
872 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 3, MARCH 2014

Power Adaptive Network Coding for a
Non-Orthogonal Multiple-Access Relay Channel

Sha Wei, Jun Li, Member, IEEE, Wen Chen, Senior Member, IEEE, Hang Su, Zihuai Lin, Senior Member, IEEE,
and Branka Vucetic, Fellow, IEEE

Abstract—In this paper we propose a novel power adaptive
network coding (PANC) for a non-orthogonal multiple-access
relay channel (MARC), where two sources transmit their in-
formation simultaneously to the destination with the help of a
relay. In contrast to the conventional XOR-based network coding
(CXNC), the relay in PANC generates network coded symbols
by considering the coefficients of the source-to-relay channels,
and forwards each symbol with a pre-optimized power level.
Specifically, by defining a symbol pair as two symbols from
the two sources, we first derive the expression of symbol pair
error rate (SPER) for the system. Noting that deriving the exact
SPER are complex due to the irregularity of the decision regions
caused by random channel coefficients, we propose a coordinate
transform (CT) method on the received constellation to simplify
the derivations of the SPER. Next, we obtain the optimal power
level by decomposing it as a multiplication of a power scaling
factor and a power adaptation factor. We prove that with the
power scaling factor at the relay, our PANC scheme can achieve
a full diversity gain, i.e., an order of two diversity gain, while
the CXNC can achieve only an order of one diversity gain. In
addition, we optimize the power adaptation factor at the relay
to minimize the SPER at the destination by considering of the
relationship between SPER and minimum Euclidean distance
of the received constellation, resulting in an improved coding
gain. Simulation results show that (1) the SPER derived based
on our CT method can well approximate the exact SPER with
a much lower complexity; (2) the PANC scheme with power
adaptation optimizations and power scaling factor design can
achieve a full diversity, and obtain a much higher coding gain
than other network coding schemes.

Index Terms—Network coding, power optimization, multiple
access relay channel, error probability.

I. INTRODUCTION

RELAYING techniques have been considered for decades
as a method to improve the reliability of wireless net-

works by exploiting spatial diversity via intermediate relay
nodes [1, 2]. Network coding, on the other hand, originated
from wire-line networks [3, 4], has been recently applied to
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wireless networks to enhance the network throughput [5]. With
the implementations of diversity techniques and network cod-
ing at the relay nodes, it is anticipated that wireless networks
can achieve reliable and high throughput communications.

There are two typical network models which are suitable
for the applications of network coding, namely, two-way relay
channel (TWRC) and multiple access relay channel (MARC).
In the TWRC, the two sources want to exchange information
with each other with the assistance of a relay. Since each
source perfectly knows its own information, it can easily
remove its own information from the received network coded
signal. Compared with the convectional transmission schemes
without network coding in the TWRC, network coding can
enhance the throughput by taking the advantage of the multi-
user interference [6–9]. That is, we can reduce the trans-
mission time slots by generating network coded signal from
the interfered received signal at the relay. In [6], an optimal
network coded relay function [10] is derived to minimize the
bit error rate in the TWRC. In [7], physical-layer network
coding is proposed, where the relay maps the interfered signals
from the two sources to a network coded digit. In [8], denoise-
and-forward based network coding schemes are designed for
the TWRC with multi-user interferences.

On the other hand, MARC has been recognized as a
fundamental building block for cellular and wireless sensor
networks. The MARC is a model for network topologies where
multiple sources communicate with a single destination in the
presence of a relay. A typical example is in a cellular systems
where two mobile users communicate with a base station with
the help of a relay. Different from the TWRC, the MARC
only has imperfect information at the destination from the
sources. Currently, there are a number of interesting research
on network coding design in the MARC. In [11–17], the au-
thors consider the orthogonal MARC systems, and multi-user
interference is not considered, which leads to a low spectrum
efficiency. In [18], a non-orthogonal MARC is studied with
additive white Gaussian noise (AWGN) channels. Therefore,
channel fading and diversity gain are not considered. In [19],
the authors consider an orthogonal MARC, where the sources
transmit information to a sink through the assistance of a relay.
Also, the authors analyze the union bound of the bit error prob-
ability, which is sufficient to obtain the diversity performance
of the system. However, it is not accurate enough to derive
the optimal system parameters, which maximize the coding
gain. In [20], the authors study both the orthogonal and non-
orthogonal MARC. Particularly in the non-orthogonal MARC,
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the authors address the issue of the multi-user interference,
and propose a network coded selective-and-forward relaying
scheme to achieve full diversity gain by dropping erroneous
messages. In [21], the authors design a compute-and-forward
network coding coefficients by Fincke-Pohst based candidate
set searching algorithm and network coding system matrix
constructing algorithm to maximize the transmission rate in a
multi-source multi-relay system.

