
3070 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

Generalized Binary Representation for the Nonbinary
LDPC Code With Decoder Design

Yang Yu, Wen Chen, Senior Member, IEEE, Jun Li, Member, IEEE, Xiao Ma, and Baoming Bai

Abstract—In this paper, we consider the performance-optimized
nonbinary low-density parity check code over general linear
group, i.e., C̄. A new methodology for constructing the binary
representation [generalized binary representation (GBR)] of C̄ is
proposed, which can be optimized with regard to both degree
distributions and girth. As to the decoding of the GBR, we develop
a low-complexity hybrid parallel decoding process. It is shown
that the decoding performance of the GBR under the proposed
binary decoding process could closely approach the decoding per-
formance of its mother code C̄ under nonbinary belief propagation
decoding. A simple code optimization algorithm for the GBR
is also provided. Simulations show the comparative results and
justify the advantages of the proposed constructions.

Index Terms—Non-binary LDPC code, binary image, binary
Gaussian channel, binary symmetric channel.

I. INTRODUCTION

LOW density parity check (LDPC) codes, as a class of
forward error control codes, have gained considerable

attention during the last decade due to their amazing decoding
performance under different channels [1], [2]. The performance
of a long LDPC code is usually evaluated in terms of the
threshold for the average performance of its code ensemble
based on the cycle-free condition [1], [3]–[7].

Performance-optimized LDPC codes are designed by op-
timizing the degree structure of the Tanner graphs so that
their thresholds could be very close to the Shannon capacity.
In the mean time, these codes will suffer from performance
degradation if there exist non-negligible number of short length
cycles, especially for the short block length codes. Moreover,

Manuscript received August 27, 2013; revised February 16, 2014 and
June 28, 2014; accepted July 19, 2014. Date of publication July 30, 2014; date
of current version September 19, 2014. This work was supported in part by
the National 973 Project under Grant 2012CB316106, by NSF China under
Grants 61161130529 and 61328101, by the STCSM Science and Technology
Innovation Program under Grant 13510711200, and by the SEU National Key
Lab on Mobile Communications under Grant 2013D11. The associate editor
coordinating the review of this paper and approving it for publication was
K. Abdel-Ghaffar.

Y. Yu and W. Chen are with Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China, and also with
the School of Electronic Engineering and Automation, Guilin University of
Electronic Technology, Guilin 541004, China (e-mail: yuyang83@sjtu.edu.cn;
wenchen@sjtu.edu.cn).

J. Li is with the School of Electrical and Information Engineering, The
University of Sydney, Sydney, N.S.W. 2006, Australia (e-mail: jun.li1@sydney.
edu.au).

X. Ma is with the Department of Electronics and Communication Engi-
neering, Sun Yat-sen University, Guangzhou 510275, China (e-mail: maxiao@
mail.sysu.edu.cn).

B. Bai is with the State Key Laboratory of Integrated Services Network,
Xidian University, Xi’an 710071, China (e-mail: bmbai@mail.xidian.edu.cn).

Digital Object Identifier 10.1109/TCOMM.2014.2344912

codes with large girths will have respectable minimum/stopping
distance bound, which also implies enhanced decoding perfor-
mance. In this paper, we refer to the cycles in the binary parity
check matrices as bit-level cycles and the cycles in the non-
binary parity check matrices as symbol-level cycles. In [8]–[10],
the authors show how to construct the parity check matrices
with less bit-level cycles and large girths for binary LDPC
codes. For the non-binary LDPC codes, investigations indicate
that they could have sparser Tanner graphs as the field size
increases. For short to moderate block lengths, the non-binary
LDPC codes with sparser graphs are more likely to outperform
the binary ones. In [11], [12], the authors investigate a particular
type of non-binary LDPC codes, i.e., non-binary cycle LDPC
codes, whose column weights are two. In [11], optimizations
for this type of codes are performed over Cayley-graph. In [12],
the authors propose bit-level coefficients selection methods to
optimize the symbol-level performance for the non-binary cycle
LDPC codes.

On the other hand, belief propagation (BP) decoding for
the non-binary LDPC codes requires a potentially higher com-
plexity. The complexity of the q-ary sum-product decoding
algorithm (QSPA) is O(q2) for each check-sum operation. The
Fourier transform QSPA reduces the complexity to O(q log q)
[5]. The extended min-sum (EMS) algorithm in [13] further
reduces the complexity to O(nm log nm) at the cost of a bit
performance loss, where nm is smaller than q. However, the
computational complexity of the EMS decoder is still very
high compared to the binary decoder. Hence, in [14], [15], the
authors propose an extended binary representation for the non-
binary LDPC code which can be decoded by binary decoders.
The binary computational complexity is only O(q) for BEC.
Theoretically, based on the decoding error probability, the au-
thors in [16], [17] prove that the minimal decoding complexities
exist if the LDPC codes are constructed with properly chosen
degree distributions.

A. Related Works

The codewords of a non-binary LDPC code are often trans-
mitted over binary input channels in their bit-vector forms, i.e.,
binary images of the non-binary LDPC codes. At the receiver
side, the non-binary decoder needs to transform the received
bit sequences back to their non-binary forms to perform the
symbol-level decoding [2], [6], [12], [18], [19] for retrieving the
information bits. On the other hand, as an alternative of using
the non-binary decoders for binary input channels, one can use
a binary decoder to retrieve the information bits by utilizing the
binary representations of the non-binary parity check matrices

0090-6778 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3071

for the purpose of reducing the computational complexity [14],
[15], [20]. Especially in certain cases, when the receiver re-
ceives a non-binary codeword from the binary input channels
and only limited computational resources are available, the
consideration of using binary decoders is natural and practi-
cal for a fast and correct information recovery. However, the
binary representation of a non-binary parity check matrix has
numerous bit-level cycles, even if there is no symbol-level cycle
[14], [20] in the non-binary parity check matrix. Thus, in [14],
[15], the authors introduce the (punctured) extended binary
representation for the non-binary LDPC code to solve this issue.
When there is no symbol-level cycle, this representation will
also be cycle-free. In [20], the authors propose a hybrid hard
decision decoder particularly for the BEC which eliminates the
local decoding cycles by introducing matrix inverse operations.
In addition, the authors in [21] show how to optimize the binary
representation of a non-binary parity check matrix with the
perspective of stopping set.

B. Contributions

In this paper, we focus on the performance-optimized C̄ (the
non-binary LDPC code over general linear group). We aim
at further improving the bit-level decoding performance and
reducing the bit-level computational complexity. To this end,
we develop a hybrid parallel decoding process over binary input
Gaussian channel to achieve enhanced decoding performance
and propose a new methodology to construct the binary repre-
sentation for C̄ which can be optimized with regard to both girth
and irregular code profile (degree distributions). Contributions
of this paper are summarized as follows.

1) We first give an extended iterative hard decision decoder
(EHDD) over binary symmetric channel (BSC). Then,
by allowing the EHDD and binary BP decoder working
iteratively, we develop a hybrid parallel decoder (HPD)
for the GBR. The bit-level computational complexity is
dominated by O(ms),ms < q. Systematic investigation
of the proposed decoders is also carried out. It is shown
that the low complexity bit-level decoding (HPD) could
perform closely to the symbol-level decoding for C̄. A
simple code optimization algorithm for these binary de-
coders is also provided.

2) We propose a generalized binary representation (GBR)
for C̄ which can be optimized with regard to both girth
and irregular code profile (primarily the irregular code
profile). A general approach is given to study the con-
structions and optimizations of the GBR. Significant
results and conditions regarding the constructions and
optimizations are also derived.

C. Organization of the Paper

The contents of this paper are organized as follows. In
Section II, we introduce the binary representations of the non-
binary LDPC code and give a unified framework for the ex-
tended binary representation. In Section III, we give the details
about the GBR. In Section IV, we give the decoder design,
carry out the systematic investigation of the proposed decoders

and provide a simple code optimization algorithm. Section V
presents the simulation results.

II. BINARY REPRESENTATIONS FOR NON-BINARY

LDPC CODES

A. Binary Images for Non-Binary LDPC Codes

We denote the finite field of size q = 2p by Fq and the column
vector space of dimension-N over Fq by F

N
q . Let F∗

q = Fq\{0}.
We assume that Fq is endowed with a binary vector space
structure. Every u ∈ Fq can be denoted by a binary vector

ū = (ū1, ū2, . . . , ūp−1)
T ∈ F

p
2,

i.e., the binary image of u. We denote the general linear group
over F2 by GL(p,F2) whose elements are p× p invertible
matrices with entries taken from F2.

A non-binary LDPC code C of length N is the dimension
N −M linear subspace of F

N
q . Its parity check matrix is

denoted by

H = {hi,j}M×N , hi,j ∈ Fq.

Then C is defined as the kernel of H.
The non-binary LDPC code C̄ defined over GL(p,F2) is

generalized from C [22]. The code symbols of C̄ are elements in
F
p
2. A codeword is constituted of N symbols. The parity check

matrix of C̄ is an M ×N matrix with each non-zero entry being
an element in GL(p,F2). By using the binary vector notation,
we denote the binary image of its codeword as

x̄ =
(
x̄T
1 , x̄

T
2 , . . . , x̄

T
N

)T
, x̄j ∈ F

p
2, j = 1, 2, . . . , N.

