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Abstract—Heterogeneous cellular networks (HCNs) with em-
bedded small cells are considered, where multiple mobile users
wish to download network content of different popularity. By
caching data into the small-cell base stations, we will design
distributed caching optimization algorithms via belief propagation
(BP) for minimizing the downloading latency. First, we derive
the delay-minimization objective function and formulate an opti-
mization problem. Then, we develop a framework for modeling
the underlying HCN topology with the aid of a factor graph.
Furthermore, a distributed BP algorithm is proposed based on
the network’s factor graph. Next, we prove that a fixed point
of convergence exists for our distributed BP algorithm. In order
to reduce the complexity of the BP, we propose a heuristic BP
algorithm. Furthermore, we evaluate the average downloading
performance of our HCN for different numbers and locations
of the base stations and mobile users, with the aid of stochastic
geometry theory. By modeling the nodes distributions using a
Poisson point process, we develop the expressions of the average
factor graph degree distribution, as well as an upper bound of the
outage probability for random caching schemes. We also improve
the performance of random caching. Our simulations show that
1) the proposed distributed BP algorithm has a near-optimal delay
performance, approaching that of the high-complexity exhaustive
search method; 2) the modified BP offers a good delay perfor-
mance at low communication complexity; 3) both the average
degree distribution and the outage upper bound analysis relying
on stochastic geometry match well with our Monte-Carlo simula-
tions; and 4) the optimization based on the upper bound provides
both a better outage and a better delay performance than the
benchmarks.
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I. INTRODUCTION

W IRELESS data traffic is expected to increase by a factor

of 40 over the next five years, from the current level of

93 Petabytes to 3600 Petabytes per month [1], driven by a rapid

increase in the number of mobile users (MU) and aggravated

by their bandwidth-hungry mobile applications. A promising

approach to enhancing the network capacity is to embed small

cells relying on low-power base stations (BS) into the existing

macro-cell based networks. These networks, which are referred

to as heterogeneous cellular networks (HCN) [2]–[7], typically

contain regularly deployed macro-cells and embedded femto-

cells as well as pico-cells [8]–[10] that are served by macro-

cell BSs (MBS) and small-cell BSs (SBS), respectively. The

aim of these flexibly deployed low-power SBSs is to eliminate

the coverage holes and to increase the capacity in hot-spots.

There is evidence that the MUs’ downloading of video on-

demand files is the main reason for the growth of data traffic

over cellular networks [11]. According to the prediction of

Cisco on mobile data traffic, the mobile video streaming traffic

will occupy 72% percentage of the overall mobile data traffic

by 2019. Often, there are numerous repetitive downloading re-

quests of popular contents, such as online blockbusters, leading

to redundant data streaming. The redundancy of data transmis-

sions can be reduced by locally storing popular data, known as

caching, into the local SBSs, effectively forming a local cloud

caching system (LCCS). The LCCS brings the content closer

to the MUs and alleviates redundant data transmissions via

redirecting the downloading requests to local SBSs. Also, the

SBSs are willing to cache files into their buffers as long as they

can, since caching is capable of significantly reducing the tele-

traffic load on their back-haul channels, which are expensive.

In [12], the authors study the caching strategies of delay-

tolerant vehicular networks, where the data subscribers and

“helpers” are always moving and the links between them are

opportunistic. By proposing an efficient algorithm to carefully

allocate the network resources to mobile data, the decision is

made as to which content should use the erasure coding, as well

as conceiving the coding policy for each mobile data. In [13],

optimal cache replacement policies are investigated. The cache

replacement process takes place after the data caching process

has been completed, and determines which particular data item

should be deleted from the cache, when the available storage

space is insufficient for accommodating an item to be cached.
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Since the HCN structure has been widely adopted in current

cellular networks and will prevail in near-future networks,

we are interested in the SBS-based LCCS in the context of

HCNs. In contrast to the vehicular networks discussed in [12],

[14], where the mobility and the opportunistic communication

contact are important issues, in the context of HCNs, the BSs

are always fixed, and the MUs are assumed to be moving

at a low speed. Thus, we ignore the mobility issues in the

HCNs and assume that each MU is associated with a fixed

BS during file-downloading. At the time of writing, there are

already technical reports highlighting the advantages of caching

in HCNs [15]–[17]. Based on these reports, the LCCS with

SBS caching for HCNs is capable of efficiently 1) reducing the

transmission latency due to short distance between the SBSs

and the MUs, 2) offloading redundant data streams from MBSs,

and 3) alleviating heavy burdens on the back-haul channels

of the SBSs. Therefore, SBS-based caching will bring about

significant breakthroughs for future HCNs.

The concept of caching is common in wireline networks

and computer systems. However, research on efficient caching

design for wireless cellular networks relying on small cells is

still in its infancy [11], [18]. Usually, data caching consists of

two phases: data placement and data transmission. During the

data placement phase, data is cached into local SBSs in order

to form an LCCS. In the data transmission phase, MUs request

data from the LCCS. The focus of wireless caching research is

mainly on the optimization of data placement for ensuring that

the downloading latency is minimized. The caching optimiza-

tion is a non-trivial problem. This is due to the massive scale of

video contents to be stored in the limited memory of the SBSs.

The survey papers [11], [18] report on a range of attractive

caching architectures conceived for future cellular networks.

In [19], a caching scheme is proposed for a device-to-device

(D2D) based cellular network on the MUs’ caching of popular

data. In this scheme, the D2D cluster size was optimized for

reducing the downloading delay. In [20], [21], the authors

propose a caching scheme for wireless sensor networks, where

the protocol model of [22] is adopted. In [23], a femto-caching

scheme is proposed for a cellular network combined with SBSs,

where the data placement at the SBSs is optimized in a cen-

tralized manner for reducing the transmission delay imposed.

However, [23] considers an idealized system, where neither the

interference nor the impact of wireless channels is taken into

account. The associations between the MUs and the SBSs are

pre-determined without considering the specific channel con-

ditions encountered. Furthermore, this centralized optimization

method assumes that the MBS has perfect knowledge of all the

channel state information (CSI) between the MUs and SBSs,

which is impractical.

Against this background, in this paper, we consider dis-

tributed caching solutions for HCNs operating under more

practical considerations. Our contributions consist of two parts.

1) In the first part, we propose distributed caching algorithms

for enhancing the downloading performance via belief

propagation (BP) [24]. The BP algorithm is capable of

decomposing a global optimization problem into multi-

ple sub-problems, thereby offering an efficient distribu-

tive approach of solving the global optimization problem

[25]–[27]. As the BP method has been widely adopted

for distributively solving resource allocation in cellular

networks, we arrange file placement via BP algorithms by

viewing files as a type of resource.

2) In the second part, we analyze the average caching perfor-

mance based on stochastic geometry theory [28], [29]. We

are interested in optimizing the average performance of a

set of HCNs, where the channels exhibit Rayleigh fading

and the distributions of network nodes obey a Poisson

point process (PPP) [30].

Specifically, our contributions in the first part are follows.

1) We commence by deriving the delay as our optimization

objective function (OF) and formulate the problem as

optimizing the file placement.

2) We develop a framework for modeling the associated

factor graph based on the topology of the network. A

distributed BP algorithm is proposed based on the factor

graph, which allows the file placement to be optimized in

a distributed manner between the MUs and SBSs.

3) We prove that a fixed point exists in the proposed BP

algorithm and show that the BP algorithm is capable of

converging to this fixed point under certain conditions.

4) To reduce the communication complexity, we propose a

heuristic BP algorithm.

Our contributions in the second part are follows.

1) By following the stochastic geometry framework, we

model the MUs and SBSs in the HCN as different ties

of a PPP. Furthermore, we develop the average degree

distribution of the factor graph in the BP algorithm.

2) A random caching scheme is proposed, where each SBS

will cache a file with a pre-determined probability. We

can characterize the average downloading performance by

outage probability (OP) and develop a tight upper bound

of the OP expression with a closed form under the random

caching scheme.

3) Based on the upper bound derived, we further improve

the OP performance of random caching by optimizing the

probabilities for caching different files.

In the simulations, we first investigate the average degree

distribution of the factor graph, as well as the OP and the delay

of the random caching schemes, in conjunction with various

PPP parameters and power settings. It is shown that both the

degree distribution and our upper bound analysis match well

with the results of Monte-Carlo simulations. Furthermore, the

optimization based on the upper bound provides both a better

OP and a better delay than the benchmarks. Then we evaluate

the distributed BP algorithm in our HCNs having a fixed num-

ber of BSs and MUs. It is shown that the proposed distributed

BP algorithm has a near-optimal performance, approaching that

of the exhaustive search method. The heuristic BP also offers a

relatively good performance, despite its significantly reduced

communication complexity.