In this paper, we are interested in designing novel network
coding schemes for a non-orthogonal MARC over fading
channels to achieve a full diversity gain and a high cod-
ing gain. Although by dropping erroneous source-relay sym-
bols, finite-field network coding (FFNC) has been shown to
achieve a full diversity in both orthogonal and non-orthogonal
MARC [20], some useful information is also discarded in the
process which may lead to the loss of coding gain. Also,
we will prove that conventional XOR-based network coding
(CXNC)1 without any error propagation mitigation process at
relay cannot achieve full diversity gain in a non-orthogonal
MARC due to multi-user interference. Specifically in this
paper, we consider a two-source, one-relay, one destination
non-orthogonal MARC.

There are three major concerns in our network coding
design. Firstly, we consider how to achieve the full diversity
gain of the MARC. We propose a novel power adaptation
network coding (PANC) scheme to achieve the full diversity
gain, in which the power level is the multiplication of a
power scaling factor and a power adaptation factor with two
levels. In contract to the CXNC, the relay in the proposed
PANC generates network coded symbols by considering the
coefficients of the global channels, and forwards each symbol
with one of the two given power levels. Specifically, based
on the received signals, the relay decides which power level
should be applied to each network coded symbol. We prove
that the PANC scheme with the design of power scaling at
the relay can achieve a full diversity gain, i.e., a diversity of
two, while the CXNC scheme can achieve only a diversity of
one. Different from the relay scheme proposed in our earlier
work [22], in order to adapt the real-number modulation at
sources, the relay transmits a real number in PANC scheme
instead of a complex lattice code proposed in [22]. However,
these two works share the same insight that CXNC with or
without any error propagation mitigation techniques at relay
cannot achieve full diversity. Also, in our previous work, we
did not consider design of mitigating error propagation from
source-relay hop to destination, and we did not analyze the
diversity order of the system.

Secondly, we consider how to evaluate the error perfor-
mance of the system. By defining a symbol pair as two
symbols from the two sources, we develop the expression of
symbol pair error rate (SPER), with the received constellations
at both the relay and the destination. Due to the irregularity of
the decision regions on the received constellation, we adopt
the wedge probability computation method [23] to investigate
the SPER. Noting that the derivations of the exact SPER based
on original received constellation are complicated, we further

1If not particularly indicated, the CXNC scheme in this paper does not
detect and drop erroneous symbols at the relay.

propose a coordinate transform (CT) method to simplify the
derivations. In the CT method, we transform the original
parallelogram geometry to a rectangle one and approximate
the exact expressions based on the original constellation with
simpler SPER expressions.

Thirdly, we consider how to achieve a high coding gain.
We will minimize the SPER by optimizing the two power
adaptation levels. Specifically, we propose a criteria based on
the relationship between the Euclidean distance and the SPER,
and formulate a convex optimization problem to develop the
optimal power adaptation levels at the relay.

Based on the above discussions, there are four main contri-
butions of this paper as follows. (a) We propose a novel PANC
scheme with a power scaling design at the relay to achieve
full diversity. (b) We propose a CT method to transform
the parallelogram-shaped constellation to a rectangle one,
which simplify the SPER derivation. (c) We further derive
the approximate SPER based on the transformed constellation.
(d) We optimize the power adaptation at the relay to achieve
a higher coding gain.

Simulation results show that (a) the derived SPER based
on our CT method can well approximate the exact SPER
with a much lower complexity, (b) the PANC scheme with
power adaptation level optimizations and power scaling factor
design can achieve a full diversity and obtain a much higher
coding gain than the PANC scheme with randomly chosen
power levels, and (c) the CXNC scheme cannot achieve a full
diversity with or without the power scaling design.