The equivalent binary parity check matrix for C̄ is denoted by

H̄ = (Ai,j)M×N ,Ai,j ∈ GL(p,F2) ∪ {0}.

The non-binary LDPC code C is a particular case of C̄ in
the sense that Fq

∼= F
p
2 and the non-zero entries in H can

be represented by the powers of the companion matrix over
Fq [20], [22]–[24]. With a little abuse of the notation, in the
following, we denote any binary parity check matrix over F2

by H̄ and any non-binary parity check matrix over Fq by H.
We also define diag(B1,B2, . . . ,BN) as the matrix

diag(B1,B2, . . . ,BN) =

⎛
⎜⎜⎝

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · BN

⎞
⎟⎟⎠ ,

where Bj , j = 1, 2, . . . , N , are not necessarily to be square
matrices.

B. Extended Binary Representation for Non-Binary
LDPC Codes

In this subsection, we give a unified framework for the
extended binary representation. We denote the set of natural

3072 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

integers including 0 by N, and define N
∗ = N\{0}. Let Nq =

{0, 1, . . . , q − 1} and N
∗
q = Nq\{0}. For an arbitrary matrix

B, we denote the entries of B by B(i, j), i, j ∈ N, where i
and j are the row number and column number, respectively.
In addition, B(i, 0) represents the ith row vector, B(0, j)
represents the jth column vector. We denote the p× p identity
matrix by Ip×p. The extended representation begins with a
linear transformation of a binary vector x̄j ∈ F

p
2 [14].

We define Φ as the p× (q − 1) binary matrix of the follow-
ing form

Φ = (Φ(0, 1),Φ(0, 2), . . . ,Φ(0, q − 1)) ,

where each column vector Φ(0, j), j = 1, 2, . . . , q − 1, is the
binary representation of j ∈ N

∗
q . For the binary image of the

jth coded symbol, i.e., x̄j , we have

vj = ΦT x̄j ∈ F
q−1
2 .

Note that Φ is the parity check matrix of the [q − 1, q − 1− p]
hamming code. So, each vj is also a codeword of the simplex
code (dual code of the hamming code). The extended binary
representation (EBR) of x̄ is then

v =
(
vT
1 , . . . ,v

T
N

)T
.

The EBR of C̄ is defined as the vector space constituted of those
vs transformed from the binary images of all the codewords
of C̄. In addition, for each non-zero Ai,j , we can get a (q −
1)× (q − 1) matrix Ωi,j while satisfying an endomorphism
of Nq and an isomorphism between Nq and F

p
2 [14]. If we

replace the non-zero Ai,j in H̄ by Ωi,j and the zero Ai,j by
0(q−1)×(q−1), we get the extended binary parity check matrix
Ω = (Ωi,j)M×N . Then Ωv = 0 and the simplex constraints
on v together form the extended binary representation. The
decoding applications of the extended binary representation
over general channel models are given in [22].

III. GENERALIZED BINARY REPRESENTATION FOR

NON-BINARY LDPC CODES

In this section, we introduce the generalized binary repre-
sentation (GBR) for the non-binary LDPC codes over General
linear group. We will also discuss the constructions and opti-
mizations of the GBR.

A. Definition of the Generalized Binary Representation

We first give the definitions that will be used in the following
sections. We define wt(·) as the function that calculates the
number of non-zero columns in a matrix or of the non-zero
elements in a vector.

Definition 1: The mother matrix Λp of a binary matrix H̄
over F2 or of a non-binary matrix H over Fq is defined as a
matrix with each entry being either 0 or 1. The binary matrix H̄
can be obtained by replacing the 0s by 0 matrices of size p×
p and the 1s by non-zero matrices of size p× p. These p× p
matrices are also referred to as the matrix labels of H̄. The non-

binary matrix H can be obtained by replacing the 0s in Λp by
the zero element in F2p and the 1s by the non-zero elements
in F2p . Cycles in Λp or H are referred to as the symbol-level
cycles. Cycles in H̄ are referred to as the bit-level cycles.

Recall that, in Section II-A, the equivalent binary parity
check matrix H̄ for the non-binary LDPC code C̄ over general
linear group GL(p,F2) can be expressed as (Ai,j)M×N . Each
Ai,j is either a p× p zero matrix or a p× p full-rank matrix.
Then, the Ai,js are referred to as the matrix labels of H̄.

Definition 2 (�): We denote the relationship between two
vectors a,b by a � b if a is obtained by replacing some
elements in b by zeros. For two matrices A,B, we denote
A � B if A is obtained by replacing some column vectors in
B by zero vectors.

Definition 3 (≺): We denote the relationship between two
vectors a,b by a ≺ b if a � b and wt(a) < wt(b). For two
matrices A,B, we denote the relationship between them by
A ≺ B if A � B and wt(A) < wt(B).

Below, we first define Ψ = {Ψj , j = 1, 2, . . . , N} as the
extended generator matrices set. Each Ψj is a full-rank binary
matrix with p rows and p′j columns, where p � p′j � q − 1.
The non-zero columns in each Ψj are different from each
other. Then, for the binary image of the codeword of C̄, i.e.,
x̄ = (x̄T

1 , x̄
T
2 , . . . , x̄

T
N)

T
, x̄j ∈ F

p
2, j = 1, 2, . . . , N , we have

ve = diag
(
ΨT

1 ,Ψ
T
2 , . . . ,Ψ

T
N

)
· x̄, (1)

where ve = (veT
1 ,veT

2 , . . . ,veT
N)

T
.

Definition 4: Given the extended generator matrices set Ψ,
the generalized binary representation (GBR) of the non-binary
LDPC code C̄ over general linear group is defined as the vector
space constituted of all the ves (which are transformed from
the binary images of all the codewords of C̄ according to (1)).
Moreover, we refer to Ψj(0, 2

i−1) �= 0, ∀i ∈ {1, 2, . . . , p} as
the trivial case for the GBR of C̄.

Recall that Φ is the generator matrix of the extended binary
representation (EBR), and the codeword of the EBR is denoted
by v. Since Ψj has different non-zero vectors as its columns
and Φ has all the non-zero vectors in F

p
2 as its columns, the non-

zero column vectors in each Ψj form a subset of the column
vectors in Φ. In the following, without loss of generality, we
assume that Ψj � Φ for all j ∈ {1, 2, . . . , N}. Then, ve

j � vj .
Since the zero columns in Ψj will result in zero bits in ve

j

which can be ignored or readily removed, this assumption does
not violate Definition 4 and will facilitate the discussion of the
GBR too.

B. Exhaustive Search for the Desired Parity Check Matrix

The bits in ve
j , j ∈ {1, 2, . . . , N} represent different ad-

ditions of the bits in x̄j . Then, by finding the parity check
relationships for different combinations of these additions, we
could establish the parity check relationships for ve. We denote
the parity check matrix for ve by Ωe = (Ωe

i,j)M×N
where each

Ωe
i,j is a (q − 1)× (q − 1) binary matrix. Then, the desired

Ωe can be in general constructed by searching among different
combinations of the parity check relationships for ve.

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3073

Definition 4 may imply that we should search for Ωe

based on a given Ψ. However, in order to guarantee enhanced
decoding performance for Ωe, we first determine the desired
Ωe then we update Ψ. That is,

1) We construct a set S whose elements are the rows of Ω,
the rows established according to different combinations
of the simplex parity check relations and the zero row.

2) By using the elements in S, we construct different Ωes
row by row such that the new row does not introduce
cycles smaller than certain integer.

3) Among the constructed parity check matrices, we find the
Ωe with desired performance threshold. Then, we update
Ψ and ve.

For the non-binary LDPC code C̄, there is only one associated
EBR with the parity check matrix Ω [14], [22]. However,
based on the above searching process, we could establish many
GBRs for C̄ whose parity check matrices may be obtained by
changing the matrix labels or the structure of Ω. This approach
is different from the work in [14], [15], [21] because it generally
results in non-trivial binary presentations of the code C̄. Like the
work in [22], we can decode these GBRs with a low-complexity
binary decoder without changing the transmitted codewords x̄,
i.e., the underlying code is not changed.

C. Mapping Definition and Examples

In this subsection, we introduce a matrix map fω to provide
more details about establishing the parity check relations for
ve and more insights into formulating the constructions of Ωe.
Consider the parity check matrix H̄ = (Ai,j)M×N . Let B be a
binary matrix of size p× (q − 1). With a little abuse of nota-
tion, we use fω(B,Ai,j) to denote the resulting binary matrix
and fω(i

′, j ′), i′, j ′ = 1, 2, . . . , q − 1 to denote the entries in
fω(B,Ai,j). Then

fω(i
′, j ′) =

{
1, if B(0, j ′) +AT

i,jΦ(0, i′) = 0,
0, if B(0, j′) +AT

i,jΦ(0, i′) �= 0.

