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Abstract— The energy-efficient task offloading problem of a
massive multiple-input multiple-output (MIMO)-aided fog com-
puting system is solved, where multiple task nodes offload their
computational tasks to be solved via a massive MIMO-aided fog
access node to multiple processing nodes in the fog for execution.
By considering realistic imperfect channel state information
(CSI), we formulate a joint task offloading and power allocation
problem for minimizing the total energy consumption, including
both computation and communication power consumptions. We
solve the resultant non-convex optimization problem in two
steps. First, we solve the computational task allocation and
computational resource allocation for a given power allocation.
Then, we conceive a sequential optimization framework for
determining the specific power allocation decision that minimizes
the total energy consumption of the fog access node. Given the
computational tasks, the computational resources, and the power
allocation, we propose an iterative algorithm for the system opti-
mization. The simulation results show that the proposed scheme
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significantly reduces the total energy consumption compared to
the benchmark schemes.

Index Terms— Fog computing, massive MIMO, computational
task offloading, energy efficiency, fog access node.

I. INTRODUCTION

G IVEN the rapid development of the Internet of
Things (IoT), more and more intelligent things and

smart objects are being connected to the network [1], [2].
Meanwhile, the improved networking speed paves the way
for sophisticated multitasking applications, such as online
gaming, augmented reality and space-air-ground services [3],
[4]. These novel applications typically require low latency and
demand prompt computations energy mangement for realtime
task processing and high data rates. However, given their
compact form-factor, mobile devices have limited computa-
tion, storage, and energy resources. To overcome these limi-
tations, fog computing, as an emerging technology, has been
proposed for sticking a compelling compromise between the
resource-constrained nature of compact devices and their high-
complexity tasks. As a result, fog computing is capable of sig-
nificantly reducing the computing burden of the mobile devices
by efficiently utilizing the abundant computation resources in
the fog around them, which is taking advantage of pervasive
mobile devices and their pairwise encounters to form a pool
of computation resources.

However, in fog computing, a user offloads his/her com-
puting task to a server in the uplink, and the processed
data has to be sent back to the user in the downlink.
Hence, the performance of fog computing operation also
depends on the communication performance. With the advent
of the fifth generation (5G) wireless standards, new high
performance technologies have been introduced. One of these
key technologies is constituted of massive Multiple-input
multiple-output (MIMO) systems [5], [6], which are being
increasingly adopted in different networking and computing
frameworks. The authors in [7]–[10] mainly consider single-
antenna systems taking joint wireless resources and task
offloading into account and fail to exploit the advantages
brought by MIMO technology in terms of offloading effi-
ciency. MIMO techniques have the potential of achieving
high channel capacity [11]–[13]. New technologies are being
introduced to improve the performance of mobile users from
current levels. By equipping the base stations (BSs) with a
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large number of antennas, widely known as massive MIMO,
has emerged as one of the most promising solutions [14],
[15] that significantly enhance the systems spectral efficiency
(SE) and energy efficiency (EE) trade-off. More specifically,
when the number of antennas increases, the channels become
more deterministic, which is referred to as channel hardening.
Hence, the achievable data rates are mostly determined by
large-scale fading, and so is the resource allocation. This
means that there is no need to frequently update the resource
allocation, yielding substantial savings in the signalling over-
head. In all, massive MIMO schemes increase the spectral and
energy efficiencies and support an increased number of users,
both of which are crucial for fog computing systems.

Additionally, relay techniques have been integrated into
various wireless communication standards to improve the
coverage and throughput [16]. MIMO relay networks facili-
tate spectral-efficient, and reliable data transmission between
spatially distributed user nodes and multi-antenna destinations
via intermediate multi-antenna relay nodes [17], [18]. In this
work, we propose to use a massive MIMO-aided fog access
node (FAN) regarded as a relay for significantly improving the
data rate of computational task offloading as well as the task
execution efficiency.

A. Related Works

In recent years, task offloading has gained increasing atten-
tion in a diverse range of fog computing scenarios [8], [9],
[19]–[23]. In contrast to the traditional cloud-based computing
architecture, fog computing provides a more efficient platform
for low-latency task offloading at a high energy-efficiency.
In particular, Li et al. [24] explored the concept of mobile
cloudlets in mobile cloud computing through studying the
cloudlet properties and the computing performance attained.
Xiao et al. [25] proposed a task offloading framework for a
mobile user, who may offload computing tasks to the nearby
devices for exploiting the processing capacity available in
the vicinity. Chen and Zhang [26] proposed a hybrid task
offloading framework to support both device-to-device (D2D)
offloaded execution and cloud offloaded execution. As a fur-
ther development, Pu et al. [7] formulated an optimization
problem for minimizing the time-averaged energy consump-
tion for task execution of all users in D2D networks. Wang
et al. [20] designed an online learning based task offloading
algorithm for delay-sensitive applications in dynamic fog
networks by exploiting the combinatorial multi-armed bandits
(CMAB) framework. Chen et al. [27] developed a novel
framework that enables the implementation of federated learn-
ing algorithms over wireless network, which jointly considers
power- and computational-resource allocation. Yang et al. [9]
proposed an energy-efficient fog computing framework asso-
ciated with multiple neighboring helper nodes sharing their
computational resources, taking into account the opportunistic
spectrum access for spectrum sharing. Yang et al. [28] inves-
tigated a fundamental multi-task multi-helper problem in het-
erogeneous fog networks, i.e., how to effectively associate task
nodes and helper nodes to minimize the delay of every task.
However, since most of the contributions on task offloading

have been focused on the single-hop resource allocation, there
is a paucity of literature on multi-hop scenarios.

Resource allocation for peer offloading in fog-assisted
small cell networks has been widely studied. Zhou et al.
[29] proposed an online distributed task offloading (DTO)
algorithm for practical fog computing systems, where each
mobile user dynamically offloads its decision to nearby mobile
devices in a collaborative manner via peer-to-peer wireless
communications. Chen et al. [30] investigated peer offloading
schemes in mobile edge computing-aided small cell networks,
where diverse task arrival patterns are considered both in
the spatial and temporal domains. Although the above out-
standing contributions have studied peer-to-peer computation
offloading in single-antenna systems, the potential benefits
of massive MIMO schemes in further enhancing the per-
formance of the fog computing framework have not been
explored. Different from the conventional MIMO, massive
MIMO configuration relies on a large number of antennas
and can significantly improve the data rate of task offloading.
It has been shown in [31] that massive MIMO schemes
significantly improve the data rates of user equipments (UEs)
at the cell edge, as well as the overall network throughput.
As expected, the integration of fog computing and massive
MIMO can enhance the performance of task offloading in
multi-user fog computing systems [32]–[35]. In particular,
Bursalioglu et al. [32] proposed and analyzed an architecture
nicknamed fog massive MIMO, where a large number of
multi-antenna BSs are densely deployed, and serve the users
using zero-forcing beamforming (ZFBF). In [33], Pirzadeh
et al. investigated the viability of supervised-learning methods
in estimating the user locations by observing across the fog
massive MIMO network signals transmitted by the users.
In [34], Chen proposed a specific fog computing mechanism
for the uplink of fronthaul-constrained distributed massive
MIMO systems (DM-MIMO), and the corresponding power
control algorithm. Mungara et al. [35] considered a new
architecture underpinned by, on-the-fly, pilot contamination
control, termed as fog massive MIMO, where the users are
able to establish high-throughput and low-latency data links
in a seamless and opportunistic manner, as they travel through
a dense fog of high capacity remote radio heads (RRHs).
Although the aforementioned studies have demonstrated the
benefits of massive MIMO-based fog computing, they have
not taken into account the channel estimation error in resource
allocation and task offloading, which are particularly important
for time-variant fog computing systems. On the other hand,
as the fog systems provide additional computing capabilities
at the edge of the network, a major question that they raise is
how to manage task execution. More precisely, how to decide
which tasks to be executed in the end-users stratum, the fog
stratum, and the cloud stratum. On a finer level, the dilemma
is which nodes a particular task should be assigned to.