The rest of this paper is organized as follows. We first
describe the system model in Section II and propose the
PANC scheme in Section III. Then we develop the exact
system SPER and its approximation in Section IV. In Section
V, we address the error propagation problem, and formulate
and solve the optimization problem by minimizing the system
SPER. Simulation results are summarized in Section VI, and
conclusions are given in Section VII.

The notations used in this paper are as follows. We denote
a ray by lij where the subscript ij is the label of the line. A
line segment is denoted by AB, and AB denotes the length
between points A and B. We use the terms ray-vertex-ray and
ray-vertex-vertex-ray to describe a wedge and wedge combina-
tion, respectively. The one-dimensional Q-function is defined
as Q1(x) =

1
π

∫ π
2

0 exp
(
− x2

2 sin2 θ

)
dθ. The notation for a two-

dimensional Q-function Q2(x, y; ρ) with x = y is simplified

as Q2(x; ρ) =
1
π

∫ arctan
(√

1+ρ
1−ρ

)
0 exp

(
− x2

2 sin2 φ

)
dφ.

II. SYSTEM MODEL

Consider a two-source single-relay multiple-access relaying
system, where two sources S1 and S2 transmit their informa-
tion to the common destination D with the assistance of a
half-duplex relay R. Each transmission period is divided into
two transmission phases. In a symbol time slot of the first
transmission phase, the two sources simultaneously broadcast
their symbols x1 and x2 to both the destination and the relay.
In a symbol time slot of the second transmission phase, the
two sources keep silent, while the relay processes the received
signals and forwards the network coded symbol xR to the
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destination. At the end of the second phase, the destination
decodes the two sources’ information based on the received
signals.

We assume that all the transmitted signals are BPSK
modulated with equal probability, i.e., x1, x2, xR ∈ {±1},
and all the signals are transmitted in the same frequency
band. The channel between any two given nodes j and k,
j ∈ {1, 2,R}, k ∈ {R,D}, and j �= k, is denoted by hjk
with a subscript indicating the nodes under consideration. We
assume that hjk for all the j and k are Rayleigh distributed
with a mean zero and variance γ̄jk . We consider slow fading
channels in our system, i.e., the channel coefficients are
constant during a transmission period, while they change
independently from one transmission period to another.

Also, we implement the channel phase pre-equalization for
both the source-to-destination multiple access channels (MAC)
and the relay-to-destination channel before each transmis-
sion. Thus, the effective source-to-destination and relay-to-
destination channel coefficients can be regarded as real-valued
channels, i.e., real channel coefficients and real values of noise
samples. The carrier phase synchronization is practical by
adopting methods shown in [24] [25]. Note that, without the
phase synchronization assumption, the wedge error probability
method is not applicable to analyze SPER. Therefore, the
closed-form of the optimal power levels κ1 and κ2 cannot
be achieved.

Based on the aforementioned system settings and assump-
tions, the received signals at the relay and destination in the
first transmission phase can be written as

yR =
√
E1h1Rx1 +

√
E2h2Rx2 + nR,

y1 =
√
E1|h1D|x1 +

√
E2|h2D|x2 + n1,

(1)

respectively, where E1 and E2 denote the transmission power
of S1, S2, respectively, nR is a complex additive white
Gaussian noise (AWGN) sample at the relay with a zero mean
and variance σ2/2 per dimension, and n1 is a real AWGN
sample at the destination with zero mean and variance σ2.

As we adopt the joint power scaling and adaptation scheme
at the relay, the instantaneous power at the relay is optimized
given the channel realization within each transmission period
with the aim to minimize the SPER and achieve a full diversity
at the destination. Specifically, in the power scaling, we have
the scaling factor α (0 ≤ α ≤ 1) which is determined
based on the channel conditions. In the power adaptation,
we have two power levels, namely, κ̃1 and κ̃2, related as
κ̃21 + κ̃22 ≤ 2Eave

R , where Eave
R denotes the relay average

transmission power. The calculations of α, κ̃1, κ̃2 will be
discussed later. Therefore, in the second transmission phase,
the received signal at destination can be expressed as

y2 =
√
ER|hRD|xR + n2, (2)

where n2 is a real AWGN sample at destination with a zero
mean and variance σ2, and ER ∈ {κ1, κ2} represents the
transmission power at relay with κi = ακ̃i for i ∈ {1, 2}. In
this paper, we have the following assumption of instantaneous
CSIs. In order to realize channel phase pre-equalization, the
instantaneous CSIs available at source are h1D , h2D and hRD .
In addition, to compute the scaling factor α, the instanta-
neous CSIs available at relay are h1R, h2R and hRD (or

statistical CSI γRD). Moreover, to obtain the transmission
power (κ1, κ2) and joint ML detection at destination, the
instantaneous CSIs available at destination are h1D, h2D , h1R,
h2R, and hRD .

