inhomo-
geneity in time and amplitude dimensions is counterintuitive.

Recently, it was observed that Bennett’s estimate is, however,
misleading as to the actual accuracy of an oversampled A/D
conversion. Moreover, the additive-noise model is not asymp-
totically valid [10], [11], and experimental results demonstrate
that for a high oversampling ratio , the error decay
rate of linear reconstruction is in fact lower than that implied by
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the additive noise model [59]. In 1992, Thao and Vetterli [60]
showed that the quantization error behaves as

(4)

for the periodic band-limited signals by using nonlinear recon-
struction algorithms. Furthermore, the result in [60] has been
extended to the setting of the -band signals by Cvetkovic and
Vetterli [13] in 1999 though the condition is restrictive and rules
out all decaying signals.

It is commonly believed that even though oversampling im-
proves accuracy, it has adverse impact on the overall rate-dis-
tortion performance of the conversion since the bit rate in-
creases linearly with the oversampling ratio , , when
the standard binary-encoding scheme—pulse-code modulation
(PCM) is used. Consequently, . This
poor performance of oversampled A/D conversion appears be-
cause the correlation among the quantized samples is neglected
in PCM as the sampling interval tends toward zero. Recent re-
search by Cvetkovic and Vetterli [12], [13] reveals that the bit
rate required to encode the converted digital signal in a simple
oversampled A/D conversion increases only as a logarithm of
the oversampling ratio . This fact follows from
the observation that an oversampled A/D conversion amounts
to characterizing a signal by its so-called quantization threshold
crossings (see Section III). Then
for some constant . Cvetkovic and Daubechies [14] also
proposed an algorithm to demonstrate the theory using frame
theory [69] and wavelet theory [25].

In real-world applications, however, the input analog signals
to A/D conversion device are usually non-bandlimited. The con-
ventional approach to treat the non-bandlimited signal is to pre-
filter the signal by passing it through a low-pass filter [8], [45],
[54], [57], [66]. The prefiltered signal is bandlimited and suit-
able for A/D conversion. The error between the prefiltered signal
and the original signal is referred to as alising error, which can
be made arbitrarily small as long as the bandwidth of the filter
is large enough.

Recently, the conventional A/D conversion has been extended
to the A/D conversion based on shift-invariant spaces
[15], [17], in which, the input signal is prefiltered by a quasi-
projection into shift invariant space and sampling quantiza-
tion is performed in the shift-invariant spaces as illustrated by

Input signal Quasi-projection:

Digital signal Sampling Quantization:

As consequences of such extension, it offers rich choices to
build a nonideal A/D conversion system of high accuracy and
low computational complexity, as well as reduces the noise
sensitivity and computational complexity in digital-to-analog
(D/A) conversion [15], [17]. The accuracy of the extended
prefiltering is measured by the aliasing error ,
which is shown to decay with respect to the dilation of the
shift-invariant space at the rate as the exponent of the Sobolev
space to which the signal belongs, provided that satisfies

the sufficient order Strang–Fix condition [48], [49], [58]. This
implies that the aliasing error can be made arbitrarily small
as long as the dilation , understood to be the bandwidth of
the prefiler in the general sense, is large enough. In this paper,
we focus on the quantization error of the A/D conversion in
shift-invariant spaces. Hence, we will ignore the prefiltering
and consider the signal taken from a shift-invariant space.

Following the extended A/D conversion in shift-invariant
spaces, it is desirable that the recently derived estimate of
quantization error in (4) for the conventional oversampled A/D
conversion can be moved to the oversampled A/D conversion
in shift-invariant spaces. Our objective in this paper is to derive
such advanced estimate of quantization error for the oversam-
pled A/D conversion in shift-invariant spaces, which, not like
the conventional case, involves complicated classical analysis.