B. Main Contributions

In this contribution, we jointly optimize the task offloading
and power allocation of the massive MIMO-aided fog comput-
ing systems, where robust resource allocation is conceived in
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the face of realistic channel estimation errors. In our proposed
fog computing framework, some of the nodes referred to the
parlance as task nodes (TNs) have computationally-intensive
applications to run, which hence request the offloading of their
computational tasks via a massive MIMO-enabled FAN to
computing nodes (CNs) having under-utilized computational
resources. Again, we assume that the downlink (DL) channel
state information (CSI) of data transmission from the FAN
to the CN (FAN-CN) is imperfect. Then, we extend to the
imperfect CSI assumption to the link spanning from the TNs
to the FAN (TN-FAN), namely to the uplink (UL). After estab-
lishing the total task offloading energy consumption, we for-
mulate a joint task offloading and power allocation problem.
The objective is to minimize the total energy consumption,
while taking into account the practical communication and
computation constraints. Since the optimization problem is
non-convex, it is challenging to obtain an optimal solution.
Additionally, considering imperfect CSI further complicates
the optimization problem. To this end, we solve the task
offloading and power allocation problem in two steps. First,
we determine the task and computation resource allocation for
given power allocation results. Then, we present a sequential
optimization framework for determining the power allocation
decision that minimizes the total energy consumption at the
TNs and the FAN. Based on the task-, computational resource-
, and power-allocations, we propose an iterative algorithm for
finding the jointly optimized results. The main contributions
of this paper are summarized as follows.

• We develop a novel massive MIMO-enabled task
offloading framework, where multiple nodes offload their
computational tasks to multiple CNs via a massive
MIMO-aided FAN. We formulate an energy minimization
problem by jointly optimizing the allocation of tasks,
computational resource, and power.

• We partition the original optimization problem into
two subproblems, namely into, task and computational
resource allocation subproblem and a FAN power allo-
cation subproblem. In the optimization problem, we first
consider realistic imperfect FAN-CN CSI and then we
extend to the imperfect TN-FAN CSI to obtain the robust
power allocation results.

• We formulate the power allocation subproblem as a
non-convex problem when the computational resource
allocations and power allocations of each node having
computational tasks are fixed, and present a sequen-
tial optimization framework for carrying out the power
allocation decisions. Based on the task, computational
resource, and power allocations, we propose an itera-
tive algorithm for finding the jointly optimized results.
Furthermore, we prove the convergence of the proposed
iterative algorithm.

• Our simulation results demonstrate that the proposed
computational task offloading and power allocation algo-
rithm achieves significant performance improvements
over the benchmarks.

The rest of the paper is organized as follows. Section II
describes our system model and problem formulation. Then,

Fig. 1. Illustration of a massive MIMO-aided fog computing network, where
K task nodes offload their tasks to K computing nodes in the fog with the
aid of a fog access node relying on a massive MIMO scheme.

we formulate a task offloading and power allocation problem.
In Section III, we introduce the total energy consumption of
our massive MIMO fog computing systems. In Section IV,
we optimize the task offloading, computational resource allo-
cation, and power allocation by proposing an iterative opti-
mization algorithm for massive MIMO-aided fog computing
networks. In Section V, we discuss our simulation results.
Finally, our conclusions are provided in Section VI. Table I
lists the frequently used notations.

Matrices and vectors are denoted by capital and lower-case
boldface letters, respectively. CM×N and RM×N denote the
sets of all M × N complex-valued matrix and real-valued
matrix, respectively. (·)H, (·)†, tr(·) and E(·) denote the
conjugate transpose, pseudo-inverse, trace and the expectation,
respectively. i.i.d. stands for independent and identically dis-
tributed.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the network model of
the massive MIMO-enabled fog computing networks, present
the channel model as well as computational model, and then
formulate the total energy minimization problem.

A. Network Model

We consider a massive MIMO aided fog computing net-
work, consisting of K single-antenna TNs, an M -antenna
FAN, and K single-antenna CNs, as shown in Fig. 1. Each
TN can either offload its task to the intended CN via the
FAN or execute the computational task locally. The multi-
antenna FAN serves as a relay to help offloading the tasks from
the TNs to the CNs. Due to the associated signal decoding
and resource scheduling complexities of non-orthogonal mul-
tiple access (NOMA) and orthogonal multiple access (OMA),
the extension to consider task offloading from multiple task
nodes to multiple computing nodes is left for future discus-
sions.

The fog computing system operates over a bandwidth of B
and the time is slotted into intervals of constant duration T .
We assume that each CN can only execute one task from a
single TN during each time slot. Without loss of generality,
we also assume that the kth TN is paired with the kth CN
for task offloading, which is hence referred to as the kth
TN-CN pair. To reduce the offloading delay, the task offloading
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TABLE I

FREQUENTLY USED NOTATIONS

procedures of all TN-CN pairs are performed simultaneously.
Additionally, there is no direct link between any TN and CN
due to propagation obstacles. The FAN relies on time-division
duplexing. In this context, the task offloading from the TNs to
CNs consists of three phases, namely, the channel estimation
phase, the task uploading phase from the TNs to the FAN (i.e.,
TN → FAN phase), and the task relaying phase from the FAN
to the CNs (i.e., FAN → CN phase).

B. Channel Model

We consider independent and identically distributed (i.i.d.)
quasi-static Rayleigh fading. In particular, each inter-node
channel remains invariant within one time slot, but varies
independently across different time slots and links. As shown
in [36], the assumption of i.i.d. Rayleigh fading permits the
derivation of exact (non-asymptotic) ergodic capacity lower
bounds for very comprehensive Massive MIMO systems, and
experiments have established conditions under which this
model is approximately valid [37]. Let H = [hT

1 , · · · ,hT
K ] ∈

CM×K denote the M × K channel coefficient matrix from
the K TNs to the FAN, where the kth element hk denotes
the channel coefficient vector between the kth TN and FAN,
k = 1, 2, . . . ,K . Additionally, let G = [gT

1 , · · · ,gT
K ] ∈

CK×M denote the K × M channel coefficient matrix from
the FAN to the K CNs, where the kth element hD,k denotes
the channel coefficient vector between the FAN and the kth
CN, k = 1, 2, . . . ,K .