The matrix map fω defined above can be used to represent dif-
ferent parity check relations for the bits in ve. More specifically,
different columns of fω(B,Ai,j) associate with different bits
in ve

j . Different rows of fω(B,Ai,j) denote different additions
between the bits in ve

j . To have a better understanding, we give
simple examples for fω below.

Example 1: The additions between different binary parity
check equations within H̄T

i x̄ = 0, i ∈ {1, 2, . . . ,M} can be
formulated as ΦT H̄T

i x̄ = 0 which will result in q − 1 different
binary parity check equations [14], [22]. We divide the q − 1
binary parity check equations into N partitions with the jth
partition consisting of q − 1 different additions of the bits in x̄j ,
i.e., ΦTAi,j x̄j . As a result, these equations denote q − 1 parity
check relations for v. If we set some of the q − 1 equations to
be zero equations, then there exist only one binary matrix B
for the jth partition such that the q − 1 rows of fω(B,Ai,j)
respectively represent the q − 1 rows within the jth parti-
tion, e.g., if p = 3 and Ai,j = (Φ(0, 3),Φ(0, 6),Φ(0, 7)), then

Fig. 1. Different matrices generated by fω in Example 1.

fω(Φ,Ai,j) = Ωi,j , as displayed in Fig. 1. If we set the first
and third rows in Ωi,j to be zero vectors, then we have

B = (Φ(0, 1),0,Φ(0, 3),Φ(0, 4),0,Φ(0, 6),

Φ(0, 7)) ≺ Φ,

fω(B,Ai,j) =
(
0,Ωi,j(2, 0)

T ,0,Ωi,j(4, 0)
T ,Ωi,j(5, 0)

T,

Ωi,j(6, 0)
T ,Ωi,j(7, 0)

T
)T ≺ Ωi,j .

Note that each ve
j is a codeword generated by Ψj . Since

different columns of fω(B,Ai,j) associate with different bits
in ve

j , fω(B,Ai,j) can be also used to represent some simplex
parity check relations for ve

j . The construction of such matrices
is trivial, so we leave it for briefness.

With the introduced fω , we can model the exhaustive search-
ing processes (Step 2 and Step 3 in Section III-B) for the
desired Ωe as follows. 1) For each Ai,j in H̄, we search for
proper binary matrices Ch, ∀h ∈ {1, 2, . . . , q − 1} with size
p× (q − 1). Moreover, fω(Ch,Ai,j) ·ΨT

j = ΦT (0, h), h ∈
{1, 2, . . . , q − 1} or fω(Ch,Ai,j) ·ΨT

j = 0.2) Then Ωe is ob-

tained by replacing each Ai,j with
∑q−1

h=1 fω(Cj ,Ai,j), where∑
is the modulo-2 sum and each fω(Ch,Ai,j) corresponds

to a row in Ωe
i,j (some of Chs could be zero matrices). If

each Ai,j is replaced by
∑q−1

h=1 fω(Cj ,Ai,j) = fω(Φ,Ai,j),
the resulting matrix is the parity check matrix Ω for the EBR.
Another example of fω is that, by assuming B � Φ, we replace
each Ai,j with fω(B,Ai,j). Then, the construction of the
resulting Ωe is equivalent to removing some rows (and some
columns) of Ω.

D. Properties of the Matrix Mapping

Lemma 1: Let B � Φ and B′ � Φ be two p× (q − 1)
binary matrices. Let C be a p× p full-rank binary matrix.
fω(Φ,C) is a (q − 1)× (q − 1) permutation matrix. In ad-
dition, B′ � B and fω(B

′,C) � fω(B,C) are necessary and
sufficient conditions for each other.

Proof: Since C is a p× p full rank matrix, all the
CTΦ(0, i′), i′ = 1, 2, . . . , q − 1 are different column vectors.
Then fω(Φ,C) will have only one non-zero entry in each row
or column. So, fω(Φ,C) is a (q − 1)× (q − 1) permutation
matrix. If B � Φ, the zero columns in B will result in zero rows
in fω(B,C). Then fω(B,C) can be obtained by setting some

3074 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

rows of fω(Φ,C) to be zero vectors. Since fω(Φ,C) have only
one non-zero entry in each column, then some columns become
zero vectors in fω(B,C). As a result fω(B,C) � fω(Φ,C).
Similarly, we have fω(B

′,C) � fω(B,C) if B′ � B. Con-
versely, if fω(B,C) � fω(Φ,C), it means that the columns
in B generating the zero rows in fω(B,C) are set to be zero
vectors. Since there is a one-to-one correspondence between B
and fω(B,C), we have B � Φ. Similarly, we have B′ � B if
fω(B

′,C) � fω(B,C). This completes the proof. �
When each Ai,j in H̄ is replaced by fω(Φ,Ai,j), we denote

the resulting matrix by

Ω =(Ωi,j)M×N

=(Ω1,Ω2, . . . ,ΩM)T = (Ωc
1,Ω

c
2, . . . ,Ω

c
N) ,

where Ωi is the (q − 1)N × (q − 1) sub-matrix and Ωc
j is the

(q − 1)M × (q − 1) sub-matrix of Ω. According to Lemma 1,
we also have the following properties of Ω.

Lemma 2:

1) For all the non-zero Ai,j , i ∈ {1, 2, . . . ,M}, j ∈
{1, 2, . . . , N}, the corresponding Ωi,j is a (q − 1)×
(q − 1) permutation matrix.

2) Ω inherits the node degrees of Λp. That is, row weights of
ΩT

i are the same and equal to the weight of Λp(i, 0). The
column weights of Ωc

j are equal to the weight of Λp(0, j).
Degree distributions of Ω are the same as those of Λp.

E. Bit-Level Cycles in Ω

In this subsection, we investigate the relations between the
symbol-level cycles in Λp and the bit-level cycles in Ω based
on the properties of fω . In general, we assume that Λp is of girth
gh. Λp is cycle-free if gh = 0. Next, we first give the definition
for the matrix cycle.

Definition 5 (Matrix Cycle): Given the binary parity check
matrix H̄. Let Λp be its mother matrix. A matrix cycle of
length-g in H̄ exists iff its corresponding positions in Λp form
a symbol-level cycle of length-g.

Lemma 3: If the girth of the mother matrix Λp is gh > 0,
then the girth of its associated parity check matrix Ω is gs � gh.
If gh = 0, gs = 0.

Proof: Since Ωi,j is a (q − 1)× (q − 1) permutation ma-
trix and cycle-free (due to the first item in Lemma 2), if Λp

satisfies the cycle-free condition, Ω will also be cycle-free.
Moreover, a cycle in Λp will only cause a matrix cycle in Ω
with the same length. When Ωi,js are equal to I(q−1)×(q−1), a
matrix cycle of length gh will always and only cause bit-level
cycles with the same length. Otherwise, the matrix cycle will
not cause bit-level cycles with length gh at certainty. Thus, the
girth of the binary parity check matrix Ω is not smaller than the
girth of its mother matrix Λp. �

The above lemma implies that, for H over Fq , the girth of
its associated Ω is also not smaller than its girth. Moreover,
investigations indicate that the length-4 cycles contribute the
most to the performance degradation. Next, we show that a
length-4 symbol-level cycle in H will not always result in
length-4 bit-level cycles in Ω.

Theorem 4: Let the non-zero matrix labels be uniformly
taken from F

∗
q . The probability that a length-4 symbol-level

cycle in the non-binary parity check matrix H will result in
length-4 bit-level cycles in Ω is denoted by p4. Then

p4 =
1

q − 1

for q = 2p � 4.
Proof: Since the length-4 bit-level cycles are only

caused by the length-4 symbol level cycle, we only con-
sider the bit-level cycles within a symbol-level cycle. Let
(i1, j1), (i1, j2), (i2, j1), (i2, j2) be the four coordinates of four
entries that represent a length-4 symbol level cycle in H. We
denote (

Ωi1,j1 Ωi1,j2

Ωi2,j1 Ωi2,j2

)

as the matrix cycle corresponding to a length-4 symbol-level
cycle. We use α1, β1, α2, β2 ∈ {1, 2, . . . , q − 1} to respectively
represent the column numbers of non-zero entries in Ωi1,j1 ,
Ωi1,j2 , Ωi2,j1 , and Ωi2,j2 with α1, β1 in the same row and
α2, β2 in the same row. We denote

S1 = {(α1, β1), α1, β1 ∈ {1, 2, . . . , q − 1}}

and

S2 = {(α2, β2), α2, β2 ∈ {1, 2, . . . , q − 1}}

as the two-tuple sets containing all the different rows in
(Ωi1,j1 ,Ωi1,j2) and (Ωi2,j1 ,Ωi2,j2), respectively. Then,

|S1| = |S2| = q − 1.

We denote S as the set containing all the rows that could be
involved in the length-4 matrix cycles. Then

S = {(α, β), α, β = 1, 2, . . . , q − 1}

and |S | = (q − 1)2 with S1,S2 ⊂ S . The length-4 bit-level
cycle exist iff

Pr(S1 ∩ S2 �= ∅) = 1−Pr(S1 ∩ S2 = ∅).