In this paper, we will introduce a constructive way to establish
the estimate for the oversampled A/D conversion
in shift-invariant spaces, and show that the bit rate required to
refine the discretization in time increases only as a logarithm of
the oversampling ratio. Therefore, the quantization error of the
conversion is an exponentially decaying function of the bit rate.
In order to show these results, we should use the sampling theo-
rems for shift-invariant spaces. Therefore, we will recall the ad-
vances in sampling in shift-invariant spaces and establish some
new sampling theorems for shift-invariant spaces in Section II.
With the help of these sampling theorems for shift-invariant
spaces, we will be able to introduce a single-bit oversampled
A/D conversion scheme in shift-invariant spaces, and estimate
the quantization error for the extended oversampled A/D con-
version scheme in Section III.

II. SAMPLING IN SHIFT-INVARIANT SPACES

In this section, we will recall the sampling theorems for shift-
invariant spaces and establish some new sampling theorems for
shift-invariant spaces, which will be used in Section III to estab-
lish the estimate of quantization error for the oversampled A/D
conversion in shift-invariant spaces.

A. Shift-Invariant Spaces

Let us briefly recall the shift-invariant spaces [27], [46] at
first. For a , the (scaled) shift-invariant space gen-
erated by the generator is defined as

(5)

where , called the scale of the , is understood to be band-
width in prefiltering or sampling ratio in sampling. In this paper,
we also assume that is a Riesz basis1 of , that
is, almost everywhere for some positive constants

and [25], [27], where . It is well

1A sequence of vectors fx g in an infinite-dimensional Banach space X is
said to be a Schauder basis for X if to each vector x in the space there corre-
sponds a unique sequence of scalars fc g such that x = c x . The
convergence of the series is understood to be with respect to the strong (norm)
topology of X ; in other words, kx � x k ! 0 as m;n ! 1. A
Schauder basis for a Hilbert space is a Riesz basis if it is equivalent to an or-
thonormal basis, that is, if it is obtained from an orthonormal basis by means of
a bounded invertible operator (see Young [69]).
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known that the Riesz basis is an orthonormal
basis of if and only if . In this case, the gener-
ator and the are said to be orthonormal. Obviously, the
Riesz basis of is regarded to be nearly
orthonormal if is close to . We also assume that is con-
tinuous in this paper. In particular, taking , the

is exactly the -band signal space of finite energy.

B. Sampling in Band-Limited Shift-Invariant Spaces

In the framework of shift-invariant spaces, the classical sam-
pling theory for band-limited signals can be formulated to sam-
pling in . A discrete set is called a
sampling set for a signal if can be perfectly reconstructed
from its samples . If for some
constant , is called a regular sampling set and the
is called sampling interval. The regular sampling in is
referred as the Nyquist sampling theorem [57], [66], i.e.,

(6)

for any and any positive number . The
Nyquist sampling interval is defined by . If

, is also called an oversampling set.
Let be a perturbation of the regular sam-

pling set . Kadec [69] showed that is a sampling set for
if . Moreover, such sampling set is

stable, that is,

(7)

for some constant and all .
The general nonuniform sampling in is completely

understood by the work of Beurling, Landau, and others [9],
[34], [50]. The set considered by them are sepa-
rated, that is, , where is the so-called
separation of . Let denote the minimum number of
points of to be found in the interval , formally

The Beurling lower density is defined by

(8)

Then Beurling–Landau theorem says that a separated set is
a stable sampling set for if . Conversely,

if a separated set is a stable sampling set for
.

C. Advances in Sampling in Shift-Invariant Spaces

Sampling in a general shift-invariant space for a con-
tinuous stable generator is a relatively recent and active area
of research. Observing that is a scaling function of a mul-
tiresolution analysis [25] (MRA), Walter [64] first studied the
sampling in wavelet subspaces, and found a regular sampling

theorem for a class of wavelet subspaces, which is then extended
to the shift sampling in wavelet subspaces by Janssen [43]. On
the other hand, Aldroubi and Unser [5] studied the sampling
procedure in shift-invariant spaces, and established a more com-
prehensive sampling theory for shift-invariant spaces.