It is reasonable to assume that the CSI is perfectly known
at the receiver [38], since the receiver can acquire the accurate
CSI at the receiver (CSIR) with training. However, the trans-
mitter can only acquire the imperfect CSI through a finite-
rate feedback channel, which introduces quantization error and
feedback delay. Consequently, we assume that the CSI in the
TN→FAN phase is perfectly known at the FAN as the UL
receiver, while the CSI in the FAN→CN phase is imperfectly
known at the FAN as the DL transmitter. Let Ĝ denote the
estimated FAN-CN channel CSI. In this context, the FAN-CN
channel can be modeled as [39]

G =
�

1 − τ2
DĜ + τDΩD, (1)

where ΩD ∈ CK×M has i.i.d entries with zero mean and
unit variance independent of the estimated channel matrix

Ĝ, and the parameter τD ∈ [0, 1] reflects the estimation
accuracy or quality of the channel matrix G. The case of
τD = 0 corresponds to perfect CSI estimation, whereas the
CSI is completely unknown if τD = 1.

C. Computation Models

In this subsection, we discuss both the local and the CN
computing approaches.

1) Partial Computing Offloading: Let us consider that TN
k has bk bits to be computed in a time slot. Let us furthermore
denote the ratio of data bits offloaded to the total task bits by
νk, i.e., (1 − νk)bk bits are subject to local computing and
νkbk to CN computing.

For local computing, the power consumption of TN k can
be modeled as [40]

PL
k = �f3

k , (2)

where fk is the CPU cycle frequency of TN k, which can
be adjusted via the dynamic voltage and frequency scaling
(DVFS) technique [41]. Thus, the local computing time of
TN k is calculated as

tLk =
�(1 − νk)bk

fk
, (3)

where � (� > 0) denotes the number of cycles needed for
computing each single data bit.1 Consequently, the energy
consumption of local computing at TN k is given by

EL
k = PL

k t
L
k = ��(1 − νk)bkf2

k . (4)

As for computing by the CN, the TNs first offload their
tasks to the FAN. After collecting the input bits from the TNs,
the FAN distributes the tasks to the corresponding CNs. Let
us define the time duration of the task offloading from the TN
k to its intended CN by Dk. Thus, the energy consumption of
TN k for task offloading is expressed as

ET
k = PtDk, (5)

where Pt is the transmit power of each TN. We assume
furthermore that the time and energy consumptions of the TNs
required to download the computed results are negligible, since
the computing results are usually of small size and the FAN
has a high transmit power [42]–[44].

1Note that the parameters bk and � are determined by the types of
applications and estimated via task profilers [42].
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2) Task Offloading: Task offloading refers to the case that
the task is offloaded for execution by the paired CN. The task
offloading time from TN k to its intended CN is given by

Dk =
νkbk
Rk

, ∀k, (6)

where Rk is the average task offloading rate for the kth
TN. Correspondingly, the energy consumption for the task
offloading of TN k is given by

Eoff
k = (Pt + pk)Dk =

(Pt + pk)νkbk
Rk

, (7)

where pk ∈ p = [p1, · · · , pK ] is the FAN transmit power
allocated to the kth TN-CN pair. Let Pr denote the maximum
transmit power available at the FAN. As such, we have pk ≤
Pr.

Upon receiving the computational tasks, the CN allocates
its computational resources for task execution. In this context,
the total energy consumption of task offloading consists of the
local computing energy consumption and the task offloading
energy consumption. After combining (4)-(7), the total energy
consumption of task offloading of TN k is given by

Etotal,k = ��(1 − νk)bkf2
k +

(Pt + pk)νkbk
Rk

. (8)

D. Problem Formulation

In this section, we formulate a joint task-, power-, and
computational-resource allocation problem with an objec-
tive of minimizing the total energy consumption, taking
into account both the communication and computational
constraints. Let Ptmax in (9d) and γk in (9e) denote the
maximum transmit power of each TN and the received signal-
to-interference-plus-noise ratio (SINR) at CN k, respectively.
To minimize the total energy consumption Etotal of K TNs
and FAN while ensuring that their tasks are successfully
executed within a single time slot, the energy-efficient multi-
pair computation offloading problem is formulated as

min
ν,p,f

Etotal (9a)

s.t. 0 ≤ νk ≤ 1, ∀k , (9b)

0 ≤ pk ≤ Pr, ∀k, (9c)

0 ≤ Pt ≤ Ptmax , (9d)

γk ≥ γ0, ∀k, (9e)

0 ≤ fk ≤ fmax, ∀k, (9f)
�(1 − νk)bk

fk
≤ T, ∀k, (9g)

where (9b) gives the range of the computational task offloading
ratio; (9c) specifies the power allocation variables for the
FAN; (9d) is the transmit power constraint for the TN; (9e)
is the quality-of-service (QoS) of delay constraints capable of
ensuring that the SINR of each TN-CN pair is higher than γ0;
(9f) represents that the maximum CPU-clock frequency of TN
k is fmax.

III. ENERGY CONSUMPTION ANALYSIS

This section investigates the total energy consumption of
the massive MIMO-aided fog computing systems. Firstly,
we derive the received SINR for determining the offloading
rate. Secondly, the task offloading time is calculated. Finally,
the total energy consumption is analyzed.

A. Task Transmission

As for the task computation, a CN can execute either all
tasks after receiving all of them or some tasks while still
receiving more tasks. Given the overlapped arrival order of
tasks at the CN, the overlapping nature of the computing task
makes the analysis intractable. For simplicity, let us assume
that each CN only executes the task received from the intended
TN after receiving all tasks. As a result, we consider that task
transmission in massive MIMO-aided fog computing networks
consists of TN → FAN phase and FAN → CN phase.

In the TN → FAN phase, all TNs simultaneously transmit
their symbols to the FAN in a single time slot, which is given
by

x =
�
Pts, (10)

where s = [s1, · · · , sK ]T is an information-bearing symbol
vector with E(ss†) = IK , and sk is the symbol delivered
from the kth TN to its paired CN. The signal yR ∈ CM×1

received at the FAN is

yR = Hx + nR, (11)

where nR ∈ C
M×1 is the zero-mean additive white Gaussian

noise (AWGN) at the FAN with a variance of E(nRnH
R) =

σ2
rIM . Given the knowledge of perfect CSIR and imperfect

CSIT, the FAN precodes its received signal yR and obtains
the filtered signal vector xR ∈ CM×1 as

xR = ŴyR, (12)

where Ŵ ∈ CM×M is the precoding matrix. The precoding
matrix of the FAN can be written as

Ŵ = Ĝ†PH†, (13)

where Ĝ† = ĜH(ĜĜH)−1 and H† = (HHH)−1HH. The
diagonal matrix P ∈ RK×K is the power allocation matrix
of the FAN, wherein the kth diagonal element [P]k,k =

√
pk

denotes the transmit power allocated to the kth TN-CN pair.
The average power constraint at the FAN can be written as

E[tr(xRxH
R)] ≤ Pr. (14)

B. Received SINR at CN

During the FAN → CN phase, the FAN broadcasts xR to
all the K active CNs. The signal received at all CNs is given
by

yU = GŴyR + nU , (15)

where yU = [y1, · · · , yK ] ∈ CK×1, and nU is the zero-mean
AWGN at the destinations with a variance of E(nUnH