We can calculate the probability of S1 ∩ S2 = ∅ by counting
the number of choices of S1 and S2 over S . Since there are
q − 1 different non-zero Ωi,js, different Ωi,js have different
row numbers of the same row-vectors and no two different
Sis have common elements, different Sis divide S into q − 1
disjoint subsets. And because each Si is uniformly chosen, then
for a S1, there exist (q − 2) S2s that do not form cycles. As a
result,

Pr(S1 ∩ S2 = ∅) = (q − 1)(q − 2)

(q − 1)2
.

�
Corollary 5: For the matrix H̄, let its matrix labels be

chosen uniformly over a set {Bg, g = 1, 2, . . . , Q}. If there
exist a largest integer P � Q such that rank(fω(Φ,Bgi) +
fω(Φ,Bgj)) = q − 1 for all i �= j, i, j ∈ {1, 2, . . . , P}, then

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3075

the probability that a length-4 symbol-level cycle in Λp will
result in length-4 bit-level cycles in Ω, i.e., p′4, satisfies

1

q − 1
� p′4 � 1 + (Q− P)2

P + (Q− P)2
(2)

and P � q − 1 for q = 2p � 4. When P = 1, p′4 = 1.
Proof: The P matrix labels result in at most q − 1 disjoint

subsets of S then P � q − 1. The proof for the above inequal-
ity which results from the different values of Q− P is similar
to the proof of Theorem 4. �

According to Corollary 5, p′4 can be minimized by enlarging
q and minimizing Q− P . Consider a short length matrix cycle
of length-gc, gc � 4. Based on the proof of Theorem 4, we
suppose that the probability of the existence of corresponding
bit-level cycles of length-gc relates to both q and gc. We also
have the following observation for the short length symbol-level
cycles with lengths gc � 4.

Observation 1:

1) For a code in Corollary 5, the probability that a symbol-
level cycle of length-gc in Λp will cause corresponding
bit-level cycles of length-gc in Ω is greater than or equal
to 1/(q − 1).

2) This probability increases as the length of the symbol-
level cycle increases and decreases as q = 2p increases.

F. Construction of Ωe Based on Ω

In this subsection, we show how to efficiently find the parity
check matrix Ωe with certain girth. First, the exhaustive search
for Ωe is based on the rows of Ω. In the mean time, according
to Observation 1, more short length bit-level cycles in Ω
could be avoided by enlarging q in many cases. Therefore, we
could obtain Ωe with desired girth property more efficiently
by changing the structure of Ω instead of searching among
numerous parity check combinations. That is, we first remove
some rows in Ω which contain bit-level cycles, then replace
them with some new rows that will not introduce cycles with
lengths smaller than certain number. The resulting Ωe could
eliminate the bit-level cycles more efficiently and have a larger
girth than Ω. The details are provided as follows.

Step 1) Let q = 2p, p > 1. Given a parity check matrix H̄
with mother matrix Λp. We construct its associated
Ω. Let gs be an even number.

Step 2) We construct a binary matrices set {B′
1,B

′
2,

B′
3, . . .} with each B′

k being a cycle-free 2× (q −
1) or 2× 2(q − 1) matrix. In addition, B′

k · vj =
0, ∀k, j or (B′

k(0, 1), . . . ,B
′
k(0, q − 1)) · vj = 0

and (B′
k(0, q), . . . ,B

′
k(0, 2q − 1)) · vj = 0, ∀k, j.

Step 3) In Ω, we find the matrix cycles with lengths smaller
than gs (that will result in bit-level cycles with
lengths smaller than gs) and set the rows across the
associated matrix labels to be zero vectors. Then, we
rearrange these zero rows to the lower part of the
resulting matrix.

Step 4) For every two zero rows, we place a B′
k that will

not cause bit-level cycles with lengths smaller than
gs within them (also at the non-overlapped column-

Fig. 2. The structure of a Ωe. The upper part comprises some rows from Ω.
The lower part comprises some matrices Bks.

positions, a detailed example is given in Fig. 2). The
resulting matrix is denoted by Ωe.

Note that, given the practical LDPC code, the length-4 cycles
in Λp are in general eliminated. Then, we only have to handle
the matrix cycle with length gc > 4 in Step 4. A benefit comes
with the row replacing operation in Step 4 is that we could con-
struct many Ωes whose degree distributions are more different
from each other than the ones obtained without this operation.

IV. BIT-LEVEL DECODER FOR THE GBR

A. Motivation

Consider the performance-optimized C̄ under non-binary BP
decoding. While the decoding performance could be very good,
the computational complexity is high. In this section, our goal
is to propose a low complexity bit-level decoding process for
its associated GBR while the bit-level performance can closely
approach the optimized symbol-level performance of C̄. To
this end, the proposed decoding process for the associated
GBR should have both good performance threshold and fast
convergence speed (with regard to the number of decoding
iterations).

We first notice that there exists the following isomorphism
for C̄.

C̄ ∼= Ce ∩ (Ce
1 × Ce

2 × · · · × Ce
N) , (3)

where Ce is the binary code defined with Ωe, Ce
j is the binary

code generated by Ψj . The above equation implies that to have
good performance threshold we may perform the binary BP
decoding for the GBR and utilize the parity check relations
for both Ce and Ce

1 × Ce
2 × · · · × Ce

N . Then to further have fast
convergence speed we introduce a hybrid parallel decoding
process in Section IV-B, i.e., we allow the binary BP decoder
and an extended hard decision decoder working iteratively to
decode the GBR. Systematic investigation is also carried out to
clearly explain how we achieve our goal and to provide more
insights into the benefits of the proposed algorithms.

B. The Hybrid Parallel Decoding Process

Assume that x̄ = (x̄T
1 , x̄

T
2 , . . . , x̄

T
N)

T
is transmitted over the

binary input channels. We denote ȳ = (ȳT
1 , ȳ

T
2 , . . . , ȳ

T
N)

T
as

3076 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

the received sequence. In the following, for ease of discussion,
we refer to the bits in x̄ as bit nodes, the bits in ve as extended
bit nodes and the rows of Ωe as constraint nodes. Then, same as
the definition of bipartite graph, the bit nodes are connected to
the extended bit nodes according to the corresponding non-zero
entries in ΨT

j , j = 1, 2, . . . , N and the extended bit nodes are
connected to the constraint nodes according to the correspond-
ing non-zero entries in Ωe. Next, we first give the extended hard
decision decoder over binary symmetric channel (BSC). Then
we show how to let the extended hard decision decoder and
binary BP decoder work iteratively to decode the GBR over
binary input Gaussian channel.

Extended Hard Decision Decoder (EHDD): Here, we
present an extended iterative hard decision decoder for BSC.
Let � be the bit-wise addition of the vector space over F2. Then,
for a simplex code vj [25], we have vj(j

′
1 � j ′2 � · · ·� j ′k) =

vj(j
′
1)+vj(j

′
2)+· · ·+vj(j

′
k), j

′
i ∈ {1, 2, . . . , q − 1} [14]. By

utilizing this property and the Ωe, we present the iterative
decoding procedure below.

Step 1) We denote v̂e as the message for the extended bit
nodes which is initialized by the value of ΨT

j ȳj , j =
1, 2, . . . , N and b as the thresholds to perform the
bit-flippings.

Step 2) If z = Ωev̂e = 0 then ve = v̂e. Else, s = zTΩe =
(Sj)1×N (here is the decimal multiplication).
For j ′ ∈ {1, 2, . . . , q − 1}, if sj(j

′) � b and
ve
j(j

′) �= ve
j(j

′
1) + ve

j(j
′
2) + · · ·+ ve

j(j
′
k) where

j ′i ∈ {1, 2, . . . , q − 1} such that Ψj(0, j
′
i) �= 0 and

j ′ = j ′1 � j ′2 � · · ·� j ′k, then v̂e
j(j

′) = 1 + v̂e
j(j

′).
Step 3) Stop the procedure when Ωev̂e = 0 or the maxi-

mum number of iterations is reached. For the trivial
case, x̄j = (ve

j(1),v
e
j (2), . . . ,v

e
j(2

p−1))
T .

For ease of presentation, we denote b as the thresholds for
extended bit nodes with different degrees at different iterations,
i.e., for an extended bit node with degree-d at iteration-l, set
b > d/2�. We also introduce the simplex parity checks to
guarantee enhanced decoding performance. Below, we show
how to apply the BP algorithm into the decoding of the GBR
over binary input Gaussian channel.

Hybrid Parallel Decoder (HPD): The hybrid parallel de-
coder (HPD) for the GBR consists of two component decoders,
i.e., the binary BP decoder and the extended hard decision
decoder (EHDD). The BP decoder and the EHDD exchange
decoding messages iteratively. We consider one decoding round
is finished iff these two decoders have exchanged information
once. A (μ, ν) decoding round is a decoding round within
which the BP decoder has performed μ times consecutive
decoding iterations and the EHDD has performed ν times
consecutive decoding iterations. Different from the BSC, we
choose to transmit ve instead of x̄. Assume BPSK is utilized.
We denote ye as the received sequence. Then the decoding
process is described below.