The rest of this paper is organized as follows. We describe

the system model in Section II and present the distributed file

downloading problem relying on caching in Section III. We
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then propose a distributed BP algorithm in Section IV, where

the proof of existence for a fixed point is also presented. In

Section V, a heuristic BP algorithm is proposed for reduc-

ing the associated communication complexity. Our stochastic

geometry based analysis is detailed in Section VI, where the

average degree distribution of the factor graph and the OP

of the random caching scheme are developed. Our simulation

results are summarized in Section VII, while our conclusions

are provided in Section VIII.

II. SYSTEM MODEL

Let us consider an HCN consisting of a single MBS and K

SBSs illuminating both femto-cells and pico-cells, while sup-

porting J MUs randomly located in the network. Let us denote

by B0 the MBS and by BBB = {B1,B2, · · · ,BK} the set of the

SBSs, where Bk, k ∈ KKK = {1, 2, · · · , K}, represents the k-th

SBS. Furthermore, denote by UUU = {U1,U2, · · · UJ} the set of

the MUs, where Uj, j ∈ JJJ = {1, 2, · · · , J}, represents the j-th

MU. The MBS B0 caches files into the memories of the SBSs

during off-peak time via back-haul channels. Once the caching

process is completed, the MBSs and SBSs are ready to act upon

the downloading requests of the MUs.

We assume that a dedicated frequency band of bandwidth W

is allocated to the downlink channels spanning from the SBSs

to the MUs for file-dissemination. For reasons of careful load

balancing, we consider the “SBS-first” constraint, where each

MU will try to download data from its adjacent SBSs, unless the

required files cannot be found in these SBSs. In this case, the

MU will turn to the MBS for retrieving the required files. For

the sake of simplicity, we assume that the MBS will support a

fixed download rate, denoted by C0, for the MUs in the channels

which are orthogonal to those spanning from the SBSs to MUs.

In order to satisfy the “SBS-first” constraint for offloading

data from the MBS, some incentives may be provided for

the MUs. For example, downloading from the SBSs is much

cheaper than from the MBS. Here, we assume that the down-

load rate C0 supported by the MBS is never higher than the low-

est download rate supported by the SBSs. This limit imposed on

the download rate from the MBS will not only encourage the

MUs to download from the SBSs first, but also effectively con-

trol the data traffic of the MBS imposed by file downloading.

Denote by Pk the transmission power of the k-th SBS, and by

σ 2 the noise power at each MU. The path-loss between Bk and

the MU Uj is modeled as d−α
k,j , where dk,j is the distance between

Bk and Uj, and α is the path-loss exponent. The random channel

between Bk and Uj is Rayleigh fading, whose coefficient hk,j

has the average power of one. We assume that all the downlink

channels spanning from the SBSs to the MUs are independent

and identically distributed (i.i.d.).

Suppose that each file is split into multiple chunks and each

chunk can be downloaded by an MU in a short time slot. Due to

the short downloading time of a chunk, we assume furthermore

that the probability of having two MUs streaming a chunk at

the same time (or within a relative delay of a few seconds)

from the same SBS is basically zero [20]. Hence, neither direct

multicasting by exploiting the broadcast nature of the wireless

medium nor network coding is considered. Furthermore, we

focus our attention on the saturated scenario, where the SBSs

keep transmitting data to the MUs [31]. Hence, each MU is

subject to the interference imposed by all the other SBSs in

BBB, when downloading files from its associated SBS. Given a

channel realization hj = [h1,j, · · · , hK,j], the channel capacity

between Bk and Uj can be calculated based on the signal-to-

interference-plus-noise ratio (SINR) as

Ck,j = W log

⎛
⎜⎝1 +

h2
k,jd

−α
k,j Pk

∑
q∈KKK\{k}

h2
q,jd

−α
q,j Pq + σ 2

⎞
⎟⎠ . (1)

Due to the ‘SBS-first’ constraint, we have C0 ≤ Ck,j, ∀ k ∈
KKK, j ∈ JJJ .

Denote by FFF the library or set of files, which consists of

Q popular files to be requested frequently by the MUs. The

popularity distribution among the set FFF is represented by PPP =
{p1, p2, · · · , pQ}, where the MUs make independent requests of

the f -th file, f = 1, · · · , Q, with the probability of pf . Without

any loss of generality, all these files have the same size of

M bits. We assume that B0 has a sufficiently large memory

and hence accommodates the entire library of files, while the

storage of each SBS is limited to G files, where we have G < Q.

Without a loss of generality, we assume that Q/G is an

integer. The Q files in FFF are divided into N = Q/G file groups

(FG), with each FG containing G files. The f -th file, ∀ f ∈
{(n − 1)G + 1, · · · , nG}, is included in the n-th FG, n ∈ NNN =
{1, · · · , N}. We denote by Fn the n-th FG, and by PFn the prob-

ability that the MUs request a file in Fn. Based on PPP , we have

PFn =
nG∑

f =(n−1)G+1

pf . (2)

File caching is then carried out on the basis of FG, i.e., each

SBS caches one of the N FGs.

III. DISTRIBUTED FILE DOWNLOADING

RELYING ON CACHING

The caching-based distributed file downloading protocol

consists of two stages. The first stage, or file placement stage,

includes file content broadcasting and caching. In this stage,

B0 broadcasts the FGs to the SBSs via the back-haul during

off-peak periods. At the same time, the SBSs listen to the

broadcasting from B0, and cache the FGs needed. The second

stage, or file downloading stage, includes MU-SBS associations

and file content transmissions. In this stage, each MU makes

decisions as to which SBSs it should be associated with, and

then starts to download files from the associated SBSs. When

the requested files are not found in the adjacent SBSs, the MUs

will turn to the MBS for these files.

A. File Placement Matrix

For assigning the N FGs to the K SBSs, we set up a file

placement matrix � of size K × N. The entry λk,n ∈ {0, 1}
in � indicates whether Fn is cached by Bk or not. We have

λk,n = 1 if Fn is cached by Bk, while λk,n = 0 otherwise. The
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k-th row of � indicates which FG is cached by Bk, and the

n-th column indicates which BS caches Fn. The number of the

SBSs which cache Fn can be calculated as
∑

k∈KKK λk,n. Since

each SBS caches one FG, we have
∑

n∈NNN λk,n = 1.

B. MU-SBS Association

Denote by HHH(j) the subscript set of the specific SBSs, which

are capable of providing a sufficiently high SINR for the MU

Uj. The SBSs in HHH(j) are the candidates for Uj to be potentially

associated with. By setting an SINR threshold δ, Bk will be

included in HHH(j) if and only if

h2
k,jd

−α
k,j Pk

∑
q∈KKK\{k}

h2
q,jd

−α
q,j Pq + σ 2

≥ δ. (3)

When requesting a file in Fn, Uj first communicates with

one of the SBSs in HHH(j) which caches Fn. It is possible that

more than one SBS in HHH(j) caches Fn. In this case, Uj will

associates with the optimal SBS, which imposes the minimum

downloading delay.

It is clear that the downloading delay is inversely propor-

tional to the downlink transmission rate. According to the file

request assumption stipulated in the previous section, there is

only a single MU connected to an SBS at each time. Thus,

the maximum transmission rate from Bh to Uj, ∀ h ∈ HHH(j), is

the channel capacity between them, i.e., Ch,j. When Uj tries

to download a file in Fn, it follows the maximum-capacity

association criterion. Hence, Uj associates with B
ĥ

such that

ĥ = arg max
h∈HHH(j)

{
λh,nCh,j

}
. (4)

When none of the SBSs in HHH(j) caches Fn, i.e., we have

λh,n = 0, ∀ h ∈ HHH(j), Uj will associate with the MBS for the

requested file.

C. Optimization Problem Formulation

We now optimize the matrix � for minimizing the average

delay of downloading a file. Only when the optimal � has been

determined will the file-placement stage commence, where

the files are placed according this optimal matrix. Once the

MU-SBS associations have been determined, we can optimize

the matrix � for minimizing the average delay of downloading

a file. First, given the channel coefficients and the specific

location of Uj, the delay of downloading a file in Fn by Uj can

be calculated as

Dj,n =
{

M
maxh∈HHH(j){λh,nCh,j} , ∃λh,n �= 0, ∀ h ∈ HHH(j)

M
C0

, otherwise.
(5)

Based on the request probability of each FG, the delay for Uj to

download a file fromFFF can be written as Dj =
∑

n∈NNN PFn Dj,n.