U ) =
σ2

UIK .
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Given (15), the signal vector received at all the CNs can be
rewritten as

yU = GŴHx + GŴnR + nU

= GĜ†PH†Hx + GĜ†PH†nR + nU

= (
�

1 − τ2
DĜ + τDΩD)Ĝ†Px

+ (
�

1 − τ2
DĜ + τDΩD)Ĝ†PH†nR + nU

=
�

1 − τ2
DPx + τDΩDĜ†Px +

�
1 − τ2

DPH†nR

+ τDΩDĜ†PH†nR + nU . (16)

Based on (16), the signal received at the kth CN is

yU,k =
�
pkPtsk +

√
pk f̂

†
S,knR +

�
pkPt f̂

†
S,kF̃Ss

+ f̃D,kxR + nk, (17)

where yU,k, sk, and nk are the kth elements of yU , s, and
nU , respectively, and f̂†S,k and f̃D,k are the kth row of F̂†

S and
F̃D respectively. The effective SINR of the kth data stream at
the CN is given by

γk =
(1 − τ2

D)pkPt

Pt(ζkζH
k ) + σ2

r (ηkηH
k ) + σ2

u

, (18)

where ζk and ηk are the kth rows of τDΩDĜ†P and
(
�

1 − τ2
DPH†+τDΩDĜ†PH†), respectively. In the follow-

ing theorem, we characterize the asymptotic property of the
SINR in (18) under the massive MIMO setting.

Theorem 1: As the number of antennas at the FAN tends
to M → ∞, the effective SINR in (18) can be asymptotically
expressed as

γk,∞ =
(1 − τ2

D)pkPt

(1 − τ2
D)σ2

rλk

�K
i=1 pi + σ2

u

. (19)

Proof: Please refer to Appendix A. �

C. Offloading Time and Energy Consumption

Given (18), the task offloading rate of the kth TN is given
by

Rk =
B

2
log2(1 + γk), (20)

where B/2 indicates that the FAN works in the half-duplex
mode. Then, based on (6) and (20), the offloading time of the
kth TN is given by

Dk =
2νkbk

B log2(1 + γk)
. (21)

The total transmit energy consumption is given by that
of the TNs and the FAN.2 According to the transmit power
consumption of the TN and FAN, the corresponding offloading
energy consumption is given by

Eoff
k = (Pt + pk)Dk =

2(Pt + pk)νkbk
B log2(1 + γk)

. (22)

2Following a practical power consumption model in [9], we assume that
the circuit power is a constant, accounting for the fixed power consumption
for controlling, site-cooling, and the load-independent power of baseband
processors. To simplify the problem, we only consider the transmit power
consumption.

Given the energy consumptions of the local computing and
task offloading in (4) and (22), we obtain the total energy
consumption of the massive MIMO-enabled fog computing
system as

Etotal =
K�

k=1

�
EL

k + Eoff
k

�

=
K�

k=1

�
��(1 − νk)bkf2

k +
2(Pt + pk)νkbk
B log2(1 + γk)

	
.

(23)

IV. JOINT RADIO AND COMPUTATIONAL RESOURCE

OPTIMIZATION

In this section, we jointly optimize the task offloading,
computational resource and transmit power allocations for
minimizing the total energy consumption at the TNs and FAN.
Firstly, we solve the subproblem of task- and computational-
resource allocation. Secondly, we solve the subproblem of
FAN power allocation. Finally, we optimize the joint problem
by conceiving an iterative algorithm.

A. Task- and Computational-Resource Allocation

In this subsection, we solve the task-scheduling subproblem
to obtain the task- and computational-resource allocation under
a fixed FAN power allocation. In the following, we transform
the non-convex optimization problem of (9) into a tractable
convex one.

Firstly, it can be verified that the objective function (OF) of
Problem (9) monotonically increases with fk, ∀k. Secondly,
based on constraint (9g), we have fk ≥ �(1−νk)bk

T . Finally,
the optimal CPU-cycle frequency of TN k can be obtained as

f�
k =

�(1 − νk)bk
T

. (24)

By substituting (24) into (9), Problem (9) is equivalently
transformed into

min
ν,p

K�
k=1

��3(1 − νk)3b3k
T 2

+
2(Pt + pk)νkbk
B log2(1 + γk)

(25a)

s.t. 0 ≤ νk ≤ 1, ∀k , (25b)

0 ≤ pk ≤ Pr, ∀k, (25c)

0 ≤ Pt ≤ Ptmax , (25d)

γk ≥ γ0, ∀k. (25e)

Nevertheless, the transformed problem (25) is still non-convex.
Next, we further divide it into two sub-problems of task- and
computational-resource allocation and FAN power allocation,
and solve them alternately.

The subproblem of task allocation with respect to the
computational task offloading ratio is given by

min
ν

ϕ(ν) =
K�

k=1

��3(1 − νk)3b3k
T 2

+
2(Pt + pk)νkbk
B log2(1 + γk)

(26a)

s.t. 0 ≤ νk ≤ 1, ∀k . (26b)
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Problem (26) is convex and can be solved by using standard
algorithms, such as the classic interior-point method at a
polynomial computational complexity [45]. By taking the
derivative of the objective function with respect to sk, we have

∂ϕ(ν)
∂νk

=
−3��3(1 − νk)2b3k

T 2
+

2(Pt + pk)bk
B log2(1 + γk)

= 0. (27)

According to (27), we arrive at the optimal solution ν∗k =
1 −

�
2(Pt+pk)bkT 2

3��3b3kB log2(1+γk)
.

B. Power Allocation based on Sequential Optimization

In this subsection, we propose a sequential optimization
method for the FAN power allocation. By fixing the com-
putational task offloading ratio vector ν, we only have to
solve the power allocation problem. Thus, problem (25) can
be simplified to

min
p

K�
k=1

(Pt + pk)νkbk
Rk

=
K�

k=1

(Pt + pk)νkbk
B
2 log2(1 + γk)

(28a)

s.t. (9c), (9e). (28b)

Due to the non-convex OF and constraints, Problem (28) is
still intractable. Next we use Theorem 1 to make the problem
solvable. According to (19), we have

γk ≤ γk,∞ =
(1 − τ2

D)pkPt

(1 − τ2
D)σ2

rλk

�K
i=1 pi + σ2

u

≤ (1 − τ2
D)pkPt

(1 − τ2
D)σ2

rλkpk + σ2
u

=
Pt

σ2
rλk

−
Ptσ2

u

(1−τ2
D)σ4

rλ2
k

pk + σ2
u

(1−τ2
D)σ2

rλk

. (29)

Now γk becomes a concave function of pk. To begin with the
problem optimization, the OF of Problem (28) can be rewritten
in form of a single ratio as

K�
k=1

(Pt + pk)νkbk
Rk

=
K�

k=1

(Pt + pk)νkbk
B
2 log2(1 + γk)

=
φ(p)
ϕ(p)

, (30)

where φ(p) =
�K

k=1 [(Pt + pk)νkbk]



l �=k

�
B
2 log2(1 + γl)

�
and ϕ(p) =


K
k=1

�
B
2 log2(1 + γk)

�
, respectively.