III. NETWORK CODED POWER ADAPTATION SCHEME AT

THE RELAY

In the conventional network coding based MARC, XOR
operations are implemented at the relay on the two sources’
information. We will show later in Section V that the system
cannot achieve a full diversity with the conventional network
coding. To achieve a full diversity, we propose the PANC
scheme, i.e., based on the received signals, the relay transmits
a network coded symbol multiplied with an optimized power
level.

Firstly, the relay obtain the two sources’ message symbols
(x1, x2) from its received signal yR by utilizing the maximum
likelihood (ML) detection, i.e.,

(x̂1, x̂2) = argmin
x̃1,x̃2∈{±1}

∣∣∣∣yR−
√
E1Rh1Rx̃1−

√
E2Rh2Rx̃2

∣∣∣∣
2

,

(3)
where (̂·) denotes the detected symbol, and (̃·) denotes the
trial symbol used in the hypothesis-detection problem. Then
the relay performs a network coding operation on the two
detected symbols. The network coded operation in our PANC 2

is denoted by �, which is different from the conventional
XOR operation. That is, we calculate xR by xR = x̂1� x̂2 =
sign(|h1R|x̂1 + |h2R|x̂2). Next, the relay chooses the power
level ER based on the decoded symbols, i.e., if (x̂1 = 1, x̂2 =
1) or (x̂1 = −1, x̂2 = −1), power level is chosen as κ1; else
if (x̂1 = 1, x̂2 = −1) or (x̂1 = −1, x̂2 = 1), power level
is chosen as κ2. The reason for adopting the new proposed
network coding operation and power level allocation method is
that the received constellation at destination is a parallelogram,
on which the (x̂1 = 1, x̂2 = 1) corresponding constellation
point lies in a diagonal with the (x̂1 = −1, x̂2 = −1)
corresponding constellation point. While for XOR operation,
the received constellation is an irregular quadrilateral no
matter what power level allocation result we implement.

The values of κ1 and κ2 are optimized by obtaining the
power scaling factor α, and the optimal power adaptation fac-
tors κ̃1 and κ̃2, respectively. For the power scaling factor, the
relay considers the relative values of channel gains of source-
relay channel and relay-destination gains. Let us assume that
the instantaneous channel state information (CSI) is available
to the destination before the transmission period starts. Then,
for the power adaptation factors, the destination optimizes
κ̃1 and κ̃2 by minimizing the instantaneous SPER based on
the CSI, and then feedbacks the values to the relay before
the transmission period starts. The relay will use the optimal
power level, which is the multiplication of the power scaling
factor and the power adaptation factor, to transmit the network

2Although the proposed PANC strategy shares some similarities compared
with DF strategy with a 4-PAM modulation, it is essentially different from
such scheme since the power levels κ1 and κ2 are not fixed in different
system settings like 4-PAM modulation. They are optimized at destination
according to instantaneous CSI, and feedback to relay to achieve a better
error performance.



WEI et al.: POWER ADAPTIVE NETWORK CODING FOR A NON-ORTHOGONAL MULTIPLE-ACCESS RELAY CHANNEL 875

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

ℜ{Y
R

}

ℑ
{Y

R
}

l
24

Ω
V

4

Ω
V

1

Ω
V

2

l
34

V
4

M
13

M
34

l
12

V
2

M
12

M
2

M
1

M
24

l
13

Ω
V

3 V
3

V
1

Fig. 1. One possible instantaneous relay constellation, where dashed lines
represent boundaries of decision regions.

coded symbol xR. Note that, as the values of κ̃1 and κ̃2 are
derived based on the instantaneous CSI, their values will keep
invariant within each transmission period, and change from
one transmission period to another. The detailed derivation of
both the power scaling factor and power adaptation factors
will be discussed in Section V.