Thus, the average delay for each MU can be calculated as

D = 1

J

∑

j∈JJJ
Dj. (6)

By setting D as the OF, let us hence formulate the delay

optimization problem as follows:

minimize D

s.t.
∑

n∈NNN
λk,n = 1, ∀ k ∈ KKK,

� ∈ {0, 1}K×N . (7)

The optimization problem in (7) is an integer programming

problem, which is NP-complete. In [14], [23], similar optimiza-

tion problems have been solved by sub-optimal solutions, such

as the classic greedy algorithm (GA). However, the existing

solutions are typically based on centralized optimization. As

we can see from (6), a centralized minimization of D at B0

requires the global CSI betweenBBB andUUU , which is impractical.

Hence, we will dispense with this assumption and optimize �

in a distributed manner at a low complexity.

IV. DISTRIBUTED BELIEF PROPAGATION ALGORITHM

In this section, we propose a distributed algorithm based

on BP for solving the optimization problem of (7) as follows:

1) We first develop a factor graph for describing the message

passing in the BP algorithm. 2) Then we map the resultant

factor graph to the network for the sake of facilitating the

distributed BP optimization. 3) This solved by solving our

optimization problem by proposing a distributed BP algorithm.

4) Finally, the proof of existence for a fixed point of conver-

gence in the BP algorithm is presented.

A. Factor Graph Model

In our BP algorithm, the factor graph has to be first es-

tablished based on the underlying network as a standard bi-

partite graphical representation of a mathematical relationship

between the local delay functions and file allocation variables.

Then the BP algorithm is implemented by iteratively passing

messages between the local functions and their related vari-

ables. Our optimization problem is thus solved by the proposed

BP algorithm based on the factor graph.

Based on the topology of the HCN, we develop a factor graph

model GGG = (VVV,EEE), where VVV is the vertex set, and EEE is the edge

set. The vertex setVVV consists of factor nodes and variable nodes.

Each factor node is related to an MU and each variable node

is related to an SBS. To simplify the notations, we denote by

j ∈ JJJ the j-th factor node and denote by k ∈ KKK the k-th variable

node. Hence, the vertex set VVV is composed of JJJ and KKK, i.e.,

VVV = {JJJ ,KKK}.
As mentioned in the previous section, Bk will be a candidate

for Uj to potentially associate with, but only if the received

SINR at Uj from Bk is no less than the threshold δ. Corre-

spondingly, in our factor graph, an edge in the edge set EEE

connecting Uj and Bk, denoted by (j, k), exists if the received

SINR at Uj from Bk is no less than δ. The node k is named

as a neighboring node of j, if there is an edge (j, k). Actually,
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Fig. 1. Factor graph extracted from an HCN composed of 5 SBSs and 10 MUs.
The edge between an SBS and an MU means that the SBS can provide a
sufficiently high SINR for the MU. For instance, B1 can provide a sufficiently
high SINR for U2 as well as U4. At the same time, U3 can receive a sufficiently
high SINR from both B2 and B3.

HHH(j) defined previously represents the set of the neighboring

nodes of the factor node j. Furthermore, denote byHHH(k) the set

of neighboring node for the variable node k. Fig. 1 illustrates a

factor graph extracted from an HCN with 5 SBSs and 10 MUs.

Take B1 in the factor graph for example. The edges exist

between B1 and U2 as well as U4, which means that B1 can

provide a sufficient large SINR for both U2 and U4.

The distributed BP algorithm is based on the factor graph

GGG. The factor nodes in JJJ represent the local utility functions

generated from the decomposition results of the global utility

function, which will be discussed later in this subsection. The

variable nodes in KKK represent the variables to be optimized,

i.e., the entries of �. The factor nodes and variable nodes are

connected by edges in EEE , indicating the message flows in the BP

algorithm. That is, messages are only passing between a node

and its neighbors. We now illustrate the optimization problem

on the factor graph.

1) Factor Nodes: According to Eq. (7), the OF can be

decomposed into J local contributions as D1, · · · , DJ . These

local contributions are calculated based on Eq. (5). Since the

BP algorithm solves maximization problems, we define a series

of utility functions as F � −D and Fj � −Dj. Then our opti-

mization problem can be rewritten as

max
�

F(�), F = 1

J

∑

j∈J
Fj. (8)

We use the j-th factor node to represent the j-th local utility

function Fj, which is related to Uj. Hence, the maximization of

F can be achieved by maximizing Fj at Uj, ∀ j ∈ JJJ .

2) Variable Nodes: Each variable node is related to an SBS.

Here, we use the k-th variable node to represent the k-th row of

�, denoted by λk, which is related to Bk. The location of ‘1’

in λk indicates which specific FG is stored by Bk. Note that the

first constraint in (7) means that each SBS only stores a single

FG. Given this constraint, λk has N possible values according

to N different locations of ‘1’. We denote by λ
[1]
k , · · · , λ

[N]
k the

N values of λk. When we have λk = λ
[n]
k , this implies that the

FG Fn is stored by Bk. Take N = 2 for example, where λk =
λ

[1]
k = [1 0] indicates that the FG F1 is stored in the SBS Bk,

while λk = λ
[2]
k = [0 1] indicates that F2 is stored in Bk. The

variables λk, k = 1, · · · , K, are the parameters to be optimized

for maximizing F in (8). For simplicity, we use the matrix � to

represent the set of the variables λk in the factor graph.

B. Distributed Belief Propagation

In standard BP, the variables are optimized by estimating

their marginal probability distributions [32]. Note that the util-

ity function F is a function of the file placement matrix �. We

define the probability mass function (PMF) p(�) of � based on

the utility function F(�) as

p(�) �
1

Z
exp (μF(�)) , (9)

where μ is a positive number and Z is the normalization

factor. According to [32], the result of large deviations shows

that when μ → ∞, p(�) concentrates around the maxima of

F(�), i.e., limμ→∞ E(�) = arg max
�

F(�), where E(�) is the

expectation of �. Once we obtain E(�), we can have a good

estimate of the specific � which maximizes F(�).

In our distributed BP, the maximization of F can be decom-

posed into J maximization operations on Fj at Uj, j = 1, · · · , J.

Correspondingly, the estimation of � is decomposed into J es-

timations of its subsets �j at Uj, where �j = {λh,∀ h ∈ HHH(j)}.
The PMF of �j is written as pj(�j) = 1

Zj
exp(μFj(�j)), where

Zj is the normalization factor. Since all the variables are inde-

pendent, the estimation of �j at Uj can be further decomposed

into the estimation of each individual λh via calculating its PMF

pj(λh), which is the marginal PMF of pj(�j) with respect to

the variable λh. Hence we have pj(λh) = E∼λh
(pj(�j)), where

E∼λh
(·) represents the expectation over the elements in �j,

except for λh. The PMF pj(λh) is viewed as the message, which

is iteratively updated between Uj and Bh, ∀ h ∈ HHH(j). The PMF

pj(λh) consists of N probabilities estimated by Uj, i.e., Pr(λh =
λ

[1]
h ), · · · , Pr(λh = λ

[N]
h ), where Pr(λh = λ

[n]
h ) represents the

probability that Fn is stored by Bh.

Without a loss of generality, we assume that the edge (j, k)

does exist in the factor graph. We represent the iteration index

by t and denote by p
(t)
k→j(λk) and p

(t)
j→k(λk) the belief messages

emanated from Bk to Uj and from Uj to Bk during the t-th

iteration, respectively. The steps describing the distributed BP

are as follows.

1) Initialization: At the variable nodes, set t = 1 and let

p
(1)
k→j(λk) to be the initial distribution of λk, e.g., the a priori

popularity distributionPPP .

2) Variable Node Update: During the t-th iteration, each

SBS Bk updates the message p
(t)
k→j(λk) to be sent to Uj based on

the messages gleaned from Bk’s neighboring MUs other than

Uj in the previous iteration. This includes the calculations of N

probabilities. Given λk = λ
[n]
k , ∀ n ∈ NNN , we have

p
(t)
k→j

(
λ

[n]
k

)
= 1

Zk

∏

h̄∈HHH(k)\{j}
p
(t−1)
h̄→k

(
λ

[n]
k

)
, (10)

where Zk is the normalization factor so that we have∑
n∈NNN p

(t)
k→j(λ

[n]
k ) = 1.