Then, the Sequential Parametric Convex Approxima-
tion (SPCA) method of [46] can be applied to solve Prob-
lem (28), which can be transformed into the following problem

min
p

φ(p)
ϕ(p)

(31a)

s.t. (9c), (31b)

γ0 −
⎛
⎝ Pt

σ2
rλk

−
Ptσ2

u

(1−τ2
D)σ4

rλ2
k

pk + σ2
u

(1−τ2
D)σ2

rλk

⎞
⎠ ≤ 0. (31c)

Since the OF in (28) is non-convex, standard convex opti-
mization algorithms are not guaranteed to solve it. Towards
this end, we have the following main result.

Lemma 1: The optimal solution of (31) exists if and only
if

p∗ = arg min
p

{φ(p) − ψ∗ϕ(p)}, (32)

with ψ∗ being the unique zero of the auxiliary function υ(ψ),
where

υ(ψ) = min
p

{φ(p) − ψϕ(p)} . (33)

Proof: The proof of Lemma 1 is given in Proposi-
tion 2.1 of [47]. �

Therefore, solving problem (31) is equivalent to solving the
following optimization problem:

min
p

φ(p) − ψ∗ϕ(p) (34a)

s.t. (9c), (34b)

γ0 −
⎛
⎝ Pt

σ2
rλk

−
Ptσ2

u

(1−τ2
D)σ4

rλ2
k

pk + σ2
u

(1−τ2
D)σ2

rλk

⎞
⎠ ≤ 0. (34c)

As a result, at the nth iteration of the SPCA method,
we have to solve a convex problem. Let us introduce the

notation of G(p(n)
k ) =

Ptσ2
u

(1−τ2
D

)σ4
rλ2

k

p
(n)
k

+
σ2

u
(1−τ2

D
)σ2

rλk

and F (n)(pk) =

γ0 − Pt

σ2
rλk

+ G(p(n)
k ), we have

F (n)(pk) = γ0 − Pt

σ2
rλk

+ G(p(n)
k )

≤ γ0 − Pt

σ2
rλk

+ G(p(n−1)
k )

+ (p(n)
k − p

(n−1)
k )

∂G(p(n)
k )

∂p
(n)
k

|
p
(n)
k

=p
(n−1)
k

= U (n)(pk), (35)

where the second inequality follows from the well-known
descent lemma (see [48]). Hence, Problem (34) becomes

Pn : min
pT

φ(p) − ψ∗ϕ(p) (36a)

s.t. (9c), (36b)

U (n)(pk) ≤ 0. (36c)

The variable p
(n−1)
k is a fixed parameter depending on the

solution of Problem Pn−1. The SPCA method is detailed in
Algorithm 1. According to Sections I and II of [46], the idea of
choosing an arbitrary starting point in the feasible set works
well for the SPCA method. Thus, we only need to choose
arbitrary initial values of {p(0)

k }, ∀k. As shown in Algorithm 2,
we employ Dinkelbach’s algorithm to solve Problem (36) [47],
[49]. Now each subproblem of Algorithm 2 is a convex
minimization problem subject to convex constraints, which
can be globally solved at each iteration. Through iterations,
Algorithm 2 converges to the global optimum. Notably, Algo-
rithm 2 can be carried out at a polynomial-time complexity
due to its super-linear convergence rate [47].

Additionally, we establish a convergence result for the
SPCA method in Lemma 2. Since the original problem (28)
is non-convex, it is not possible to prove the convergence to
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Algorithm 1 The Framework of the Power Allocation Algo-
rithm for Problem (28)

1: Step 0: Initialize starting point p(0)
k which is feasible to

problem (28), and set U (1)(pk) = γ0 − Pt

σ2
rλk

+ G(p(0)
k ) +

(p(1)
k − p

(0)
k )∂G(p

(n)
k )

∂p
(n)
k

|
p
(n)
k =p

(0)
k

.

2: Step n: Compute p(n)
k of Problem (36);

Set U (n+1)(pk) = γ0 − Pt

σ2
rλk

+ G(p(n)
k ) + (p(n+1)

k −
p
(n)
k )∂G(p

(n)
k )

∂p
(n)
k

|
p
(n)
k =p

(n)
k

, and n = n+ 1.

Algorithm 2 The Framework of the Dinkelbach’s Algo-
rithm for Problem (36)
1: Initialize � and ψ0 with υ(ψ0) ≥ 0, m = 0;
2: while υ(ψm) ≥ � do
3: Solve the following problem:

p(n)∗
m = arg min

p(n)

�
φ(p(n)) − ψmϕ(p(n))

�
;

ψm+1 = φ(p(n)∗
m )

ϕ(p
(n)∗
m )

;
m = m+ 1;

4: end while

a global minimum, but rather to the KKT points under some
regularity conditions.

Lemma 2: Let {p(n)} be the sequence generated by the
SPCA method. If the sequence {p(n)} converges to a regular
point {p∗}, then {p∗} is a KKT point of Problem (34).

Proof: Please refer to Appendix B. �

C. Joint Power and Computational Resource Optimization

Given the above results from the two subproblems, the joint
power- and computational-resource optimization is formulated
in Algorithm 3.

Again, the power allocation solution can be found by solv-
ing a series of convex optimization problems at a polynomial
complexity. Furthermore, the subproblem of computational
resources optimization is a convex one, which can be optimally
solved at a polynomial complexity. In summary, the proposed
alternating optimization algorithm only requires a polynomi-
ally increasing computational complexity with the problem
dimension.

Algorithm 3 Joint Power- and Computational-Resource Opti-
mization Algorithm

1: Initialize z = 0, � = 1, and a feasible point p(0).
2: while � > 0.001 do
3: z = z + 1;
4: Solve problem (26), and obtain ν(z).
5: Calculate p(z) via Algorithm 2 with p(z−1) and ν(z);

6: Calculate � = maxk |ν
(z)
k −ν

(z−1)
k

ν
(z−1)
k

|;
7: end while

Lemma 3: Algorithm 3 converges within finite iterations,
since the optimal solution of Problem (25) monotonically
decreases with the iterations.

Proof: Please refer to Appendix C. �

D. Extension to Imperfect CSIR of TN-FAN Channel

In this subsection, we extend to consider the scenario that
the CSIR is imperfectly known at the FAN. Let Ĥ denote the
estimated TN-FAN channel CSI. Thus, the actual TN-FAN
channel can be modeled as [39]

H =
�

1 − τ2Ĥ + τSΩS , (37)

where ΩS has i.i.d entries with zero mean and unit variance
independent of Ĥ, and the parameter τS ∈ [0, 1] reflects the
estimation accuracy or quality of H.