Suppose that a continuous stable generator decays with
order for some . Define the function
by

(9)

Chen and Itoh [19] showed that is a sampling set
for if and only if . Moreover, Chen,
Itoh, and Shiki [17], [24] showed that is a stable
sampling set for if and only if

In this case, there is a so-called reconstruction frame
determined by such that

(10)

This covers Nyquist sampling theorem since . The
oversampling in is studied by Walter [65],
Xia [67], and Chen and Itoh [20], [21] using MRA[25], which
says that

(11)

provided that is refinable, and . However, so far there
are very few results on the general oversampling in

.
For perturbation of regular sampling in ,

, Liu and Walter [53], and Chen, Itoh, and Shiki [22]
tried to extend Kadec’s theorem to a class of wavelet subspaces.
But they actually did not get a Kadec-type extension. Then
Chen, Itoh, and Shiki [23] introduced a function class
( , , and ), consisting of all
the measurable functions, for which the norm

(12)

They obtained an estimate for the perturbation such that
is a stable sampling set for if is refinable in .

The result is sharpened in the recent work of Chen, Itoh, and
Shiki [24] in the setting of shift-invariant spaces. In particular,

is a stable sampling set for if

, and

(13)
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For the general nonuniform sampling in a shift-invariant
space , , Liu [52], and Aldroubi and Feich-
tinger [2] applied the Feichtinger–Gröchenig iterative algorithm
[30] to spline and shift-invariant spaces, to show that
is a sampling set if the maximum gap between
consecutive samples is sufficiently small. Explicit estimates are
known only for a few examples and they are far from optimal.
In 1999, Aldroubi and Gröchenig [3] succeeded in extending
Beurling–Landau’s result to the spline shift-invariant spaces.
For the general shift-invariant spaces, even for these generated
by a compactly supported function, corresponding results are
unknown so far.

D. A Nonuniform Sampling Theorem for Shift-Invariant
Spaces

It has been understood that is a sampling set
for if the maximum gap between con-
secutive samples is sufficiently small [2]. It will be of great in-
terest to know how small the maximum gap should be. Although
this has been discussed in [2], in this subsection, we will estab-
lish a nonuniform sampling theorem for a general shift-invariant
space, which gives an explicit upper bound for the maximum
gap.

For a separated set , our objective in this subsec-
tion is to find some conditions on such that

(14)

for some constant ; in other words, is a stable sam-
pling set for . We need to use Wirtinger’s inequality [35]
described in the following lemma.

Lemma 1: If , , and either or
, then

With the assistance of Wirtinger’s inequality, we then are
able to show the following nonuniform sampling theorem. Our
method is inspired by the argument presented in [35].

Theorem 1: Suppose that the generator is differentiable
and , then the separated set is a stable
sampling set for if the maximum gap of satisfies

Proof: Suppose that the separated set . Let
. Make a piecewise-constant function

where is the characteristic function of the interval
. Since , by Wirtinger’s inequality

and

Since and , we obtain

that is,

This immediately implies that

Then

(15)

Suppose that is the separation of . Then we derive

(16)

On the other hand, since , we have
. By Parserval identity, we derive

Similarly, using Parserval ideantity, we also have

Combining these two equations, we derive

From (15), this immediately implies that
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From (16), we obtain

(17)

Since , (17) shows the right-hand side in-
equality in (14). In order that (17) shows the left-hand side in-
equality in (14), it suffices to have

that is equivalent to

This completes the proof.

If is a stable sampling set for , a perfect reconstruc-
tion formula using frame theory has been presented in [24].
Since this reconstruction result will be used in Section III to
estimate the quantization error, we cite it as follows.

Theorem 2: Assume that is a continuous stable generator.
If is a stable sampling set, then
for any , where the reconstruction frame is
derived by the formula

(18)

where is the inverse matrix of the infinite-dimen-
sional matrix , and

(19)

Several remarks are in order.
1) Aldroubi and Gröchenig [3] have derived the right-

hand side inequality in (14) under the assumption
. But in (17), this condition

is removed.

2) Since , can be simply calculated by

3) In [52], a similar estimate as Theorem 1 has been derived
for the iterative algorithm in spline wavelet spaces using

and . However, the estimate in
Theorem 1 is better than that in [52], though the estimate
in [52] can be extended to general shift-invariant spaces
as done in [18]. As another advantage of Theorem 1, it
results in Theorem 2 which is useful in estimating the
quantization error in Section III.