3) Factor Node Update: In the t-th iteration, Uj updates the

N probabilities of the message p
(t)
j→k(λk) to be sent to Bk, which

is based on the messages received from Uj’s neighboring SBSs,

except for Bk. The messages updated at the factor nodes are
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calculated according to the marginal PMF. Given λk = λ
[n]
k ,

∀ n ∈ NNN , we have

p
(t)
j→k

(
λ

[n]
k

)

= E∼λk

(
exp

(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

)))

=
∑

h∈HHH(j)\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛
⎝ ∏

q∈HHH(j)\{k}
p
(t)
q→j(λq)·

exp
(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

))
⎞
⎠. (11)

4) Final Solution: Let us assume that there are t = T iter-

ations in the distributed BP algorithm. After T iterations, the

probability that Fn is stored by Bk can be obtained by

Pr
(
λk = λ

[n]
k

)
= 1

Zk

∏

h̄∈HHH(k)

p
(T)
h̄→k

(
λ

[n]
k

)
. (12)

Based on (12), the decision as to which file should be stored

by Bk can be made by choosing the specific file that has the

maximum a posteriori probability Pr(λk = λ
[n]
k ), ∀ n ∈ NNN .

C. Convergence to a Fixed Point

Let us now investigate the existence of a fixed point of

convergence in our distributed BP algorithm. The essence of

the distributed BP algorithm is to keep updating the PMF pj(λk)

before reaching its final estimate. Based on (10) and (11), the

evolution of pj(λk) during the t-th iteration can be obtained

from the PMFs in the (t − 1)-th iteration as

p
(t)
k→j(λk) = 1

Zk

∏

h̄∈HHH(k)\{j}

∑

h∈HHH(h̄)\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛
⎝exp

(
μFh̄(�h̄)

)
·

∏

q∈HHH(h̄)\{k}
p
(t−1)
q→h̄ (λq)

⎞
⎠ . (13)

We view the PMF p
(t)
k→j(λk) as a probability vector of length

N. We define the probability vector set MMM(t) �

{
p
(t)
k→j(λk)

}
for

all k ∈ KKK as well as j ∈ JJJ , and define the message mapping

function Ŵ : RN×KJ → R
N×KJ based on (13) so that MMM(t) =

Ŵ(MMM(t−1)). Then we have the following lemma.

Lemma 1: The message mapping function Ŵ is a continuous

mapping.

Proof: Please refer to Appendix A.

Given Lemma 1, we have the following theorem.

Theorem 1: A fixed point of convergence exists for the

proposed distributed BP algorithm.

Proof: Please refer to Appendix B.

The question of convergence to the fixed point is, unfortu-

nately, not well understood in general [24]. Generally, if the

factor graph contains no cycles, the belief propagation can be

shown to converge to a fixed solution point in a finite number

of iterations. The performance, including the optimality and the

convergence rate, of the BP crucially depends on the choice

of the objective function, as well as the scale, the sparsity and

the number of cycles in the underlying factor graph. As such,

the theoretical analysis of the BP algorithm’s optimality and

convergence rate remains an open challenge.

V. A HEURISTIC BP WITH REDUCED COMPLEXITY

In the context of the BP algorithm, the message pj(λk)

exchanged between Uj and Bk in each iteration, includes N

probability values, which are real numbers. Hence, the com-

munication overhead of the message passing is relatively high.

Hence, we propose a heuristic BP (HBP) algorithm for reducing

the communication overhead imposed. The rationale behind the

term “heuristic BP” is that we still follow the classic concept of

belief propagation, but use a different format of the beliefs from

the conventional one.

Assuming that the edge (j, k) exists, in the t-th iteration of

the HBP, instead of forwarding the N probabilities stored in

p
(t)
j→k(λk) to Bk, Uj randomly selects an FG according to these

N probabilities. Then the integer index n
(t)
j→k of the FG selected

will be forwarded to the SBS Bk.

At the SBS side, the SBS Bk receives |HHH(k)| integers, i.e.,

n
(t)
h̄→k, ∀ h̄ ∈ HHH(k), from its neighboring MUs, where | · | de-

notes the cardinality of a set. Based on n
(t)
h̄→k, the SBS Bk infers

the number of those MUs, which indicate that Fn should be

stored in the SBS Bk, for n = 1, · · · , N. Let us assume now that

in the t-th iteration, there are J
(t)
k,n MUs specifically indicating

that Fn should be stored in Bk, where we have
∑

n∈NNN J
(t)
k,n =

|HHH(k)|. We can view
J
(t)
k,n

|HHH(k)| as the probability that the specific

FG Fn is stored by the SBS Bk.

In this case, the probability p
(t)
k→j(λ

[n]
k ) in (10) will be recal-

culated as

p
(t)
k→j

(
λ

[n]
k

)
=

⎧
⎨
⎩

J
(t−1)
k,n −1

|HHH(k)|−1
, if n = n

(t−1)
j→k ,

J
(t−1)
k,n

|HHH(k)|−1
, if n �= n

(t−1)
j→k .

(14)

Note that in (14), the information n
(t−1)
j→k transmitted from the

MU Uj to the SBS Bk is excluded when calculating p
(t)
k→j(λ

[n]
k ),

for the sake of ensuring that only uncorrelated information is

exchanged throughout the HBP.

At the MU side, it is clear that the MU Uj has to obtain

p
(t)
k→j(λ

[n]
k ) for the sake of updating the output information.

However, there is no need for the SBS Bk to transmit the

N probabilities p
(t)
k→j(λ

[n]
k ) to each of its neighboring MUs.

Alternatively, Bk broadcasts the N integers, J
(t)
k,1, · · · , J

(t)
k,N to

the neighboring MUs for reducing the transmission overhead.

After receiving the N integers from the SBS Bk, the MU Uj

calculates p
(t)
k→j(λ

[n]
k ) in (14).

Based on the above discussions, the HBP algorithm can be

summarized as follows.
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1) Initialization: At the variable nodes, we set t = 1. The

SBS Bk randomly generates |HHH(k)| independent integers,

n1, · · · , n|HHH(k)|, according to the popularity distribution PPP .

These integers are viewed as the indexes of the FGs. We then

set J
(1)
n,k to be the number of the integers that are equal to n.

2) Variable Node Update: In the t-th iteration, Bk updates

and broadcasts the N integers J
(t)
n,k, for n = 1, · · · , N, to the

neighboring MUs. The resulting calculations performed on

these N integers J
(t)
n,k are based on the integers n

(t−1)
h̄→k , ∀ h̄ ∈

HHH(k), received from the neighboring MUs during the last iter-

ation. Specifically, the n-th integer J
(t)
n,k is obtained by counting

the number of n
(t−1)
h̄→k that are equal to n.

3) Factor Node Update: The MU Uj first calculates the

probabilities p
(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) according to Eq. (14) based

on the integers gleaned from the SBS Bh. Then based on

p
(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) \ {k}, Uj calculates p

(t)
j→k(λ

[n]
k ) according

to Eq. (11). After obtaining the N probabilities p
(t)
j→k(λ

[n]
k ),

n = 1, · · · , N, Uj randomly chooses an FG according to these

N probabilities and sends the index n
(t)
j→k of the FG to the

SBS Bk.

4) Final Solution: After T iterations, the SBS Bk makes the

decision that the FG Fn̂ should be stored for ensuring that

n̂ = arg max
n∈NNN

J
(T)
k,n . (15)

The overhead of the HBP is significantly lower than that

of the original BP introduced in the previous section. From

a communication complexity perspective, in each iteration of

the HBP, an SBS Bk broadcasts N integers, while an MU Uj

transmits |HHH(j)| integers. On the other hand, in the original

BP, Bk transmits N|HHH(k)| real numbers, while Uj transmits

N|HHH(j)| real numbers for each iteration. From a computational

complexity perspective, in a single iteration of the HBP, the

computational complexity is on the order of O(N) at the SBS

Bk, and O(|H(j)|N|H(j)|) at the MU Uj. On the other hand, in

the original BP, the computational complexity is O(N|H(k)|2)
at Bk, and O(|H(j)|N|H(j)|) at Uj for each iteration.