The PANC scheme at the relay can also be illustrated by
a two-dimensional instantaneous relay constellation (IRC),
which is associated with the SPER calculation in the next
section. The signal part of yR, i.e.,

√
E1h1Rx1+

√
E2h2Rx2,

can be seen as a point in the IRC with X-axis being its
real part, and Y-axis being its imaginary part. We define the
constellation points (CPs) Vi of the IRC, i = 1, · · · , 4, to
represent the four possible values of ±√

E1h1R ±√
E2h2R,

and define the sources’ symbol pairs by Ti � (x1, x2).
Specifically, we have T1 � (1, 1), T2 � (−1, 1), T3 � (1,−1),
and T4 � (−1,−1).

From Fig. 1, we can see that the geometry of the IRC
composed by CPs, denoted by Vi, is a parallelogram. Similar
to the Voronoi diagram in [26], the decision regions are
segmented by the perpendicular bisectors of each side of
the parallelogram. Specifically, rays l12, l13, l24 and l34 are
perpendicular bisectors of sides V1V2, V1V3, V2V4 and V3V4,
respectively, M1 is the crossing point of rays l12 and l13, and
M2 is the crossing point of rays l24 and l34. Mij is the middle
point of a side ViVj . The decision region ΩV1 of V1, defined
as wedge l12 −M1 − l13 in Fig 1, and is given by

ΩV1 �
{�{h2R}
�{h2R}�{yR}+ �{yR} − �{h1R}

−
√
E1�{h1R}�{h2R}

�{h2R} < 0 and

�{h1R}
�{h1R}�{yR}+ �{yR} − �{h2R}

−
√
E2�{h1R}�{h2R}

�{h1R} ≥ 0

}
.

(4)

Similarly, we can obtain the decision regions of V2, V3 and
V4, denoted by ΩV2 , ΩV3 , and ΩV4 , respectively. Based on

the four decision regions, we have the one-to-one mapping
between the CPs and the network coded power level as

√
ERxR =

⎧⎪⎪⎨
⎪⎪⎩

κ1 if (�{yR},�{yR}) ∈ ΩV1 ,
κ2 if (�{yR},�{yR}) ∈ ΩV2 ,
−κ2 if (�{yR},�{yR}) ∈ ΩV3 ,
−κ1 if (�{yR},�{yR}) ∈ ΩV4 ,

(5)

Based on the observations y1 and y2, the destination jointly
decode the two source symbols with the minimum Euclidean
distance detection. Then we have

(x̂1, x̂2) = argmin
x̃1,x̃2∈{±1}

⎛
⎝∣∣∣∣y1 −

2∑
j=1

|hjD |x̃j
∣∣∣∣
2

+

∣∣∣∣y2 − |hRD|
√
ẼR (x̃1 � x̃2)

∣∣∣∣
2
)
,

(6)

where ẼR ∈ {κ1, κ2} is determined by x̃1 and x̃2.

IV. ERROR PERFORMANCE ANALYSIS

In this section, we investigate the instantaneous SPER
performance of the PANC given a channel realization vector
h = [h1R, h2R, h1D, h2D, hRD]. Assuming that symbols are
transmitted with equal probability, then the general expression
of the system SPER of the PANC scheme is

Pe,inst =

4∑
i=1

P (E|Ti, h)P (Ti) = 1

4

4∑
i=1

P (E|Ti, h), (7)

where Ti is the symbol pair defined in Section III, E denotes
the symbol error event at the destination that a transmitted
symbol pair from two sources is decoded to an erroneous
pair, i.e., either x1 or x2 is wrongly detected or both x1 and
x2 are wrongly detected, P (E|Ti, h) is the conditional SPER
given Ti is transmitted and the channel realization h, and
P (Ti) =

1
4 is the probability that Ti is sent by the two sources.