E. Numerical Results

We see some typical shift-invariant spaces to demonstrate
Theorem 1.

1) Band-Limited Shift-Invariant Spaces: In , we
have

and

Then

By Theorem 1, this implies that the maximum gap ,
which coincides with the conventional Burling–Landau the-
orem. This also shows that Theorem 1 is optimal for the
bandlimied shift-invariant spaces. This optimality has also been
indicated in [35].

2) B-Spline Shift-Invariant Spaces: In , the gener-
ator is defined by the -times convolutions of the charac-
teristic function of the interval , i.e.,

Since B-splines are refinable, it satisfies the Strong-Fix condi-
tion. Hence, we can perform A/D conversion in . Taking
the Fourier transform of , we have . This
implies that

and

Fig. 1 shows the estimate derived by Theorem 1 versus the the
degree of the B-splines. We will observe that the estimate de-
crease as increases. In [3], Aldroubi and Gröchenig showed
that the estimate can be for spline shift-invariant spaces.
This implies that Theorem 1 is not yet optimal. But the advan-
tage of Theorem 1 is its applicability to general shift-invariant
spaces.

3) Gabor Shift-Invariant Spaces: The Gaussian kernel is de-
fined by . Then . Make

such that . Then satisfies the Strang–Fix
condition and . Hence, we can perform A/D
conversion in . Meanwhile, as an advantage of , we have
that is exponentially decaying in both time and frequency do-
mains. Notice that

and

Matlab shows that the estimate is .
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Fig. 1. The upper bound versus the order N of the B-spline.

III. QUANTIZATION IN SHIFT-INVARIANT SPACES

We are ready to introduce a dithered single-bit oversampled
A/D conversion scheme in shift-invariant spaces using the
nonuniform sampling theorem established in the last section.
Our objective in this section is to establish the estimate of quan-
tization error for the oversampled A/D conversion
in shift-invariant spaces. We will also demonstrate the fact that
the bit rate required to encode the converted signal only increases
as logarithm of the sampling rate. Therefore, the quantization
error is an exponentially decaying function of the bit rate.

A. A Single-Bit Oversampled A/D Conversion Scheme in
Shift-Invariant Spaces

We now introduce the dithered single-bit oversampled
A/D conversion scheme [14] for shift-invariant spaces. In this
scheme, we consider such a signal which is bounded
above by a finite number , that is,

In real-world applications, this is exactly what one does in prac-
tice (gain control) [28]. Without loss of generality, we assume

for convenience. A so-called deterministic dither func-
tion plays a crucial role in this scheme (see Fig. 2). Usually,
the dither function is differentiable and satisfies

An appropriate example of a dither function is the sinusoidal
function .

Let . Since is bounded
below by , and alternates in sign consecutively, there
is at least one zero crossing such that .
Since

(20)

we have

(21)

It shows that is separated. Since ,
by Theorem 1, forms a stable sampling set for

if

Let be a sufficient small positive number such that
is a positive integer. Let . Then

For , if
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Fig. 2. A dithered A/D conversion scheme C . h is a dither function. f is an input analog signal to the A/D conversion. The functions h and f have at least
one intersection t in each interval I = (n=�; (n+1)=�). I is separated by the sampling interval � as I = n=�+[ [�m; �(m+1)]. The dithered A/D
conversion only records the first m such that t is an intersection in I . Then the A/D conversion approximates f(t ) by h(s ) with s = t + �=2.
By Theorem 1, ft g forms a stable sampling set for V (') if � is large enough.

then there is a zero crossing . Let
, and . When is

small enough, . Then .
It suggests that we can define an A/D converter

as

(22)

The bits needed to specify are .
Specifying the information about zero crossing of on
the interval requires bits. Thus, the
bit rate needed for specifying the location of one zero crossing
within is .

In order to find the zero crossing within , we only need
to look at . The first from to
such that changes sign is the .
But we only need one bit to record the . This is
why the dithered A/D conversion scheme is called a single-bit
scheme.