VI. PERFORMANCE ANALYSIS BASED

ON STOCHASTIC GEOMETRY

In this section, we analyze both the average degree dis-

tribution of the factor graph and the average downloading

performance based on stochastic geometry theory. We model

the distribution of the MUs as a PPP �U having the intensity

of λU , and that of the SBSs as an independent PPP �B with the

intensity λB [31], [33]. For simplicity, we assume that all the

SBSs have the same transmission power P. In the following,

both the degree distribution and the downloading performance

are averaged over both the channels’ fading coefficients and

over the PPP distributions of the nodes.

A. Average Degree Distributions of the Factor Graph

Let us now investigate the degree distribution of the factor

graph averaged over PPP. Note that the degree of a factor node j

is defined as the number of its neighboring variable nodes, given

by the cardinality |HHH(j)|, while the degree of a variable node k

is defined as the number of its neighboring factor nodes, i.e.,

|HHH(k)|. Then we have the following theorem.

Theorem 2: The factor nodes in the factor graph have the

average degree

ζU = 2πλBZ(λB, P, α, δ), (16)

and the variable nodes have the average degree

ζB = 2πλUZ(λB, P, α, δ), (17)

where we have

Z(λB, P, α, δ)

=
∫ ∞

0

exp

{
−2λBπ

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

}
rdr (18)

and the Beta function B(x, y) =
∫ 1

0 tx−1(1 − t)y−1dt.

Proof: Please refer to Appendix C.

When neglecting the noise, we have the following corollary

based on Theorem 2.

Corollary 1: When neglecting the noise, Z(λB, P, α, δ) in

(18) can be rewritten as

Z(λB, P, α, δ) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (19)

Then we can simplify the average degree of the factor nodes in

Eq. (16) to

ζU = α

2δ
2
α B
(

2
α
, 1 − 2

α

) , (20)

and the average degree of the variable nodes in Eq. (17) to

ζB = λUα

2λBδ
2
α B
(

2
α
, 1 − 2

α

) . (21)

Proof: Please refer to Appendix D.

Equations (20) and (21) can be seen as approximations of

(16) and (17), respectively, when the effects of the noise are

neglected. These approximations are significantly accurate for

the HCN, since the interference effects are dominant due to the

dense deployments of the SBSs.

From (20), we can see that ζU is only related to δ and α,

but is independent of λU , P and λB. In other words, the factor

node degree has no relation with the intensities of the MUs and

SBSs or with the power of the SBSs. The intuitive reason is that

although increasing both the PPP intensities and the power of

the SBSs can increase the total signal power, the interference

also increases at the same time, which keeps the degree ζU

of the factor nodes constant. Similarly, observe from (21)

that ζB is independent of the power P, i.e., increasing the

transmission power of the SBSs will not influence the average

degree distribution of the factor graph.



3560 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 10, OCTOBER 2015

Remark 1: We observe that B
(

2
α
, 1 − 2

α

)
= π when α = 4.

Thus, we have closed-form expressions for ζU and ζB in (20)

and (21), respectively, when α = 4.

B. Downloading Performance of Random Caching

Since the performance of BP based caching remains diffi-

cult for mathematical analysis in closed form, we propose a

random caching scheme and analyze its performance based on

stochastic geometry theory. The random caching is realized by

randomly picking out 	Fn · K (0 ≤ 	Fn ≤ 1) SBSs from the

entire set of K SBSs for caching the FG Fn.

To evaluate the downloading performance, we first define

an outage Qn as the event of an MU’s failing to find the FG

Fn in its neighboring SBSs. The following theorem states an

upper bound of the OP of Qn. As mentioned before, since the

interference is the dominant factor predetermining the network

performance, we ignore the noise effects in the following

performance analysis to simplify our derivations.

Theorem 3: The OP for downloading a file in Fn can be

upper-bounded by

Pr(Qn) ≤
C(δ, α)

(
1 − 	Fn

)
+ A(δ, α)	Fn

C(δ, α)
(
1 − 	Fn

)
+ A(δ, α)	Fn + 	Fn

, (22)

where we have C(δ, α) � 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
, A(δ, α) �

2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

)
, and 2F1 represents the

hypergeometric function.

Proof: Please refer to Appendix E.

When the path-loss exponent α = 4, we have C(δ, 4) =
√

δ
2

π

and A(δ, 4) = δ2F1

(
1, 1

2
; 3

2
,−δ

)
. It becomes clear from (22)

that Pr(Qn) is only related to δ and 	Fn , where a higher δ

leads to a higher Pr(Qn). This is because a larger δ will reduce

the number of possibly eligible serving SBSs, resulting in an

increase of OP. We can see that a higher 	Fn leads to a lower

Pr(Qn).

Let us define the averaged OP Q over all the files. Based on

the file popularity, the OP of Q can be upper-bounded by

Pr(Q) =
∑

n∈NNN
PFn Pr(Qn)

≤
∑

n∈NNN

PFn

(
C(δ, α)

(
1 − 	Fn

)
+ A(δ, α)	Fn

)

C(δ, α)
(
1 − 	Fn

)
+ A(δ, α)	Fn + 	Fn

. (23)

The average delay D̄ of each MU can be obtained based on the

average OP, i.e.,

D̄ = (1 − Pr(Q)) D̄s + Pr(Q)
M

C0
, (24)

where D̄s is the average delay of downloading from the SBSs.

The delay D̄ can be seen as the average value of D in Eq. (6)

over both the PPP and the channel fading. Note that D̄s is

usually challenging to calculate and does not have a closed form

in the PPP analysis.

Next, we optimize 	Fn for improving the downloading per-

formance. Since we do not have a closed-form expression for D̄,

we minimize the upper bound of Pr(Q) in (23), i.e.,

max
{	Fn}

∑

n∈NNN

PFn	Fn

	Fn (A(δ, α) − C(δ, α) + 1) + C(δ, α)
,

s.t.
∑

n∈NNN
	Fn = 1,

	Fn ≥ 0. (25)

By relying on the classic Lagrangian multiplier, we arrive at the

optimal solution as

	⋆
Fn

= max

⎧
⎪⎨
⎪⎩

√
PFn

ξ
− C(δ, α)

A(δ, α) − C(δ, α) + 1
, 0

⎫
⎪⎬
⎪⎭

, (26)

where ξ =
(∑n∗

q=1

√
PFq

)2

(n∗C(δ,αs)+A(δ,αs)−C(δ,αs)+1)2 , and n∗ satisfies the

constraint that 	Fn ≥ 0.

VII. SIMULATION RESULTS

In this section, we first focus on the HCNs associated with

PPP distributed nodes, where we investigate the average degree

distribution of the factor graph and the performance of the

random caching scheme. Then we consider an HCN supporting

a fixed number of nodes. We investigate the delay optimized

by the BP algorithm and compare it to other benchmarks,

including both the random caching and the optimal scheme

using exhaustive search.

Note that the physical layer parameters in our simulations,

such as the path-loss exponent, noise power, transmit power

of the SBSs, and the intensity of the SBSs, are chosen to be

practical and in line with the values set by 3GPP standards.

For instance, the transmit power of an SBS is typically 2 Watt

in 3GPP. The unit of power, such as noise power and transmit

power, is the classic Watt. The intensities of the SBSs and MUs

are expressed in terms of the numbers of the nodes per square

kilometer. Unless specified otherwise, we set the path loss to

α = 4, the number of files to Q = 100, transmit power to P = 2,

and the noise power to σ 2 = 10−10. All the simulations are

executed with MATLAB. Also, we consider the performance

averaged over a thousand network cases, where the locations

of network nodes are uniformly distributed in each case, and

randomly changed from case to case.

A. Average Degree Distributions of Factor Graph

We compare our Monte-Carlo simulations and analytical

results in the HCNs at various transmission powers and node

densities. Fig. 2 shows the average degree of the factor nodes

with different transmission power P, SBSs’ intensity λB, and

MUs’ intensity λU . We can see that for a given δ, the degree

ζU remains unaffected by the specific choice of P, λB, and

λU . Observe that our analytical results are consistent with the

simulations. Similarly, Fig. 3 shows the average degree of
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Fig. 2. Average degree of factor nodes ζU vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

Fig. 3. Average degree of variable nodes ζB vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

the variable nodes of different powers and node intensities,

demonstrating that the results are independent of the power P,

but depend on the densities λB and λU . We can also see that the

analytical results match well with the simulation results.

B. Average Downloading Performance of Random Caching

Let us now evaluate the average downloading performance of

the random caching scheme supporting PPP distributed nodes.