Since the decision regions of T1 and T4 are symmetric, and
the decision regions of T2 and T3 are symmetric, we have
P (E|T1) = P (E|T4) and P (E|T2) = P (E|T3). Therefore, (7)
can be rewritten as

Pe,inst =
1

2
(P (E|T1, h) + P (E|T2, h))

=
1

2

⎧⎨
⎩

2∑
i=1

∑
k∈{±a,±b}

P (E|k, Ti, h1D, h2D, hRD)

P (
√
ERxR = k|Ti, h1R, h2R)

}
,

(8)

where P (
√
ERxR = k|Ti, h1R, h2R) is the conditional prob-

ability that xR is allocated to the power level |k| at the relay,
and P (E|k, Ti, h1D, h2D, hRD) is the conditional probability
that the destination makes a wrong decision on the sources’
symbol pair Ti. For the sake of simplicity, we omit the channel
coefficients in these notations, and use P (

√
ERxR = k|Ti)

and P (E|k, Ti).
Since deriving the exact instantaneous SPER of the system

requires complicated computation and is time-consuming, in
the following, we will derive Pe,inst based on a coordinate
transformed constellation with a small accuracy loss. Due to
the randomness of channel realizations, the two-dimension
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decision regions of a symbol pair Ti at both the relay and the
destination are irregular and wedge-like, e.g., one possible case
of the received constellation and its corresponding decision
regions at the relay is shown in Fig. 1. Although the SPER
result is accurate with original IRC, the calculations of the
SPER could be very complicated. Here, we will propose a
coordinate transformation method to derive the SPER, which
reduces the calculation complexity with a small sacrifice in
accuracy in the low SNR region. Specifically, our coordinate
transformation method transforms the original parallelogram
geometry to a rectangle geometry, based on which, we deter-
mine the decision regions of the new constellations. Then, we
adopt the wedge probability computation method to facilitate
the derivation of the SPER based on the new decision regions.
There are totally three basic wedge prototypes, discussed in
Appendix A. Corresponding to these three wedge prototypes,
we derive the corresponding three wedge probabilities in
Appendix A, i.e., Pwi for i ∈ {1, 2, 3}, based on which, we
will later derive the SPER of the system.

The following lemma derives the coordinate transformation
matrix at the relay.

Lemma 1: The coordinate transformation matrix C, which
transforms the exact parallelogram-shaped IRC to a rectangle
centered at origin point, and preserve the length of each side
in exact IRC is given by

C = QA−1, (9)

where Q is the eigenvector matrix for B = ATΣ−1A given
in (47), shown as

Q =

⎡
⎢⎢⎣

B(1,2)

(λ1−λ2)
√

B(1,1)−λ1
λ2−λ1

√
B(1,1)−λ1

λ2−λ1√
B(1,1)−λ1

λ2−λ1
− B(1,2)

(λ1−λ2)
√

B(1,1)−λ1
λ2−λ1

⎤
⎥⎥⎦ ,

A−1 =

[ �{h1R}
2|h1R|

�{h2R}
2|h2R|

�{h1R}
2|h1R|

�{h2R}
2|h2R|

]
.

(10)

where the eigenvalues λ1 and λ2 are derived in (48).
Proof: Please refer to Appendix B. �
Now, we will determine the decision regions of the new

IRC. Denote by Vi the constellation point and Z̄ the received
signal point (�{yR},�{yR}) after the coordinate transforma-
tion by matrix C, respectively. Let us denote Ω̄V̄i

the decision
region corresponding to Vi, and define the boundary based on
the Voronoi rule

Ω̄V̄1
:
{�{Z̄} − �{Z̄} > 0

}
and

{�{Z̄}+ �{Z̄} ≤ 0
}
,

Ω̄V̄2
:
{�{Z̄} − �{Z̄} > 0

}
and

{�{Z̄}+ �{Z̄} > 0
}
,

Ω̄V̄3
:
{�{Z̄} − �{Z̄} ≤ 0

}
and

{�{Z̄}+ �{Z̄} > 0
}
,

Ω̄V̄4
:
{�{Z̄} − �{Z̄} ≤ 0

}
and

{�{Z̄}+ �{Z̄} ≤ 0
}
.

(11)
From (11), we can see that the decision regions form a

rectangle geometry with simple decision boundary lines3. In

3Note that the real decision boundary lines are slightly different from the
perpendicular bisectors of Voronoi diagram after coordinate transformation.
And this is the reason that the SPER results of coordinate transformation have
notably little difference in low SNR comparing with its counterpart of exact
constellation. As the SNR goes larger, the real decision boundary lines are
coincide with the perpendicular bisectors.
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Fig. 2. Received constellation at relay after coordinate transformation.

Fig. 2, we present the constellation at relay after the coordinate
transformation and its decision regions.