B. Accuracy Analysis for Quantization Error

For a given dither function , an analog signal can be con-
verted into a digital signal by the A/D converter . In this
subsection, we discuss how much information about a signal

can be reconstructed from the converted digital
signal . We need the weighted Wiener amalgam space

for some , consisting of all the measurable functions
, for which the norm

(23)

where the Wiener amalgam space consisting of all the mea-
surable functions , for which the norm

We also need the following proposition about shift-invariant
spaces.

Proposition 1: Assume that is a differentiable stable gen-
erator in such that . Then there is an orthonormal
differentiable stable generator in such that and

.

In order to show this proposition, we need the following
extension of Wiener theorem on the Fourier coefficients of a

-periodic function [51].

Lemma 2: Suppose for all
with . If is complex valued and holo-
morphic on some open set containing , and

, then .

Proof of Proposition 1: We consider and shift the
result to by rescaling. Take such that

(24)
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Then is an orthonormal stable generator of [25], [27].
Note that the -periodic function with
the Fourier coefficients

(25)

Then

(26)

Write . Then .
By Lemma 2, we have since .
Therefore,

(27)

It shows . On the other hand

(28)

We therefore conclude that . This completes the proof.

We also need another result about the decaying property of
the entries of an infinite-dimensional matrix found by Jaffard
[45]. This result has been used for sampling in shift-invariant
spaces by Gröchenig in [36].

Lemma 3: Suppose that the infinite-dimensional matrix
is invertible and bounded as an operator: . Let

. If for some , then
.

Now we are ready to estimate the quantization error for the
dithered A/D conversion scheme presented in the last subsec-
tion. It is formulated in the following theorem.

Theorem 3: Assume that is a stable generator in such
that . Suppose that the differentiable dither function

satisfies . Then the quantization error in the
dithered A/D conversion scheme behaves as .

Proof: By Proposition 1, there is an orthonormal differ-
entiable stable generator such that and

. Without loss of generality, we can assume that
is an orthonormal stable generator. Then . Let be the

reconstructed analog signal from the digital signal
by the reconstruction formula in Theorem 2. Then

and

(29)

where is the inverse matrix of the infinite-dimen-
sional matrix , and

(30)

The assumption implies that

for some constant . Hence,

(31)

Simplifying the preceding inequality, we have

(32)

This finally implies that

(33)

with
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As we have proved in the previous subsection in (21), we have

(34)

Therefore, and consequently

By Lemma 3, we derive . Then

(35)

(36)

So, we conclude that . This completes the proof.

Since the bit rate required to encode the converted digital
signal only increases as a logarithm of the sampling ratio ,

. Therefore the quantization error is an exponentially
decaying function of the bit rate . Since only
one bit is required for quantization, the dithered A/D conversion
scheme is easy to be implemented in practice.

Recently, as a promising oversampled A/D conversion
scheme, the sigma–delta modulation [32], [33] has attained
tramendous attention. Following Gray’s accuracy analysis for
the sigma–delta modulator with the dc and sinusoidal inputs,
Gunturk [41], Daubechies and Devore [26], and the present
authors [16] recently considered the sigma–delta modulation
with the input of bandlimied signals. As a future work, it is
also of great interest to extend this result to the shift-invariant
spaces.

IV. CONCLUSION

In this paper, we study the oversampled A/D conversion in
shift-invariant space, in which an analog signal is prefiltered
by a quasi-projection into the shift-invariant spaces, and sam-
pling quantization is performed in the shift-invariant spaces. It
has been shown that the aliasing error between the prefiltered
signal and the original signal can be made arbitrarily small as
long as the dilation of the shift-invariant space is large enough.
By ignoring the aliasing error in this paper, the accuracy of the
extended A/D conversion is then determined by the quantiza-
tion error. In this paper, we introduce a constructive method to
establish the estimate of quantization error, and successfully es-
tablish the estimate with respect to the sampling
interval . Meanwhile, the bit rate required to encode the con-
verted signal only increases as logarithm of the bit rate. There-
fore, the quantization error is an exponentially decaying func-
tion of the bit rate. The theory and methodology in this paper
will stimulate the engineering research in A/D conversion in

shift-invariant spaces and provide a possible suggestion for the
development of the next-generation communication systems.
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