The file distribution PPP = {p1, · · · , pQ} is modeled by the Zipf

distribution [34], which can be expressed as

pf = 1/f s

∑Q
q=1 1/qs

, for f = 1, · · · , Q, (27)

where the exponent 0 < s ≤ 1 is a real number, and it charac-

terizes the popularity of files. Explicitly, a larger s corresponds

to a higher content reuse, i.e., the most popular files account for

the majority of requests. Note that PFn can be obtained based

on pf via Eq. (2).

Fig. 4. Outage probabilities Pr(Qn) · PFn for individual FGs Fn under the
file popularity based random caching (FPRC) and optimized random caching
(ORC) schemes.

For the simulation results of this subsection, we assume that

each SBS caches G = 5 files, hence there are N = Q/G = 20

FGs. We commence by considering the OP. In our optimized

random caching (ORC), we set 	Fn as in (26). For comparison,

we also consider another random caching scheme from [19] as

our the benchmark, namely, the file popularity based random

caching (FPRC). In the FPRC, 	Fn is chosen to be consistent

with the file popularity, i.e., we have 	Fn = PFn .

Fig. 4 shows the OPs Pr(Qn) · PFn for individual FGs under

both the ORC and the FPRC schemes, where we have δ = 0.03

and s = 0.5. The conditional OP Pr(Qn) (given a file in Fn

is requested) is calculated from Eq. (22), while the request

probability PFn of Fn is calculated from Eq. (2). The FGs are

arranged in descending order of popularity, i.e., the first FG

has the highest popularity, while the last one has the lowest

popularity. We can see from the figure that compared to the

FPRC, FGs having a higher popularity have a lower OP, while

the ones with lower popularity have higher OPs in the ORC. For

example, the OP for the most popular FG is around 0.054 in the

ORC in contrast to 0.099 in the FPRC, while the probability of

the least popular FG is 0.27 in the ORC in contrast to 0.25 in

the FPRC. This is because the ORC is reminiscent of the classic

water-filling, allocating more SBSs for caching the higher

popular FGs for ensuring the minimization of the average OP.

Let us now investigate the average OP Pr(Q). Figs. 5 and

6 show Pr(Q) for different δ and s values, respectively. In Fig. 5,

we fix s = 0.5, while in Fig. 6, we fix δ = 0.03. The dashed

lines with different marks are based on the simulations asso-

ciated with various power and densities, while the solid lines

represent the analytical upper bounds of Eq. (23). We can see

that the average OP is independent of both the power P and

densities λB and λU . The ORC scheme has a lower average

OP than the FPRC. Furthermore, as expected, a higher SINR

threshold δ leads to a higher OP, as shown in Fig. 5. At the

same time, it is interesting to observe from Fig. 6 that a larger

s, representing more imbalanced downloading requests on the

different files, can dramatically reduce the OP. We can see that

the upper bounds evaluated from Eq. (23) match the simulations

quite accurately.
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Fig. 5. Average outage probabilities Pr(Q) vs. δ under the FPRC and ORC
schemes for different SBS and MU intensities λB and λU , and for transmit
powers P = 2 and 4.

Fig. 6. Average outage probabilities Pr(Q) vs. the Zipf parameter s under the
FPRC and ORC schemes for different SBS and MU intensities λB and λU , and
for transmit powers P = 2 and 4.

Next, we consider the average delay D̄ in Eq. (24), where

we assume an SINR threshold of δ = 0.03, a bandwidth of

W = 107 Hz, and a file size of M = 109 bits. Since C0 should

be always less than the maximum possible downloading rate

provided by the SBSs, we assume C0 = W log(1 + δ). For

δ = 0.03, C0 becomes 4.26 × 105 bits/sec. Fig. 7 illustrates the

average downloading delay associated with different s values.

We can see that the ORC scheme always outperforms the FPRC

scheme, and that their performance gap becomes larger upon

increasing s. Again, the observed performance does not depend

on the powers and intensities of the nodes.

C. Delay Performance of Distributed BP Algorithms

Let us now study the delay performance of distributed BP-

based optimizations. We consider HCNs having fixed numbers

of SBSs and MUs, where the locations of these nodes are time-

variant. We first consider a small network, in which the optimal

solution is found with the aid of an exhaustive search. This will

Fig. 7. Average downloading delay D̄ vs. the Zipf parameter s under the FPRC
and ORC schemes for different SBS and MU intensities λB and λU , and for
transmit powers P = 2 and 4.

Fig. 8. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the first scenario.

allow us to characterize the performance disparity between the

proposed BP algorithm and the optimal search-based solution.

Then we focus our attention on a larger network to show the

robustness of our BP algorithms. In both scenarios, we set the

SINR threshold to δ = 0.1, the transmission power to P = 2,

the bandwidth to W = 107 Hz, and the file size to M = 109 bits.

Similar to the previous subsection, we assume that the rate

provided by the MBS as C0 = W log(1 + δ). For δ = 0.1, we

have C0 as 1.3 × 106 bits/sec.

In the first scenario, the nodes are arranged in a 0.6 × 0.6 km2

area using 8 SBSs and 4 MUs. We assume that each SBS caches

G = 25 files, and there are N = Q/G = 4 FGs. Fig. 8 shows

the average delay performance under various schemes, where

‘HBP’ is the heuristic BP algorithm proposed in Section V,

‘BP’ is the original BP algorithm proposed in Section IV,

and ‘Optimal’ is the optimal scheme relying on an exhaustive

search. We can see from Fig. 8 that the original BP approaches

the optimal scheme within a small delay margin. The proposed

HBP performs slightly worse than the original BP, with a
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Fig. 9. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the second scenario.

relatively modest delay degradation of around 5% or

20 seconds, while it outperforms the ORC scheme by about

10% or 40 seconds gain. The FPRC performs the worst among

all the caching schemes, exhibiting a substantial delay gap

between the FPRC scheme and the ORC scheme.

In the second scenario, the nodes are arranged in a

1.5 × 1.5 km2 area with 50 SBSs and 25 MUs. We consider

two cases, namely Case1 and Case2. In Case1, we assume that

each SBS caches G = 20 files and there are N = Q/G = 5 FGs,

while in Case2, we assume that each SBS caches G = 10 files

and that we have N = Q/G = 10. Fig. 9 shows the average

delay performance under various schemes. It is clear from

Fig. 9 that in both cases the BP algorithm performs the best,

while the FPRC performs the worst. The HBP exhibits a tiny

delay increase of around 3% performance loss compared to the

original BP, although it dramatically reduces the communica-

tion complexity during the optimization process.

Note also in Fig. 9 that the ORC suffers from a 5% perfor-

mance loss compared to the HBP, but it is much less complex

than the HBP and BP. The optimization in ORC is based on

the statistical information available about both of channels and

the locations of the nodes, while both the BP and the HBP

exploit the relevant instantaneous information at a relatively

high communication complexity. In this sense, the ORC con-

stitutes an efficient caching scheme. Furthermore, we can see

from Fig. 9 that there is a tradeoff between the storage and

delay, i.e., a larger storage at each SBS in Case1 leads to a lower

downloading delays compared to Case2.

In the above BP simulations, we set the maximum number

of iterations to T = 15. Table I shows the average number

of iterations under different s values for the two scenarios.

We can see that the HBP relies on more iterations than the

BP. Nevertheless, the overall communication complexity of the

HBP is still lower than that of the BP, as we have discussed

in Section V. Explicitly, for each iteration of the HBP, Bk

broadcasts N integers and Uj transmits |HHH(j)| integers. By

contrast, in the original BP, Bk transmits N|HHH(k)| real numbers

and Uj transmits N|HHH(j)| real numbers.

TABLE I
THE AVERAGE NUMBER OF ITERATIONS UNDER DIFFERENT s

Fig. 10. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the large scale network.

D. Delay Performance in a Large Scale Network

Finally, we consider a large-scale network associated with

Q = 1000 files, 50 SBSs, and 100 MUs within an area of

5 × 5 km2. Furthermore, we consider a lower connection prob-

ability to the SBSs by setting δ = 0.2. By assuming that each

SBS is capable of caching 20 files, we have overall 50 file

groups. Fig. 10 shows the average delay performance. We can

see from the figure that both BP algorithms perform better

than the random caching schemes. Particularly, the HBP has

a roughly 1% performance loss compared to the original BP,

which imposes however a much reduced communication com-

plexity. This implies that our BP algorithms are robust in large-

scale networks associated with a large number of files and

network nodes.