Step 1) Initialize the message for the vth extended bit node
by μ

(0)
v,c = (2/σ2)ye(v) and the message for the cth

constraint node by ω
(0)
c,v = 0.

Step 2) ω
(l)
c,v = −2 tanh−1(

∏
i′′∈Nc\{v} tanh(−μ

(l−1)
i′′,c /2)),

where Nc is set of the extended bit nodes connected
to the cth constraint node.

Step 3) μ
(l)
v,c = (2/σ2)ye(v) +

∑
j′′∈Mv\{c} ω

(l)
j′′,v, where

Mv is the set of constraint nodes connected to the
vth extended bit node.

Step 4) For iteration-μ in a (μ, ν) decoding round, let the
hard decision be v̂e. We apply the EHDD for the
following ν times decoding iterations. If v̂e(v) =

1, μ
(l)
v,c = −|μ(l)

v,c|, else μ
(l)
v,c = |μ(l)

v,c|. Then, go to
step 2.

Step 5) Stop the procedure when Ωev̂e = 0 or the maxi-
mum number of iterations is reached. For the trivial
case, x̄j = (ve

j(1),v
e
j (2), . . . ,v

e
j(2

p−1))
T .

We denote Sv as the set containing all the bit
nodes connected to the vth extended bit node.
Then ve(v) +

∑
i′∈Sv

x̄(i′) = 0. As a result, if x̄ is
transmitted over the binary input Gaussian channel,
the initialization of the messages for the extended bit
nodes can be performed similarly to the processing rule
in Step 2. The decoding procedure is the same. Note that when
μ = 0, the HPD coincides with the extended hard decision
decoder. When ν = 0, the hybrid parallel decoder coincides
with the binary BP decoder.

Performance evaluation of the GBR under HPD could be
done by utilizing the Monte-Carlo experiments for an “infinite”
LDPC code used in [2], [15]. That is, by decoding a simulated
“infinite” long code from its associated ensemble, we evaluate
the performance in terms of the minimum signal to noise ratio
(MSNR), i.e., Tb, for which the average syndrome bit entropy
(ASBE) reaches certain value after a number of decoding
iterations. Note that, for codes with particular edge connections,
e.g., the protograph-based codes whose definition permits the
introduction of degree-1 nodes, punctured nodes in the proto-
graph and protograph chains, their decoding performance will
be very different from the average performance of the random
codes ensemble with the same degree distributions. However,
like the codes (with some structures) used in [2], the GBR
does not require these particular edge connections. Decoding
performance of the GBR could be evaluated in terms of the
average performance of its associated random code ensemble.
Advantages of this method are twofold. First, it can provide
good approximation to the real decoding behavior with regard
to both performance limit and decoding iterations [2]. Second,
it can easily incorporate different channel models. For the
simulation results, we refer the reader to Section V-D.

Moreover, the hybrid parallel decoding process computes the
decoding messages at bit-level. Then, by removing the zero
columns in each Ψj and Ωe, the computational complexity
of the check-vector-sum operation for Ω relies linearly on the
number of the non-zero columns in Ωe

i , i = 1, 2, . . . ,M . The
computational complexity for the simplex parity checks relies
linearly on the non-zero columns in Ψj , j = 1, 2, . . . , N . We
denote the maximum number of the non-zero columns in each
Ωe

i by φe � q − 1 and the maximum number of the non-zero
columns in each Ψj by ψe � q − 1. Then the computational
complexity is dominated by O(ms = max{φe, ψe}).

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3077

Fig. 3. Consider a performance optimized 8-ary LDPC code of rate 0.265.
f1 is the EXIT chart for its optimized GBR under the binary BP decoder
at Eb/N0 = −0.1 dB. f2 is the EXIT chart for the binary BP decoder at
Eb/N0 = 4.7 dB. p∗0,BP = 0.244.

C. Bit-Level Decoding Under Different (μ, ν)s

In this subsection we explain how to choose (μ, ν) so that
the HPD will converge faster and have lower MSNR compared
to its component decoders. Note that the MSNR is obtained
by simulating an “infinite” code when the average syndrome
bit entropy (ASBE) reaches certain value after a number of
decoding iterations. If the ASBE is set to be very small value
and the number of decoding iterations is set to be very large
number, we refer to the obtained MSNR as the asymptotic
performance threshold. If the ASBE is set to be small value
and the number of decoding iterations is set to be not very large
number, the obtained MSNR is an equivalent measure for the
convergence speed. In this case, we refer to the MSNR as the
convergence threshold.

First, we associate the asymptotic performance threshold
with a message error probability p∗0 which is the error rate
for the sequence received from the corresponding channel.
Then, we adopt the EXIT (extrinsic information transfer) chart
based on the message error probability to perform the analysis.
This method begins with defining the message error probability
function ph+1 = f(ph, p0) for an iterative decoder, where ph+1

is the extrinsic message error probability (EMEP) at the output
of the iteration-h, ph is the extrinsic message error probability
(EMEP) at the input of the iteration-h, p0 is the intrinsic mes-
sage error probability (IMEP, the message error probability for
the sequence received from channel). Then the EXIT chart for a
fixed p0 is obtained by plotting f and ph+1 = ph both in a graph
(as shown in Fig. 3, f is obtained by the Monte-Carlo experi-
ments). The decoding steps/iterations are visualized as the ar-
rows starting from p0 in Fig. 3. For monotonic decoder, the
decoding tunnel will be more open as p0 increases. The decod-
ing tunnel is closed iff f(ph, p0) � ph. Then, p∗0 is the worst int-
rinsic message error rate for which the decoding tunnel is open.

In the following, we refer to the binary BP decoder in
the HPD as the component BP decoder to avoid confusion.
We assume that the GBR for the performance-optimized C̄ is
decoded by the binary BP decoder and the HPD, respectively.
We denote the EMEP for the binary BP decoder at the output
of the iteration-h as ph,BP , h ∈ N. p0,BP is IMEP for the
binary BP decoder. We denote the EMEP for the HPD at the
output of the iteration-h as ph,HPD, h ∈ N. p0,HPD is IMEP
for the HPD. Then the IMEP corresponding to the asymptotic
performance threshold for the binary BP decoder is denoted by
p∗0,BP . The IMEP corresponding to the asymptotic performance
threshold for the HPD is denoted by p∗0,HPD.

Next, we consider the case when p0,HPD and p0,BP are the
same and close to p∗0,BP . As a result, the decoding tunnel for
the binary BP decoder under performance-optimized GBR is
very narrow, as shown in Fig. 3. However, the beginning part of
the tunnel is wider than most of the other parts, which means
that the first a few decoding iterations will make the message
error probability fall quicker than most of the other decoding
iterations. For the HPD with a fixed (μ, ν), the component
BP decoder does the first μ times decoding iterations in the
kth, k ∈ N

∗ decoding round. The IMEP for the component
BP decoder (in the kth decoding round) is p0,HPD = p0,BP ,
since the component BP decoder always uses the same channel
inputs in each iteration. Then the EHDD does the following
ν times decoding iterations over the BSC with IMEP being
equal to p(k−1)(μ+ν)+μ,HPD. This means that the EXIT chart
for the component BP decoder in the kth decoding round is the
same as the one for the component BP decoder in the (k + 1)th
decoding round. In addition, the EXIT charts for the EHDD in
different decoding rounds are different since the IMEPs for the
EHDD in different decoding rounds are different. Further, in
each decoding round, the ν times decoding iterations over the
BSC will always start from the beginning point of its associated
EXIT chart.

In general, we assume that the decoding tunnel for the
EHDD within the first decoding round is open at the begin-
ning part. This assumption is reasonable because we allow
the component BP decoder to do the decoding first. Then, we
could have pμ+ν,HPD � pμ+ν+Δ1,BP < pμ+ν,BP ,Δ1 ∈ N

∗.
To have a better understanding, we give an example in Fig. 4
where the decoding iterations in the first decoding round are
visualized. In this example, we choose a (μ, ν), i.e., μ = 7
and ν = 2, such that pμ+ν,HPD < pμ+ν+5,BP . The decoding
tunnel for the component BP decoder in the second decoding
round is plotted in Fig. 5. It can be seen that pμ+ν+1,HPD <
pμ,BP = pμ,HPD, which means that the (μ+ 1)th decoding
iteration in the component BP decoder (in the second decoding
round) achieves a lower message error probability compared to
its μth decoding iteration (in the first decoding round). How-
ever, pμ+ν,HPD < pμ+ν+1,HPD, i.e., the HPD is in general
not a monotonic decoder. This is mainly due to the fact that
some LLRs are changed to their additive inverses while their
magnitudes remaining the same (at the end of the first decoding
round) and the magnitudes of some of these LLRs are small.
Then, some more errors may be caused by the channel inputs.
It is also the reason why the decoding tunnel for the component
BP decoder from pμ+ν+1,HPD to pμ+ν+2,HPD is slightly

3078 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

Fig. 4. The first decoding round of the HPD at Eb/N0 = 0.1 dB for the code
in Fig. 3.