With the setup of the coordinate transformed IRC and its
corresponding decision regions, we use the wedge probability
computation method to facilitate the derivation of the SPER in
(8). Firstly, we focus on the probabilities P (

√
ERxR = k|Ti),

k ∈ {±κ1,±κ2}, at the relay. We calculate the probabilities
that the relay detects the received signal successfully, i.e.,
P (

√
ERxR = κ1|T1) and P (

√
ERxR = κ2|T2), by Pw3

defined in equations (42), and calculate the probabilities
that the relay makes wrong decisions, i.e., P (

√
ERxR ∈

{±κ2,−κ1}|T1) and P (
√
ERxR ∈ {±κ1,−κ2}|T2), by Pw1

defined in equations (40).
In particular, the probability that the relay detects the

received signal yR successfully, given T1 is sent, is

P (
√
ERxR = κ1|T1)

=

∫ ∞

0

d(�{Z̄})
∫ �{Z̄}

−�{Z̄}
fZ
(
Z̄;�{V1

}
,�{V1

})
d(�{Z̄})

= Pw3

(
||V̄1||/σ2, | arg(V̄1)− θ|, |π

2
− arg(V̄1) + θ|

)
,

(12)
where fZ(·) is the probability density function of Z given
in (44), Vi(1) and Vi(2) represent the horizontal coordinate
and vertical coordinate of Vi, respectively, ||V̄i|| and arg(V̄i)

denote the magnitude and argument of a vector OV̄i with O

the origin, respectively, and θ = arcsin

(√
B(1,1)−λ1

λ2−λ1

)
is the

rotation angle defined in the last paragraph of Appendix B,
Similar to (12), we can obtain P (

√
ERxR = k|T1) for

k ∈ {±κ2,−κ1} and the probabilities that relay detects
the received signal yR both successfully and unsuccess-
fully, given T2 is sent, as shown in (13). According to
the law of total probability, P (

√
ERxR = −κ1|T1) =

1 − ∑
k∈{κ1,±κ2}

P (
√
ERxR = k|T1) and P (

√
ERxR =

−κ1|T2) = 1− ∑
k∈{κ1,±κ2}

P (
√
ERxR = k|T2).

Then we consider the conditional error probabilities,
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P (
√
ERxR = κ2|T1) = Pw1

(
||V̄1||/σ2, |π

2
− arg(V̄1) + θ|, |π − arg(V̄1) + θ|

)
,

P (
√
ERxR = −κ2|T1) = Pw1

(
||V̄1||/σ2, | arg(V̄1)− θ|, | arg(V̄1)− θ|+ π

2

)
,

P (
√
ERxR = κ2|T2) = Pw3

(
||V̄2||/σ2, |θ − arg(V̄2)|, π

2
− |θ − arg(V̄2)|

)
,

P (
√
ERxR = κ1|T2) = Pw1

(
||V̄2||/σ2,

π

2
− |θ − arg(V̄2)|, π − |θ − arg(V̄2)|

)
,

P (
√
ERxR = −κ1|T2) = Pw1

(
||V̄2||/σ2, |θ − arg(V̄2)|, |θ − arg(V̄2)|+ π

2

)
.

(13)
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Fig. 3. Instantaneous destination constellation for network coded power
adaptation scheme, where dashed lines represent boundaries of decision
regions ΩD

i .

P (E|k, Ti), at the destination. We establish an instantaneous
destination constellation (IDC) with X-axis being y1 and
Y-axis being y2 based on the minimum Euclidean distance
detection, as shown in Fig. 3. When the relay detects the
received signal successfully, we define four reference points
as

V D
1 = (

√
E1|h1D|+

√
E2|h2D|, κ1|hRD|),

V D
2 = (−

√
E1|h1D|+

√
E2|h2D|, κ2|hRD|),

V D
3 = (

√
E1|h1D| −

√
E2|h2D|,−κ2|hRD|),

V D
4 = (−

√
E1|h1D| −

√
E2|h2D|,−κ1|hRD|).