Further comparing Figs. 8, 9, and 10, it is interesting to

observe that the gap between our BP and HBP algorithms

becomes smaller when the network scale becomes larger. More

particularly in Fig. 10, the performance of these two schemes

almost overlaps. This indicate that in large scale networks, we

may consider to use the HBP rather than BP to obtain a good

performance at a much reduced complexity.

VIII. CONCLUSION

In this paper, we designed distributed caching optimization

algorithms with the aid of BP for minimizing the downloading

latency in HCNs. Specifically, a distributed BP algorithm was
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proposed based on the factor graph according to the network

structure. We demonstrated that a fixed point of convergence

exists for the distributed BP algorithm. Furthermore, we pro-

posed a modified heuristic BP algorithm for further reducing

the complexity. To have a better understanding of the average

network performance under varying numbers and locations of

the network nodes, we involved stochastic geometry theory

in our performance analysis. Specifically, we developed the

average degree distribution of the factor graph, as well as an

upper bound of the OP for random caching schemes. The per-

formance of the random caching was also optimized based on

the upper bound derived. Simulations showed that the proposed

distributed BP algorithm approaches the optimal performance

of the exhaustive search within a small margin, while the mod-

ified BP offers a good performance at a very low complexity.

Additionally, the average performance obtained by stochastic

geometry analysis matches well with our Monte-Carlo simula-

tions, and the optimization based on the upper bound derived

provides a better performance than the benchmark of [19].

APPENDIX A

PROOF OF LEMMA 1

To simplify the notation in the proof, we assume that

HHH(j) = KKK, ∀ j ∈ JJJ and HHH(k) = JJJ , ∀ k ∈ KKK. Consider a pair of

probability vector sets MMM(t−1) =
{

p
(t−1)
k→j (λk)

}
and M̃MM

(t−1) =
{

p̃
(t−1)

k→j (λk)
}

. Then we have the supremum norm

∣∣∣
∣∣∣Ŵ
(
MMM(t−1)

)
− Ŵ

(
M̃MM

(t−1)
)∣∣∣
∣∣∣
sup

= max
k,j,n

∣∣∣p(t)
k→j

(
λ

[n]
k

)
− p̃

(t)
k→j

(
λ

[n]
k

)∣∣∣

= max
k,j,n

∣∣∣∣∣∣∣

∏

i∈JJJ \{j}

∑

h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛
⎝exp (μFi(�i))

⎛
⎝ ∏

q∈KKK\{k}

p
(t−1)
q→i (λq) −

∏

q∈KKK\{k}
p̃
(t−1)
q→i (λq)

⎞
⎠
⎞
⎠

∣∣∣∣∣∣∣

(a)
≤ max

j

∏

i∈JJJ \{j}

∑

h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h∣∣∣∣∣∣

∏

q∈KKK\{k}
p
(t−1)
q→i (λq) −

∏

q∈KKK\{k}
p̃
(t−1)
q→i (λq)

∣∣∣∣∣∣
(b)
≤ (K − 1)NK−1 max

j∏

i∈JJJ \{j}
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q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ

[n]
q

)
− p̃

(t−1)
q→i

(
λ

[n]
q

)∣∣∣

≤ (K − 1)NK−1 max
j,q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ

[n]
q

)
−p̃

(t−1)
q→i

(
λ

[n]
q

)∣∣∣
J−1

≤ (K − 1)NK−1 max
j,k,n

∣∣∣p(t−1)
k→i

(
λ

[n]
k

)
− p̃

(t−1)
k→i

(
λ

[n]
k

)∣∣∣

= (K − 1)NK−1
∣∣∣
∣∣∣MMM(t−1) −M̃MM

(t−1)
∣∣∣
∣∣∣
sup

. (28)

The inequality (a) in (28) is derived by exploiting the

following two facts: 1) 0 < exp(μFi(�)) ≤ 1, since Fi(�) is

non-positive and μ is positive, and 2)
∑

s |xs| ≤ |
∑

s(xs)| for

arbitrary xs. The inequality (b) in (28) can be obtained from:

1) the following lemma, and 2) the fact that
∑

h∈KKK\{k}
∑λ

[N]
h

λh=λ
[1]
h

has to carry out the additions of NK−1 items.

Lemma 2: Given 0≤a1, · · · , aK ≤1 and 0≤ ã1, · · · , ãK ≤1,

we have

max
k∈KKK

∣∣∣∣∣∣
∏

q∈KKK\{k}
aq−

∏

q∈KKK\{k}
ãq

∣∣∣∣∣∣
≤ (K−1) max

q∈KKK\{k}
|aq−ãq|. (29)

Proof: Please refer to Appendix F.

From (28), we can infer that Ŵ is a continuous mapping, since

the coefficient (K − 1)NK−1 is a constant, and this completes

the proof. �

APPENDIX B

PROOF OF THEOREM 1

LetSSS be the collection of the message setMMM(t). The mapping

function � maps SSS to SSS with the aid of the function Ŵ.

According to Lemma 1, � is continuous since Ŵ is continuous.

Furthermore, it is clear that the set SSS is convex, closed and

bounded. Based on Schauder’s fixed point theorem, � has a

fixed point. This completes the proof. �

APPENDIX C

PROOF OF THEOREM 2

A. The Average Degree of Factor Nodes

Without a loss of generality, we carry out the analysis for a

typical MU located at the origin and assume that the potential

serving SBSs are located at the point xB. The fading (power)

is denoted by hxB , which is assumed to be exponentially dis-

tributed, i.e., we have hxB ∼ exp(1). The path-loss function is

given by ‖xB‖−α , where ‖ · ‖ denotes the Euclidian distance.

The average degree of a factor node in the factor graph is

equivalent to the number of SBSs that can provide a high enough

SINR (≥ δ) for the typical MU, which can be formulated as

NB =
∫

R2
λB Pr (ρ(xB) ≥ δ) dxB, (30)

where ρ(xB) represents the SINR at the typical MU received

from the SBSs located at xB.

We first focus on the probability Pr(ρ(xB) ≥ δ) in (30) as

follows.

Pr (ρ(xB) ≥ δ) = Pr

⎛
⎜⎝

PhxB‖xB‖−α

∑
xk∈�B

Phxk
‖xk‖−α + σ 2

≥ δ

⎞
⎟⎠

= Pr

(
hxB ≥ δ(I + σ 2)

P‖xB‖−α

)

= EI (exp(−sI)) exp(−sσ 2), (31)
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where xk denotes the location of an interfering SBS, I �
∑

xk∈�B

Phxk
‖xk‖−α represents the aggregate interference, and s =

δ‖xB‖α

P
. The last step is due to the exponential distribution of

hxB . Then, we derive EI(exp(−sI)) in (31) as

EI (exp(−sI))

(a)= E�B

⎛
⎝ ∏

xk∈�B

∫ ∞

0

exp
(
−sPhxk

‖xk‖−α
)

exp
(
−hxk

)
dhxk

⎞
⎠

(b)= exp

(
−λB

∫

R2

(
1 − 1

1 + sP‖xk‖−α

)
dxk

)

= exp

(
−2πλB

1

α
(sP)

2
α B

(
2

α
, 1 − 2

α

))
, (32)

where (a) is based on the independence of channel fading,

and (b) follows from E

(∏
x

u(x)

)
= exp(−λ

∫
R2(1 − u(x))dx),

where x ∈ � and � is an PPP in R
2 with the intensity λ [30].

Based on the derivation above, the average degree of the

typical MU can be calculated as

NB = λB

∫

R2

exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
‖xB‖2− δσ 2

P
‖xB‖α

)
dxB

= 2πλB

∫ ∞

0

exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(33)

B. The Average Degree of Variable Nodes

In this subsection, we consider a typical SBS which is

located at the origin, and assume that an MU is located at the

point xU . The average degree of a variable node in the factor

graph is equivalent to the number of MUs that can receive at a

high enough SINR (≥ δ) from the typical SBS, which can be

formulated as

NU =
∫

R2

λU Pr (ρ(xU) ≥ δ) dxU, (34)

where ρ(xU) represents the received SINR at the MU located at

xU from the typical SBS, i.e.,

Pr (ρ(xU) ≥ δ)

= Pr

⎛
⎜⎝

PhxU ‖xU‖−α

∑
xk∈�B

Phxk
‖xk − xU‖−α + σ 2

≥ δ

⎞
⎟⎠ , (35)

where xk denotes the location of an interfering SBS.