Fig. 5. The EXIT chart for the component BP decoder in the second decoding
round at Eb/N0 = 0.1 dB for the code in Fig. 3.

tighter than the corresponding tunnel for the binary BP de-
coder. In the meantime, we observe that the values of the
LLRs contribute to incorrect decodings in the component BP
decoder are also smaller than that in the binary BP decoder,
which makes the decoding tunnel for component BP decoder
from pμ+ν+3,HPD to p2μ+ν,HPD wider than the corresponding
tunnel for the binary BP decoder. As k increases, the decoding
tunnel for the EHDD will be more open. Then, we further
expect that pμ+ν,HPD � pμ+ν+Δk,BP < pμ+ν,BP ,Δk ∈ N

∗

with Δk−1 < Δk, i,e., the HPD is monotonic with respect to
k. Then, determining the best values of μ and ν amounts to
maximizing Δk for a fixed number of decoding iterations. In
our simulations, with properly chosen (μ, ν), p∗0,HPD could
also be very close to p∗0,BP .

TABLE I
MSNRS FOR DIFFERENT (μ, ν)S. pμ IS THE PERCENTAGE OF THE

NUMBER OF DECODING ITERATIONS PERFORMED BY THE BINARY BP
DECODER WITHIN A (μ, ν) DECODING ROUND

When p0,HPD and p0,BP is not close to p∗0,BP . The decoding
tunnel for the binary BP decoder will become wider. However,
when ph,BP is small, the convergence speed of the binary BP
decoder will also become slow. In the meantime, considering
the HPD, the decoding tunnel for the EHDD will become wider
as the decoding proceeds. Then, we expect that the HPD could
also have faster converge speed than the binary BP decoder does
in small message error probability region.

To provide more insights, we define pμ = (100× μ)/(μ+
ν)%. Then, when pμ = 0%, the HPD coincides with the EHDD.
When pμ = 100%, the HPD coincides with the binary BP
decoder. We consider a rate R = 0.5311 irregular non-binary
LDPC code over F8. Among the constructed Ωes, we choose
the one with the smallest p∗BP . If the maximum number of
decoding iterations is set to be 60, Table I gives the converge
thresholds (MSNRs) for different (μ, ν)s. It can be seen that, to
obtain low MSNRs, the binary BP decoder should do most of
the decoding iterations. Moreover, with carefully chosen (μ, ν),
the HPD could have lower MSNR than the binary BP decoder
does. It is worth mentioning that, with the simplex constraints,
the EHDD could have better asymptotic performance threshold
than that without the constraint. Then, the decoding tunnel
for the EHDD will be open at higher EMEP, i.e., μ could be
assigned with a smaller value when p0,HPD is close to p∗0,BP .
As a result, the HPD is expected to have better MSNR than that
without the simplex constraints. In the following, for ease of
discussion, we refer to the MSNR for a Ωe as the lowest MSNR
corresponding the best choice of (μ, ν) among a range of values
under a fixed maximum number of decoding iterations.

D. Bit-Level Decoding Under Different Ψs

When the decoding of ve over Ωe is accomplished, we have
to get every x̄j from ve

j . To guarantee x̄j being successfully
recovered from ve

j , we first provide the following conditions
for the extended generator matrices.

Theorem 6: Consider the GBR with extended generator ma-
trices set Ψ = {Ψ1,Ψ2, . . . ,ΨN}. For all j ∈ {1, 2, . . . , N}
and q = 2p � 4,

1) if wt(Ψj) > (q/2)− 1, every bit in x̄j can be recovered
from ve

j .
2) If wt(Ψj) = (q/2)− 1, x̄j can be recovered with proba-

bility of 1− ((q − 1)/
(

q−1
(q/2)−1

)
.

Proof: Recall that Φ is a p× (q − 1) matrix and

V = {0,Φ(0, 1),Φ(0, 2), . . . ,Φ(0, q − 1)}

is a vector space of dimension-p. We denote

V e
j = {0,Ψj(0, 1),Ψj(0, 2), . . . ,Ψj(0, q − 1)}

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3079

as the set formed by the column vectors of Ψj . Then

wt(Ψj) =
∣∣V e

j

∣∣− 1.

We denote

V ′ =
{
Φ(0, 1),Φ(0, 2), . . . ,Φ(0, 2p−1)

}

as the set of all unit vectors. Then the non-zero vectors in V and
V e
j can be formulated by the additions of the vectors in V ′.
If |V e

j | is larger than the size of the (p− 1)-dimensional
subspace of V , then rank(Ψj) = p. Every bits in x̄j can be
recovered. The size of the (p− 1)-dimensional subspace can
be calculated by

∑p−1
i=1

(
p−1
i

)
+ 1 = 2p−1. Then if wt(Ψj) >∑p−1

i=1

(
p−1
i

)
= 2p−1 − 1, x̄j can be recovered from ve

j . If

wt(Ψj) =
∑p−1

i=1

(
p−1
i

)
, the rank of Ψj is either p or p− 1.

Then the probability that x̄j can be recovered equals the proba-
bility that the non-zero vectors in Ψj do not form a (p− 1)-
dimensional subspace, which depends on the number of the
(p− 1)-dimensional subspaces. To calculate the number of the
(p− 1)-dimensional subspaces of the V , we first introduce
the Gaussian binomial coefficient over finite field Fq [25](

n

k

)
q

=
[n]q!

[k]q![n− k]q!
, k � n,

where [n]q! = [1]q[2]q . . . [n]q with

[m]q =
1− qm

1− q

=
∑

0�i<m

qi = 1 + q + q2 + · · · qm−1, 1 � m � n.

Then the number of the (p− 1)-dimensional subspaces over F2

is calculated by
(

p
p−1

)
2
=

∑p
i=1 2

i−1. The probability that x̄j

can be recovered when wt(Ψj) =
∑p−1

i=1

(
p−1
i

)
is

1−
(

p

p− 1

)
2

/(q − 1

wt(Ψj)

)
.

�
Note that 2p−1 =

∑p−1
i=1

(
p−1
i

)
+ 1 � p,∀p � 2. In addition,

if x̄j can be recovered, wt(Ψj) is at least the size of a basis
of a dimension- p vector space over F2, i.e., wt(Ψj) � log2 q,
j = 1, 2, . . . , N . Thus, the least number of non-zero columns
required for each Ψj is p, which serves as a necessary condition
for the successful decoding of x̄.

When wt(Ψj) is large enough, x̄j could be recovered from
ve
j with certainty. In addition, as wt(Ψj) increases, more ex-

tended bits are introduced, which will gives birth to flexible
rates for the GBR. We denote the code rate of C̄ by R.
The length of ve is Ms =

∑
j wt(Ψj). Then, we define the

extended rate for the GBR as Re = NpR/Ms. Since in general
Np � Ms � N(q − 1), (pR/(q − 1)) � Re � R. That is, the
larger Ms the smaller Re (for the same C̄). Then, the proposed
decoding procedure under different Ψ (or Re) is capable of
dealing with different channel conditions. To explain this, we
consider the HPD and the non-trivial GBRs for a 16-ary LDPC
code with R = 1/2. Assume that the decoder only try to recover

TABLE II
HYBRID PARALLEL DECODER UNDER DIFFERENT Ψ S. Ms IS THE

LENGTH OF ve, ms IS THE MAXIMUM NUMBER OF NON-ZERO COLUMNS

IN EACH Ωe
i AND EACH Ψj , pv IS THE BIT ERROR RATE FOR ve, pu IS

THE PERCENTAGE OF UNRECOVERED x̄j , l IS THE NUMBER OF

DECODING ITERATIONS, Eb/N0 IS THE CHANNEL SNR
AND Tb IS THE MSNR FOR ve

x̄j when v̄e
j is successfully decoded. We denote the proportion

of unrecovered x̄js by pu, the bit error rate for ve under the
HPD by pv and the number of decoding iterations by l. As
shown in Table II, for different Re under the signal-to-noise rate
(SNR) value of interest, pv will largely decrease as the decoding
procedure proceeds.

On the other hand, when ms is not large enough, pu will
not converge to arbitrary small value as the number of decod-
ing iterations grows. A certain proportion of x̄js will remain
unrecovered no matter how many decoding iterations are per-
formed. It is suggested that the proposed decoding procedure
for the non-trivial GBR requires lower Re than the decoding
of the trivial GBR does in general. As a result, according to
Theorem 6, we have the sufficient extended rate condition for
the proposed decoding of GBR as

pR

q − 1
� Re �

2pR

q
.

E. Bit-Level Decoding Compared to the Symbol-Level
Decoding of C̄

According to Section IV-D, to successfully recover each x̄j ,
wt(Ψj) should be large enough. Then the proposed decoding
under different Ψs could deal with different channel conditions.
Another benefit come with large Ms is that, by decoding
the GBR for a performance-optimized C̄, the low complexity
bit-level decoding could closely approach the symbol level
decoding for the optimized C̄. More specifically, considering
a practical code C̄ with optimized degree distributions, its
performance under the non-binary BP decoder could be very
good. In the mean time, the computational complexity is also
high. On the other hand, if ms is not limited to small values,
we could have many Ωes with large Mss by the practical
construction introduced in Section III-F. Among these matrices,
we choose the one with the lowest MSNR and large girth. Then,
by decoding the corresponding GBR with the HPD, the low
complexity bit-level decoding could perform similarly to the
symbol-level decoding of the optimized C̄.