Following (13), the precoding matrix at the FAN is given
by

Ŵ = Ĝ†PĤ†,

where we have Ĝ† = ĜH(ĜĜH)−1 and Ĥ† =
(ĤHĤ)−1ĤH. The signal vector received at the CNs can be
formulated as

yU = GŴHx + GŴnR + nU

= GĜ†PĤ†Hx + GĜ†PĤ†nR + nU

=
�

1 − τ2
D

�
1 − τ2

SPx + ΩUx + GĜ†PĤ†nR

+nU . (38)

where ΩU =
�

1 − τ2
DPĤ†τSΩS + τDΩDĜ†P

�
1 − τ2

S +
τDΩDĜ†PĤ†τSΩD is the channel estimation error. In par-
ticular, the signal received at the kth CN is

yk =
�

(1 − τ2
D)(1 − τ2

S)Ptpksk + gU,kx

+
�

(1 − τ2
D)pkĥ

†
knR +

�
τDΩDĤ†

DPĤ†
S

�
k
nR + nk,

(39)

where ωU,k is the kth row of ΩU . The SINR of the kth data
stream is characterized by

γ̂k =
(1 − τ2

D)(1 − τ2
S)pkPt

Pt(ωU,kωH
U,k) + pk(1 − τ2

D)σ2
r (ĥ†

k(ĥ†
k)H) + χk + σ2

u

,

(40)

where χk = τ2
Dσ

2
r

�
ΩDĜ†PĤ†(ΩDĜ†PĤ†)H

�
k,k

. From

(40), we have the following theorem.
Theorem 2: Let τ1 = (1 − τ2

D)τ2
Sλk , τ2 = (1−τ2

D)(1−τ2
S)τ2

D

1+τ2
D

and τ3 = τ2
Sτ2

Dλk(1−τ2
D)

(1+τ2
D)

. The SINR of the kth data stream
defined in (40) can be expressed as

γ̂k =
(1 − τ2

D)(1 − τ2
S)pkPt

Ptατ +
�K

i=1 piσ2
rλk(1 − τ2

D) + 1
M τ2

Dpkλkβτ + σ2
u

,

(41)

where ατ = τ1pk + 1
M τ2

�K
i=1 pi + 1

M τ3
�K

i=1 pi and βτ =
1−τ2

D

1+τ2
D

.
Proof: Please refer to Appendix D. �
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Based on Theorem 2, we have the following propositions.
Proposition 1: As the number of antennas in the FAN tends

to M → ∞, the SINR in (41) can be asymptotically expressed
as

γ̂k,∞ =
(1 − τ2

D)(1 − τ2
S)pkPt

Pt(1 − τ2
D)τ2

Sλkpk +
�K

i=1 piσ2
rλk(1 − τ2

D) + σ2
u

.

(42)

Proposition 2: If K TNs are capable of accessing the
massive MIMO-aided task offloading systems, then we have:

K≤
�

(1−τ2
D)(1−τ2

S)PrPt−(1−τ2
D)τ2

SλkPtPrγ0−σ2
uγ0

(1−τ2
D)λkϑσ2

rγ0
.

(43)

Proof: Please refer to Appendix E. �
Based on (42), the FAN power allocation problem can be

expressed as

min
p

K�
k=1

(Pt + pk)νkbk
Rk

=
K�

k=1

(Pt + pk)νkbk
B
2 log2(1 + γ̂k)

(44a)

s.t. (9c), (44b)

γ̂k ≥ γ0, ∀k. (44c)

Theorem 3: Algorithm 3 can be used to solve the robust
average energy minimization problem given in (44).

Proof: Please refer to Appendix F. �

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, our simulation results characterizing the
proposed task offloading strategy are presented in comparison
to several baseline schemes. We consider the typical outdoor
wireless propagation environment, where the channel’s power
angle spectrum (PAS) can be modeled by the truncated Lapla-
cian distribution [50], [51], while the eigenvalues depend on
the channel PAS, which reveals a relationship between the
channel’s spatial correlations and channel power distribution
in the angular domain.

A. System Parameters

Computer simulations are conducted to verify the accuracy
of our analytical results, and the simulation results are obtained
by averaging over 10,000 channel realizations. the channel
with the parameter settings is generated using floating-point
arithmetic in MATLAB. In the simulation, the channel samples
are generated at a period of 0.005ms. Unless mentioned
otherwise, most of the simulations obey the following scenario.
There are 25 CNs with sufficient computational resources.
For each TN and CN, the CPU’s computational capacity is
randomly selected from the set {0.1, 0.2, · · · , 1.0} GHz. The
Random Access Memory (RAM) size is 2 GB and the local
computation’s energy per CPU cycle zi follows a uniform
distribution in the range of (0, 20 × 10−11) J/cycle. For the
computing task, we consider a robot mapping application
similar to that in [42], [52], where the task size of any TN
k for the computation offloading is ak = 500 KB, ∀k ∈ S,
the SINR threshold is 1.5 dB, and the required number of CPU

cycles per bit follows the uniform distribution in [500, 1500]
cycles/bit.

The nodes are uniformly distributed in a square-shaped cell
with a side length of 2 × R, where R denotes the cell size.
We simulate a micro-cell environment for the Non Line of
Sight (NLOS) case and set the carrier frequency to fC =
2 GHz. The external parameters and stochastic parameters are
extracted from Chapter 3 of [53]. The FAN and TNs heights
are set to be hFAN = 5 m and hTN = 1.5 m, respectively. The
noise power is given by σ2

u = BkBT0W , where B = 20 MHz
denotes the bandwidth, kB = 1.381 × 10−23 represents the
Boltzmann constant, T0 = 290 (Kelvin) denotes the noise
temperature, and W = 9 dB is the noise figure.

B. Performance Evaluation

Fig. 2 shows the total energy consumption of massive
MIMO-aided fog computing systems versus the number
of TNs. Specifically, we compare the performance of our
proposed algorithm, to pure local computing, to the maximal
energy efficient task scheduling strategy (MEETS) of [9],
to the full offloading strategy, to the proposed algorithm with
multi-antenna relay, and to the proposed algorithm without
relay under a variety of diverse conditions. Local computing
and full offloading represent the scenarios that all the tasks
are computed locally and remotely in the CN, respectively.
We can observe from Fig. 2 that the total energy consumption
increases with the number of TNs, since higher computing
energy consumption and offloading energy consumption are
required. It is worth noting that our proposed algorithm
significantly outperforms both the pure local computing
and the full offloading strategies. The objective of MEETS
is to reduce the transmission energy consumption. Local
computing performs better than MEETS in terms of its
total energy consumption due to its reduced computational
energy consumption. When the number of TNs is small,
since local computing consumes much less energy than full
offloading, most of the tasks are computed locally, which
makes the performance of our proposed algorithm similar to
that of local computing. In order to verify the performance
improvement of massive MIMO, we plot the results of the
proposed algorithm using a conventional relay. It can be
observed that the massive MIMO scheme always performs
better than the conventional multi-antenna relay. On the
other hand, the transmit energy consumption is much higher
than the computing energy consumption. Therefore, we can
observe from the figure that the total energy consumption of
the full offloading strategy is always much higher than that of
the local computing strategy. However, in the regime of large
task size, the delay requirement can not be guaranteed if all
the tasks are computed locally. Thus, the tradeoff between
local computing and full offloading strategies under the delay
requirement is demonstrated quite explicitly.

We then conduct an experiment to validate the tightness
of our proposed task offloading strategy. We plot the total
energy consumption versus the task size for different schemes
in Fig. 3, which characterizes both our proposed algorithm
and the simulated optimal scheme. It can be observed that
the variations of the values of the proposed algorithm and
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Fig. 2. Total energy consumption of the massive MIMO system versus the
number of task nodes.