Since the PPP is a stationary process, the distribution of

‖xk − xU‖ is independent of the value of xU , i.e., we have

p(‖xk − xU‖) = p(‖xk‖), where p(·) represents the probability

density function. Then, we have similar results to Eq. (31). That

is, we have

Pr (ρ(xU) > δ) = EI (exp(−sI)) exp(−sσ 2), (36)

where s = δ‖xU‖α

P
. Then we arrive at

NU =2πλU

∫ ∞

0

exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(37)

By combining Eqs. (37) and (33), we complete the proof. �

APPENDIX D

PROOF OF COROLLARY 1

When ignoring the noise, we have

Z(λB, P, α, δ)

=
∫ ∞

0

exp

(
−2πλB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
r2

)
rdr

= 1

2

∫ ∞

0

exp

(
−λB

2π

α
δ

2
α B

(
2

α
, 1 − 2

α

)
t

)
dt

= 1

2λB
2π
α

δ
2
α B
(

2
α
, 1 − 2

α

) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (38)

By substituting the above expression into (17) and (16), we

obtain (20) and (21) respectively. This completes the proof. �

APPENDIX E

PROOF OF THEOREM 3

We conduct the analysis for a typical MU that is located at

the origin. We assume that when downloading a file in Fn, the

MU will always associate with its nearest SBS, which caches

Fn. Note that the OP derived under this assumption is an upper

bound for the exact OP. This is because the MU will associate

with the second-nearest SBS if it can provide a higher received

SINR than that provided by the nearest SBS. Therefore, in

some cases, the nearest SBS cannot provide a higher enough

SINR (≥ δ), while the second-nearest SBS can. According to

our assumption, we will neglect these cases, which leads to a

higher OP.

Let us denote by z the distance between the typical MU and

the nearest SBS that caches Fn. The location of the nearest SBS

caching Fn is denoted by xZ . The fading (power) for an SBS

located at xB, ∀ xB ∈ �B, is denoted by hxB , which is assumed

to be exponentially distributed, i.e., hxB ∼ exp(1). The path-loss

function for a given point xB is ‖xB‖−α .

When random caching is adopted, the distribution of the

SBSs that cache Fn can be modeled as an PPP with the intensity

of 	FnλB. The event that the typical MU can download a file in

Fn from an SBS means that the received SINR from the nearest
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SBS which caches Fn is no less than the threshold δ. Let us

denote by ρ(xZ) the received SINR at the typical MU from

the nearest SBS. Then the average probability that the MU can

download the file from an SBS is

Pr (ρ(xZ) ≥ δ)

=
∫ ∞

0

Pr

⎛
⎜⎝

hxZ z−α

∑
xk∈�B\{xZ }

hxk
‖xk‖−α

≥ δ

∣∣∣∣∣∣∣
z

⎞
⎟⎠ fZ(z)dz

=
∫ ∞

0

Pr

⎛
⎜⎜⎜⎜⎝

hxZ ≥
δ

(
∑

xk∈�B\{xZ }
hxk

‖xk‖−α

)

z−α

∣∣∣∣∣∣∣∣∣∣

z

⎞
⎟⎟⎟⎟⎠

· 2π	FnλBz exp
(
−π	FnλBz2

)
dz

=
∫ ∞

0

EI

(
exp(−zαδI)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz,

(39)

where we have I �
∑

xk∈�B\{xZ }
hxk

‖xk‖−α , and the PDF of z, i.e.,

fZ(z), is derived by the null probability of a Poisson process

with the intensity of 	FnλB. Note that the interference I con-

sists of I1 and I2, where I1 is emanating from the SBSs caching

the FGs Fq, ∀ q ∈ NNN , q �= n, while I2 is from the SBSs caching

Fn excluding xZ . The SBSs contributing to I1, denoted by �n̄,

have the intensity (1 − 	Fn)λB, while those contributing to I2,

denoted by �n, have the intensity 	FnλB. Correspondingly, the

calculation of EI(exp(−zαδI)) will be split into the product of

two expectations over I1 and I2. The expectation over I1 directly

follows (32), i.e., we have

EI1

(
exp(−zαδI1)

)
= exp

(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)
, (40)

where C(δ, α) has been defined as 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
. The

expectation over I2 has to take into account z as the distance

from the nearest interfering SBS, i.e., we obtain

EI2

(
exp(−zαδI2)

)

= exp

(
−	FnλB2π

∫ ∞

z

(
1 − 1

1 + zαδr−α

)
rdr

)

(a)= exp

(
−	FnλBπδ

2
α z2 2

α

∫ ∞

δ−1

x
2
α −1

1 + x
dx

)

(b)= exp

(
−	FnλBπδz2 2

α − 2
2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

))
,

(41)

where (a) defines x � δ−1z−αrα , and 2F1(·) in (b) is

the hypergeometric function. Since we have defined

A(δ, α) = 2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

)
, by substituting (40)

and (41) into (39), we have

Pr (ρ(xZ) ≥ δ) =
∫ ∞

0

exp
(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)

exp
(
−π	FnλBz2A(δ, α)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz

= 	Fn

C(δ, α)
(
1 − 	Fn

)
+ A(δ, α)	Fn + 	Fn

. (42)

It is clear that Pr(Qn) = 1 − Pr(ρ(z) ≥ δ). This completes the

proof. �

APPENDIX F

PROOF OF LEMMA 2

Without loss of generality, we assume k = 1. Then (29)

becomes

∣∣∣∣∣∣

K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣
≤ (K − 1) max

q∈{2,··· ,K}
|aq − ãq|. (43)

Again, without loss of generality, we assume

|a2 − ã2| ≥ · · · ≥ |aK − ãK|. (44)

First, we prove that |aK−1aK − ãK−1ãK| ≤ 2|aK−1 − ãK−1|,
under the condition of |aK−1 − ãK−1| ≥ |aK − ãK|. To prove

this, we discuss the following possible cases.

1) When aK−1 ≥ ãK−1 and aK ≥ ãK: We have aK ≤
aK−1 − ãK−1 + ãK . Then

|aK−1aK − ãK−1ãK|

≤ |aK−1(aK−1 − ãK−1 + ãK) − ãK−1ãK|

= |(aK−1 + ãK)(aK−1 − ãK−1)|

≤ 2|aK−1 − ãK−1|. (45)

2) When aK−1 ≥ ãK−1, aK ≤ ãK , and aK−1aK ≥ ãK−1ãK:

We have

|aK−1aK −ãK−1ãK| ≤ |aK−1ãK − ãK−1ãK|
= |aK−1−ãK−1|ãK ≤|aK−1−ãK−1|. (46)

3) When aK−1 ≥ ãK−1, aK ≤ ãK , and aK−1aK ≤ ãK−1ãK:

We have

|ãK−1ãK −aK−1aK | ≤ |aK−1ãK − aK−1aK|
= |aK − ãK|aK−1 ≤ |aK−1 − ãK−1|. (47)

4) When aK−1 ≤ ãK−1, aK ≥ ãK , and aK−1aK ≥ ãK−1ãK:

We have

|aK−1aK −ãK−1ãK | ≤ |ãK−1aK − ãK−1ãK|
= |aK − ãK|ãK−1 ≤ |aK−1 − ãK−1|. (48)
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5) When aK−1 ≤ ãK−1, aK ≥ ãK , and aK−1aK ≤ ãK−1ãK:

We have

|ãK−1ãK −aK−1aK |≤ |ãK−1aK − aK−1aK|
= |aK−1−ãK−1|aK ≤|aK−1−ãK−1|. (49)

6) When aK−1 ≤ ãK−1, aK ≤ ãK: We have aK ≥ ãK +
aK−1 − ãK−1. Then

|ãK−1ãK − aK−1aK| ≤ |ãK−1ãK − aK−1(ãK + aK−1 − ãK−1)|
= |(aK−1 + ãK)(ãK−1 − aK−1)|
≤ 2|aK−1 − ãK−1|. (50)

From the above discussions, we can see that |aK−1aK −
ãK−1ãK| ≤ 2|aK−1 − ãK−1|.

Second, as there is |aK−1aK − ãK−1ãK| ≤ 2|aK−1 − ãK−1|,
we have |aK−1aK − ãK−1ãK| ≤ 2|aK−2 − ãK−2|. With this

condition, we can prove that |aK−2aK−1aK − ãK−2ãK−1ãK | ≤
3|aK−2 − ãK−2| by following the similar steps above. By doing

this iteratively, we have

∣∣∣∣∣∣

K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣
≤ (K − 1)|a2 − ã2|. (51)

This completes the proof. �
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