To explain this, we consider a performance-optimized irreg-
ular 8-ary LDPC code with R = 0.5311 which is decoded by
the QSPA. Its associated GBRs are decoded by the HPD. As
shown in Table III, the GBR could have lower MSNR than
the EBR does. In the mean time, we could also establish a

3080 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

TABLE III
THE BIT-LEVEL DECODING COMPARED TO THE SYMBOL-LEVEL

DECODING. ms IS THE MAXIMUM NUMBER OF NON-ZERO COLUMNS IN

EACH Ωe
i AND EACH Ψj , Tb IS THE MSNR IN dB AND gs IS THE GIRTH

GBR with MSNR close to that of its optimized mother code C̄.
Then, the low complexity bit-level decoding for the GBR could
perform closely to the symbol-level decoding of C. For the
detailed simulation results, we refer the reader to Section V-A.

F. Code Optimization for the GBR

It has been shown that, by increasing each wt(Ψj) and find-
ing the Ωe with lowest MSNR and large girth, the HPD could
achieve enhanced decoding performance. Moreover, for a fixed
q, the computational complexity will also increase as ms grows.
In this subsection, we provide a simple algorithm to optimize
the GBR (to make each wt(Ψj) large enough and optimize
the girth and degree distributions of Ωe) while allowing a
trade-off between the decoding performance and computational
complexity for a fixed q. First, we assume that the mother
matrix Λp is constructed by the modified progressive-edge-
growth (PEG) algorithm. One also can construct Λp by other
random methods or with some structures. Let the matrix labels
for the corresponding H̄ be chosen according to Corollary 5.1

The rate for Λp of size M ×N is R = 1−M/N . Then, we
assume that the Ωs for different values of q can be constructed
by either fixing the Ms = N(q − 1) and changing Λps or fixing
the Λp and changing the Mss. Below, we provide the details.

Step 1) Let q = 2p, p > 1. Given the mother matrix Λp, we
construct the equivalent binary parity check matrix
H̄ by filling Λp with the optimized matrix labels
of size p× p according to Corollary 5. Then we
construct the Ω based on H̄.

Step 2) Let gs1 be an even number. We find the matrix cycles
in Ω with lengths smaller than gs1 (that will result
in bit-level cycles with lengths smaller than gs1)
and set the rows across the associated matrix labels
to be zero vectors. Then, same as the method in
Section III-F, we construct many Ωes by filling these
zero rows with matrices Bks (without checking the
girth when placing a Bk in the zero rows).

Step 3) Let c > (q/2)− 1 be a non-zero integer. Among the
matrices constructed in Step 2, we find the ones with
c � ms > (q/2)− 1.

Step 4) Let gs2 � gs1 be an even number. Let t be a real
number. We search among the matrices constructed
in Step 3 for the one with smallest MSNR (also
not exceeding t) and girth not smaller than gs2 . The

1For the mother matrix Λp, how to optimize the degree distributions has
been studied in [5], [7]. The optimization of the matrix labels has been studied
in [2], [12], [26]. The authors in [2], [12], [26] propose several optimization
methods based on the equivalent binary LDPC codes. The degree distributions
for the resulting H̄ can be efficiently calculated according to [20].

Fig. 6. Performance comparison between different representations for the
non-binary LDPC code over F8 of rate R = 0.5311. The block length is 12000
bits, maximum 40 iterations, μ = 16 and ν = 4.

resulting matrix is denoted by Ωe. If such matrix can
not be found, p = p+ 1 and go to Step 1.

Note that, for short block length codes, we drop the MSNR
examinations in Step 4 and only choose a matrix in Step 3
with suitable ms and large girth as the resulting Ωe. If c is set
to be q − 1 and q is fixed, the algorithm produces a Ωe with
the lowest MSNR for a given Λp. As shown in Section IV-E,
in this case we expect that the bit-level performance could
closely approach the optimized symbol-level performance. If
(q/2)− 1 < c < q − 1 and q is fixed, the resulting Ωe may
have a higher MSNR while the decoding complexity is lower.
By allowing p to increase, the above steps could also be utilized
to design binary codes with different lengths and girths while
permitting the MSNR to be optimized.

V. SIMULATION

A. Different Binary Forms of a Non-Binary LDPC Code

We present the simulation results for different representa-
tions of a non-binary LDPC code under different decoders. No
undetectable error is observed in our simulations. We denote
Ms =

∑
j wt(Ψj) as the length of ve. Consider the code over

F8 of rate R = 0.5311. The block length 12000 bits. Degree
distributions and MSNRs for H and Ωe are displayed in
Table V. In addition, ve = v and Ωe

i �= Ωi for some i, i.e.,
Mss for Ω and Ωe are the same. The girth of Ω is 8 and the
girth of Ωe is 12. The MSNR for Ωe is Eb/N0 = 0.62 dB. The
MSNR for Ω is Eb/N0 = 0.67 dB, while the capacity limit
is Eb/N0 = 0.30 dB. We consider the binary input Gaussian
channel. Then, the comparison is shown in Fig. 6, where HGBR
(hard decision decoder for the GBR) is the extended hard
decision decoder for Ωe, SGBR (soft decision decoder for
the GBR) is the hybrid parallel decoder for Ωe, QSPA is the

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3081

Fig. 7. Performance comparison between different representations for the
non-binary LDPC code of rate half over F16. The block length is 2048 bits,
maximum 200 iterations, μ = 16 and ν = 4.

q-ary sum-product decoder for H, SEB (soft decision decoder
for the equivalent binary LDPC code) is the binary BP decoder
for H̄ and SEBR (soft decision decoder for the extended binary
representation) is the hybrid parallel decoder for Ω. QSPA is
used as the benchmark for both performance and complexity.
Due to the short length bit-level cycles in H̄, SEB suffers
from a performance loss of about 1 dB. In our simulation, the
performance gap between SGBR and QSPA is within 0.2 dB
while the computational complexity of SGBR is much lower.

Consider the non-binary LDPC code of rate half over
F16 characterized by λ(x) = 0.303x+ 0.337x2 + 0.04x3 +
0.113x4 + 0.122x6 + 0.085x12 and ρ(x) = 0.85x5 + 0.15x6.
The associated GBR of this code is optimized by the algorithm
in Section IV-F. The block length is 2048 bits. We give the
performance comparison between different representations in
Fig. 7. In this example, the decoding performance of the GBR
is very similar to that of the non-binary code.

B. Ωs and Ωes With Different Girths

In this subsection, based on the optimization in
Section IV-F, we give comparative results for Ωes and
Ωs with different girths and Mss (Ms =

∑
j wt(Ψj)) which

are displayed in Table IV. Consider the (3,6)-regular non-
binary LDPC code over Fq with 120 coded symbols. We
denote gs as the girth of Ωe and assume the hybrid parallel
decoder is adopted. For different p, we give the performance
comparison in Fig. 8. The GBR with Ms = 3321 performs the
best due to the optimization on the girth and large Ms.

C. Comparison of Codes From Literature

Consider the non-binary LDPC code of rate-half over F16

in Section V-A. We compare the performance of its GBR

TABLE IV
DIFFERENT OUTPUTS FROM SECTION IV-F. q IS THE FIELD SIZE, gs IS

THE GIRTH, Ms IS THE LENGTH OF ve
j AND (q/2)− 1 IS THE SUFFICIENT

CONDITION FOR THE SUCCESSFUL DECODING FROM THEOREM 6

TABLE V
MSNRS FOR DIFFERENT DEGREE DISTRIBUTIONS

with the performance optimized non-binary cycle LDPC codes
(optimized under similar assumptions) and the girth optimized
binary LDPC codes in the literature. In Fig. 9, SPB59 is the
sphere packing bound for block length-2048 bits. The codes
from [11] is the non-binary cycle code with length 5376 bits.
The code from [12] is the non-binary cycle code with length
2048 bits. The code from [18] is the non-binary cycle code with
length 3000 bits. These codes are decoded by the FFT-QSPA.
The code from [9] is the (3,6) QC-LDPC code with length
2294 bits. The code from [10] is the PEG-LDPC code with
length 2694 bits. These codes are decoded by the binary BP
decoder. The GBR under HPD for the F16 code has achieved a
maximum 0.8 dB (at BER = 10−4) performance gain compared
to the optimized non-binary cycle LDPC codes with lower
computational complexity.

3082 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 9, SEPTEMBER 2014

Fig. 8. Performance comparison between different outputs in Table IV.

Fig. 9. The GBR compared with codes from literature.