Fig. 3. Total energy consumption of the massive MIMO-enabled fog
computing system versus the task size.

the simulated optimal scheme agree reasonably well. The
performance of the local computing strategy approaches that
of the proposed algorithm when the task size decreases and
saves substantial energy over the full offloading strategy. This
suggests that there exists some critical value of the task size,
under which reducing the task size yields no total energy
consumption reduction for the proposed algorithm compared
to the local computing strategy. Additionally, we observe that
the total energy consumptions of both the local computing
strategy and of the proposed algorithm converge to that of the
optimal solution, when the task size decreases. This is due to
the fact that the local computing strategy is the most energy
efficient strategy when the task size is small. Furthermore,
the total energy consumption of the proposed algorithm is
lower than that of the other three existing strategies when the
task size is higher than 250 bits.

Fig. 4(a) and Fig. 4(b) show the total energy consumption
of the massive MIMO-aided fog computing system versus the
FAN-CN channel estimation quality τD and TN-FAN channel
estimation quality τS , respectively. With random offloading
strategy, all the TNs choose the random offloading ratios.
We observe from the figure that the energy consumption of
the proposed algorithm is much lower than that of local com-
puting, full offloading, and random offloading, respectively.
Additionally, we observe that the total energy consumptions
of the full offloading strategy, random offloading strategy,

Fig. 4. Total energy consumption of massive MIMO-enabled fog computing
system versus the channel estimation errors.

and of the proposed algorithm is increased when the channel
estimation error increases. This is due to its higher transmit
energy consumption. As shown in both figures, it is obvious
that the total energy consumption of the local computing
strategy does not vary with the channel estimation accuracy.
Furthermore, it can be observed from Fig. 4(a) that there exists
a crossover point between the random offloading strategy and
local offloading strategy. This means that the FAN-CN channel
estimation error τD influences the offloading decisions. This
observation can be interpreted as follows: As the channel
estimation error τD becomes large, the transmit power has
to be increased to meet the SINR constraint. Hence the total
energy consumption of local computing may become lower
than that of offloading. Similarly, it may be observed from
Fig. 4(b) that there exists a crossover point between using the
local computing strategy and our proposed algorithm.

In order to further augment the interpretation of the asymp-
totic form of the effective SINR from Theorem 1, Fig. 5
plots the effect of different numbers of antennas on the total
energy consumption, which illustrates the scenario of the total
energy consumption versus the channel estimation error τD
for different numbers of antennas. It can be observed that
the total energy consumption is increased when the channel
estimation error τD is increased regardless of the number
of antennas. Furthermore, the larger the number of antennas,
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Fig. 5. Total energy consumption of massive MIMO-enabled fog computing
systems versus the channel estimation error τD .

the smaller the energy consumption reduction becomes upon
having more antennas. This coincides with the analytic results
of Section IV: For a large number of antennas, the SINR
converges to a value that is independent of the number of
antennas. These results further indicate that the total energy
consumption can be reduced upon increasing the number of
antennas. Therefore, we can choose the most energy efficient
offloading strategy for our massive MIMO-aided fog comput-
ing system according to the asymptotic form of the effective
SINR.

VI. CONCLUSION

A massive MIMO-enabled task offloading framework has
been proposed, where multiple TNs rely on task offloading
via a massive MIMO-aided FAN to multiple CNs. We for-
mulated an optimization problem for minimizing the total
energy consumption of task offloading, in the face of imperfect
CSI. In order to tackle this challenging problem, we have
solved the task offloading and power allocation problem in
an alternating manner. We first determined the task and com-
putational resource allocation for a given power allocation,
followed by presenting a sequential optimization framework
for determining the power allocation that minimizes the total
energy consumption at the TNs and FAN. Based on the task-,
computational-resource, and power-allocations, we have pro-
posed an iterative algorithm for obtaining the joint results. The
simulation results showed that the proposed scheme achieves
much better performance than the benchmarks. In a future
work we will consider the scenario of multiple task nodes
to multiple computing nodes under the proposed resource
allocation framework.

APPENDIX

A. Proof of Theorem 1

For the second term on the right hand side (RHS) in (16),
we expand the trace of τDΩDĜ†Px and obtain its power as

E
�
τ2
DΩDĜ†PxxHPHĜ†HΩH

D

�
k,k

= τ2
Dtr

�
Ĝ†PxxHPHĜ†H

�

=
(1 − τ2

D)τ2
DPt

�
i=1 pi

M(1 + τ2
D)

. (45)

Based on [54], we have the following results

lim
M→∞

1
M

gH
i gj =

�
0, if i 	= j,
1, if i = j.

(46)

Based on (46), we arrive at limM→∞ 1
M ĝH

k ĝk = 1+τ2
D

1−τ2
D

. Next

we adopt the eigenvalue/eigenvector decomposition of HH
k Hk

to obtain

HHH = QΛQH, (47)

where Λ = diag{λ1, · · · , λK} and Q represents the nonneg-
ative diagonal eigenvalue matrix and the unitary eigenvector
matrix, respectively. Therefore, we have E

�
hH

k hk

�
= λk.

For the third and fourth terms on the RHS in (16),
we expand the trace of GĜ†PĤ†nR and obtain its power
as follows:

(1 − τ2
D)E

�
PH†nRnH

R H†HPH
�
k,k

+ τ2
DE
�
ΩDĜ†PH†nR

�
k,k

= (1 − τ2
D)

K�
i=1

piE
�
h†

knRnH
Rh†H

k

�

+ τ2
DE
�
ΩDĜ†PH†nRnH

RH†HPHĜ†HΩH
D

�
k,k

=
K�

i=1

piσ
2
rλk(1 − τ2

D) +
τ2
D

�K
i=1 piσ

2
rλk(1 − τ2

D)
M(1 + τ2

D)
.

(48)

The SINR of the kth data stream defined in (18) can be
expressed as (49), shown at the bottom of the next page. In
the large-antenna-size regime, we obtain the asymptotic form
of the SINR for the kth data stream as

γk,M→∞ = γk,∞ =
(1 − τ2

D)pkPt

(1 − τ2
D)σ2

rλk

�K
i=1 pi + σ2

u

.

B. Proof of Lemma 2

Let us assume that {p(n)} is a feasible solution of Prob-
lem P (n), which means that its objective function value
φ(p(n)) − ψ∗ϕ(p(n)) is no less than the optimal value of
problem P (n+ 1), i.e., we have φ(p(n+1))−ψ∗ϕ(p(n+1)) ≤
φ(p(n)) − ψ∗ϕ(p(n)). Additionally, since the feasible set of
problem (28) is compact and nonempty, it follows that the
sequence φ(p(n)) − ψ∗ϕ(p(n)) is bounded, and thus has a
limit.

Let us also assume that {p∗} is the convergent point. Thus
{p∗} must satisfy the KKT conditions of problem (36). For
any n, the KKT conditions are satisfied for problem Pn,
i.e., there exist nonnegative numbers μ1, μ2 ∈ R+ satisfying:

∂ [φ(p) − ψ∗ϕ(p)]

∂p
(n)
k

+ μ1 + μ2
∂U (n)(pk)

∂p
(n)
k

= 0,

μ1p
(n)
k = 0,

μ2U
(n)(pk) = 0. (50)
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By denoting the limit of μ1 and μ2 by μ∗
1 and μ∗

2, respectively,
and taking the limit n → ∞ for the KKT conditions of (50),
we obtain

μ∗
2U(p∗) = μ2

�
γ0 − Pt

σ2
rλk

+G(p(n−1)
k )

+ (p(n)
k − p

(n−1)
k )

∂G(p(n)
k )

∂p
(n)
k

|
p
(n)
k

=p
(n−1)
k

�
n→∞

= μ∗
2

�
γ0 − Pt

σ2
rλk

+G(p∗)
�

= μ∗
2F (p∗). (51)

We finally conclude that

∂ [φ(p) − ψ∗ϕ(p)]
∂p∗

+ μ∗
1 + μ∗

2

∂U(p∗)
∂p∗

= 0,

μ∗
1p

∗ = 0,
μ∗

2F (p∗) = 0, (52)

proving that p∗ is a KKT point of problem (34).

C. Proof of Lemma 3

According to Algorithm 3, the zth iteration follows the
following inequalities

Etotal

�
ν(z−1),p(z−1)

�
(53a)

≥ Etotal

�
ν(z),p(z−1)

�
(53b)

≥ Etotal

�
ν(z),p(z)

�
, (53c)

where (53b) holds because problem (36) is convex and solution
ν(z) represents its global optimal solution; (53c) has been
proved to be valid from Lemma 2. Given (53a) and (53b),
Etotal(ν,p) is reduced at each iteration. Furthermore, since
Etotal(ν,p) is lower-bounded due to constraints, Algorithm 3
converges within a finite number of iterations for a given
threshold.

D. Proof of Theorem 2

Based on the following results [54]

lim
M→∞

1
M

gH
i gj =

�
0, if i 	= j,
1, if i = j,

(54)

we arrive at limM→∞ 1
M ĝH

k ĝk = 1+τ2
D

1−τ2
D

. We use the eigen-

value/eigenvector decomposition of ĤH
S,kĤS,k to obtain

ĤHĤ = QΛQH, (55)

where Λ = diag{λ1, · · · , λK} and Q represents the nonnega-
tive diagonal eigenvalue matrix and unitary eigenvector matrix,
respectively. Therefore, we have E

�
ĥH

k ĥk

�
= λk and

E
�
ΩUxxHΩH

U

�
k,k

= PtE
�
τ2
S(1 − τ2

D)PĤ†
SΩSΩH

S Ĥ†HPH

+ τ2
D(1 − τ2

S)ΩDĜ†PPHĜ†HΩH
D

+ τ2
Dτ

2
SΩDĜ†PĤ†ΩDΩH

DĤ†HPHĜ†HΩH
D

�
k,k

= PtE
�
τ2
S(1 − τ2

D)PĤ†
SĤ†HPH

+ τ2
D(1 − τ2

S)tr
�
Ĝ†PPHĜ†H

�
IK

+ τ2
Dτ

2
Str
�
Ĝ†PĤ†Ĥ†HPHĜ†H

�
IK

�
k,k

= Pt

�
pkλk(1 − τ2

D)τ2
S

+
�K

i=1 pi(1 − τ2
D)(1 − τ2

S)τ2
D

M(1 + τ2
D)

+
�K

i=1 piτ
2
Sτ

2
Dλk(1 − τ2

D)
M(1 + τ2

D)

�

= Pt

�
τ1pk +

1
M
τ2

K�
i=1

pi +
1
M
τ3

K�
i=1

pi

�
, (56)

where E
�
ΩDAΩH

D

�
= tr (A) IN for any N ×N matrix, and

E
�
ΩDΩH

D

�
= IK and E

�
ΩSΩH

S

�
= IM according to [55].

For the second term on the RHS in (38), we expand the trace
of GĜ†PĤ†nR and obtain its power as follows:

E
�
GĜ†PĤ†nRnH

RĤ†HPHĜ†HGH
�

k,k

= (1 − τ2
D)

K�
i=1

piE
�
ĥ†

knRnH
Rĥ†H

k

�

+ τ2
DE
�
ΩDĜ†PĤ†Ĥ†HPHĜ†HΩH

D

�
k,k

=
K�

i=1

piσ
2
rλk(1 − τ2

D) +
τ2
Dpkλk(1 − τ2

D)
M(1 + τ2

D)

=
K�

i=1

piσ
2
rλk(1 − τ2

D) +
1
M
τ2
Dpkλkβτ . (57)

Upon substituting (56) and (57) into (40), we obtain the
SINR of the kth data stream in (41).

E. Proof of Proposition 2

According to the Cauchy-Schwarz inequality, we have

K2�K
i=1

1
pi

≤
K�

i=1

pi. (58)

As a result, we have

γ̂k ≤ γ̂k,∞

=
(1 − τ2

D)(1 − τ2
S)pkPt

Pt(1 − τ2
D)τ2

Sλkpk +
�K

i=1 piσ2
rλk(1 − τ2

D) + σ2
u

γk =
(1 − τ2

D)pkPt

(1−τ2
D)τ2

DPt

�
K
i=1 pi

M(1+τ2
D)

+ (1 − τ2
D)σ2

rλk

�K
i=1 pi + (1−τ2

D)τ2
Dσ2

rλk

�
K
i=1 pi

M(1+τ2
D)

+ σ2
u

(49)
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≤ (1 − τ2
D)(1 − τ2

S)pkPt

Pt(1 − τ2
D)τ2

Sλkpk + K2
�

K
i=1

1
pi

σ2
rλk(1 − τ2

D) + σ2
u

≤ (1 − τ2
D)(1 − τ2

S)PrPt

Pt(1 − τ2
D)τ2

SλkPr + K2
�K

i=1
1

pi

σ2
rλk(1 − τ2

D) + σ2
u

.

Let us specify that
�K

i=1
1
pi

= 1
ϑ . Since γ̂k ≥ γ0, the above

inequality can be written as

K≤
�

(1−τ2
D)(1−τ2

S)PrPt−(1−τ2
D)τ2

SλkPtPrγ0−σ2
uγ0

(1−τ2
D)λkϑσ2

rγ0
.

F. Proof of Theorem 3

According to (42), we have

γ̂k ≤ γ̂k,∞

=
(1 − τ2

D)(1 − τ2
S)pkPt

Pt(1 − τ2
D)τ2

Sλkpk +
�K

i=1 piσ2
rλk(1 − τ2

D) + σ2
u

≤ (1 − τ2
D)(1 − τ2

S)pkPt

Pt(1 − τ2
D)τ2

Sλkpk + pkσ2
rλk(1 − τ2

D) + σ2
u

=
(1 − τ2

S)Pt

Ptτ2
Sλk + σ2

rλk + σ2
u

pk(1−τ2
D)

. (59)

Therefore, γ̂k is a concave function of pk. According to
the previous analytical results in subsection IV-B, the SPCA
method [46] can also be applied to solve Problem (44).
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