D. Decoding Under Different (μ, ν)s

In this subsection, we compare the decoding performance
under different (μ, ν)s with the Monte-Carlo (MC) experiment
for “infinite” code with regard to the average syndrome bit
entropy (ASBE). We consider the non-binary code over F8 in
Section II-A. In Fig. 10, we give the ASBE versus the number
of decoding iterations for different (μ, ν)s at Eb/N0 = 1.4 dB.
Ms for the GBR is 21000. The size of the bits set for the
“infinite” code is 90000. It can be seen that the Monte-Carlo
experiment could provide good approximation to the real de-
coding behavior.

Fig. 10. The decoding under different (μ, ν)s at Eb/N0 = 1.4 dB.

VI. CONCLUSION

In this paper, we consider the performance-optimized non-
binary LDPC code over general linear group, i.e., C̄. We first
propose a generalized binary representation (GBR) for C̄. The
main advantage of the GBR is that it can be optimized with
regard to both girth and irregular code profile (primarily the
irregular code profile). As to the decoding of the GBR, we
develop a hybrid parallel decoding process which could have
both good performance threshold and fast convergence speed.
Simulations show that the bit-level decoding performance of the
GBR could closely approach the symbol-level decoding perfor-
mance of the optimized C̄ while the computational complexity
is only O(ms) where ms < q.

REFERENCES

[1] T. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 599–618, Feb. 2001.

[2] M. C. Davey and D. J. MacKay, Error-Correction Using LDPC Codes.
Cambridge, U.K.: Cambridge Univ. Press, 1998.

[3] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Commun.,
vol. 52, no. 4, pp. 670–678, Apr. 2004.

[4] F. Brannstrom, L. Rasmussen, and A. Grant, “Convergence analysis and
optimal scheduling for multiple concatenated codes,” IEEE Trans. Inf.
Theory, vol. 51, no. 9, pp. 3354–3364, Sep. 2005.

[5] G. Li, I. Fair, and W. Krzymien, “Density evolution for nonbinary LDPC
codes under Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 55,
no. 3, pp. 997–1015, Mar. 2009.

[6] L. Sassatelli and D. Declercq, “Nonbinary hybrid LDPC codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 10, pp. 5314–5334, Oct. 2010.

[7] V. Savin, “Non-binary LDPC codes over the binary erasure channel:
Density evolution analysis,” in Proc. 1st ISABEL, Oct. 2008, pp. 1–5.

[8] Y. Wang, S. Draper, and J. Yedidia, “Hierarchical and high-girth qc LDPC
codes,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4553–4583, Jul. 2013.

[9] C. Spagnol, M. Rossi, and M. Sala, “Quasi-cyclic LDPC codes with high
girth,” CoRR, vol. abs/0906.3410, 2009.

[10] G. Zhang and X. Wang, “Girth-12 quasi-cyclic LDPC codes with consec-
utive lengths,” CoRR, vol. abs/1001.3916, 2010.

YU et al.: GENERALIZED BINARY REPRESENTATION FOR THE NONBINARY LDPC CODE WITH DECODER DESIGN 3083

[11] J. Huang, S. Zhou, J. Zhu, and P. Willett, “Group-theoretic analysis of
cayley-graph-based cycle gf(2p) codes,” IEEE Trans. Commun., vol. 57,
no. 6, pp. 1560–1565, Jun. 2009.

[12] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-
LDPC codes over gf(q) using their binary images,” IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626–1635, Oct. 2008.

[13] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC
codes over gf(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643,
Apr. 2007.

[14] V. Savin, “Binary linear-time erasure decoding for non-binary LDPC
codes,” in Proc. IEEE ITW, Oct. 2009, pp. 258–262.

[15] L. P. Sy, V. Savin, and D. Declercq, “Extended non-binary low-density
parity-check codes over erasure channels,” in Proc. IEEE ISWCS, 2011,
pp. 121–125.

[16] B. Smith, M. Ardakani, W. Yu, and F. Kschischang, “Design of irregular
LDPC codes with optimized performance-complexity tradeoff,” IEEE
Trans. Commun., vol. 58, no. 2, pp. 489–499, Feb. 2010.

[17] Y. Yu and W. Chen, “Design of low complexity non-binary LDPC codes
with an approximated performance-complexity tradeoff,” IEEE Commun.
Lett., vol. 16, no. 4, pp. 514–517, Apr. 2012.

[18] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Split non-
binary LDPC codes,” in Proc. IEEE ISIT , 2008, pp. 955–959.

[19] X. Wang and X. Ma, “A class of generalized LDPC codes with fast parallel
decoding algorithms,” IEEE Commun. Lett., vol. 13, no. 7, pp. 531–533,
Jul. 2009.

[20] Y. Yu, W. Chen, and L. Wei, “Design of convergence-optimized non-
binary LDPC codes over binary erasure channel,” IEEE Wireless Com-
mun. Lett., vol. 1, no. 4, pp. 336–339, Aug. 2012.

[21] A. Bhatia, A. Iyengar, and P. Siegel, “Enhancing binary images of non-
binary LDPC codes,” in Proc. IEEE Global Telecommun. Conf., 2011,
pp. 1–6.

[22] V. Savin, “Fourier domain representation of non-binary LDPC codes,” in
Proc. IEEE ISIT , 2012, pp. 2541–2545.

[23] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications. New York, NY, USA: Cambridge Univ. Press, 1986.

[24] X. Ma and B. Bai, “A unified decoding algorithm for linear codes based
on partitioned parity-check matrices,” in Proc. IEEE ITW, Sep. 2007,
pp. 19–23.

[25] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland Publ. Comp.,
1977.

[26] Y. Yu, W. Chen, J. Li, and B. Geller, “Cooperative decoder design for
non-binary LDPC code with coefficients selection,” in Proc. IEEE Global
Telecommun. Conf., Dec. 2013, pp. 1868–1873.

Yang Yu received the B.S. and M.S. degrees from
Southwest Jiao Tong University, Chengdu, China, in
2005 and 2008, respectively. He is currently working
toward the Ph.D. degree in the Network Coding
and Transmission Laboratory, Shanghai Jiao Tong
University, Shanghai, China. His current research
interests include channel coding theory and network
coding.

Wen Chen (M’03–SM’11) received the B.S. and
M.S. degrees from Wuhan University, Wuhan, China,
in 1990 and 1993, respectively, and the Ph.D. degree
from The University of Electro-Communications,
Tokyo, Japan, in 1999. From 1999 to 2001, he was a
Researcher with the Japan Society for the Promotion
of Science. In 2001, he joined the University of
Alberta, Canada, starting as a Postdoctoral Fellow
with the Information Research Laboratory and con-
tinuing as a Research Associate in the Department
of Electrical and Computer Engineering. Since 2006,

he has been a Full Professor with the Department of Electronic Engineering,
Shanghai Jiao Tong University, Shanghai, China, where he is also the Director
of the Institute for Signal Processing and Systems. His research interests
include network coding, cooperative communications, cognitive radio, and
MIMO-OFDM systems.

Jun Li (M’09) received the Ph.D. degree in elec-
tronic engineering from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2009. From January 2009 to
June 2009, he was a Research Scientist with the De-
partment of Research and Innovation, Alcatel-Lucent
Shanghai Bell. From June 2009 to April 2012, he was
a Postdoctoral Fellow at the School of Electrical En-
gineering and Telecommunications, the University of
New South Wales, Australia. Since April 2012, he
has been a Research Fellow at the School of Electri-
cal Engineering, The University of Sydney, Sydney,

Australia. His research interests include network information theory, channel
coding theory, wireless network coding, and cooperative communications. Dr.
Li served as a Technical Program Committee Member for several international
conferences such as APCC2009, APCC2010, VTC2011 (Spring), ICC2011,
TENCON2012, APCC2013, VTC2014 (Fall), and ICC2014.

Xiao Ma received the Ph.D. degree in communica-
tion and information systems from Xidian Univer-
sity, Xi’an, China, in 2000. From 2000 to 2002, he
was a Postdoctoral Fellow with Harvard University,
Cambridge, MA, USA. From 2002 to 2004, he was a
Research Fellow with City University of Hong Kong.
He is currently a Professor with the Department
of Electronics and Communication Engineering,
Sun Yat-sen University, Guangzhou, China. His re-
search interests include information theory, channel
coding theory, and their applications to communica-

tion systems and digital recording systems. Dr. Ma is a member of the IEEE. He
was a corecipient, with A. Kavčić and N. Varnica, of the 2005 IEEE Best Paper
Award in Signal Processing and Coding for Data Storage. He was a recipient of
the Microsoft Professorship Award from Microsoft Research Asia in 2006.

Baoming Bai received the B.S. degree from North-
west Institute of Telecommunication Engineering,
Xi’an, China, in 1987, and the M.S. and Ph.D.
degrees in communication engineering from Xidian
University, Xi’an, in 1990 and 2000, respectively.
From 2000 to 2003, he was a Senior Research Assis-
tant with the Department of Electronic Engineering,
City University of Hong Kong. Since April 2003, he
has been with the State Key Laboratory of Integrated
Services Networks, School of Telecommunication
Engineering, Xidian University, where he is cur-

rently a Professor. In 2005, he was a Visiting Scholar with the University of
California, Davis. His research interests include information theory and channel
coding, wireless communication, and quantum communication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