(14)

Similar to the IRC and our previous work [27], the deci-
sion regions of the IDC are segmented by the perpendicular
bisectors of each edge in the parallelogram according to the
Voronoi rule [26]. In our previous work [27], we did not
assume carrier phase synchronization of sources-destination
channel and relay-destination channel. Instead, at destination,
we take the l1 norm of signals y1 and y2 as X-axis and Y-
axis, respectively. In this work, specifically, rays lD12, lD13, lD24
and lD34 are perpendicular bisectors of sides V D

1 V D
2 , V D

1 V D
3 ,

V D
2 V D

4 and V D
3 V D

4 , respectively. MD
1 is the crossing point

of ray lD12 and lD13, and MD
2 is the crossing point of ray lD24

and lD34. Line segment MD
1 M

D
2 is the perpendicular bisector

of diagonal V D
2 V D

3 . Then the correct decision region V D
1 at

destination is

ΩV D
1

�
{

2
√
E1|h1D|

(κ1 − κ2)|hRD|y1 + y2 +MD
1 > 0

⋂ 2
√
E2|h2D|

(κ1 + κ2)|hRD|y1 + y2 +MD
2 > 0

}
,

(15)

where MD
1 = − 1

2 (κ1+κ2)|hRD|−2
√
E1E2|h1D||h2D|(κ1−

κ2)|hRD| and MD
2 = − 1

2 (κ1 − κ2)|hRD| −
2
√
E1E2|h1D||h2D|(κ1 + κ2)|hRD|. Likewise, we can

obtain ΩV D
i

for i = 2, 3, 4.
Similar to the error probability analysis at the relay, we will

show the results of the coordinate transformation and the error
probability based on the new constellation at the destination. In
the following lemma, we present the coordinate transformation
matrix CD at the destination.

Lemma 2: At the destination, the coordinate transformation
matrix CD, which transform the exact IDC to a rectangle
centered at the origin point, and preserve the length of each
side in an exact parallelogram-shaped IDC is given by

CD = QDA−1
D , (16)

where QD is the eigenvector matrix for BD shown in (17),
where βD = |hRD| (|h1D|(κ1 + κ2) + |h2D|(κ2 − κ1)),
d1 =

√
4|h1D|2 + (κ1 − κ2)2|hRD|2 and d2 =√

4|h2D|2 + (κ1 + κ2)2|hRD|2. Then,

QD =

⎡
⎢⎢⎢⎢⎢⎣

BD(1,2)

(λD
1 −λD

2 )

√
BD(1,1)−λD

1
λD
2 −λD

1

√
BD(1,1)−λD

1

λD
2 −λD

1√
BD(1,1)−λD

1

λD
2 −λD

1
− BD(1,2)

(λD
1 −λD

2 )

√
BD(1,1)−λD

1
λD
2 −λD

1

⎤
⎥⎥⎥⎥⎥⎦ ,

(18)
where λD1 and λD2 are eigenvalues of BD. Also, we have

A−1
D =

1

βD

[
(κ2 − κ1)d2|hRD| 2d2|h1D|
(κ1 + κ2)d1|hRD| −2d1|h2D|

]
. (19)

Proof: Following the similar procedure of Lemma 1, we
can obtain the coordination transformation matrix CD at
destination. We complete the proof. �

Now, we will determine the decision regions with the new
coordinate transformed IDC. Denote V

D
i the constellation

point and Z̄D the received signal after coordinate transfor-
mation by matrix CD . Let us denote by Ω̄D

V
D
i

the decision

region corresponding to V
D
i , where the boundary is defined
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BD =
2

β2
Dσ2

[
d21(κ1 + κ2)

2|hRD|2 + 4d21|h2D|2 d1d2(κ
2
2 − κ21)|hRD|2 − 4d1d2|h1D||h2D|

d1d2(κ
2
2 − κ21)|hRD|2 − 4d1d2|h1D||h2D| d22(κ2 − κ1)

2|hRD|2 + 4d22|h2D|2
]
, (17)
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Fig. 4. Received constellation at destination after coordinate transformation.

based on the Voronoi rule

Ω̄D
V

D
1

:
{
Z̄D(1)− Z̄D(2) > 0

}⋂{
Z̄D(1) + Z̄D(2) ≤ 0

}
,

Ω̄D
V

D
2

:
{
Z̄D(1)− Z̄D(2) > 0

}⋂{
Z̄D(1) + Z̄D(2) > 0

}
,

Ω̄D
V

D
3

:
{
Z̄D(1)− Z̄D(2) ≤ 0

}⋂{
Z̄D(1) + Z̄D(2) > 0

}
,

Ω̄D
V

D
4

:
{
Z̄D(1)− Z̄D(2) ≤ 0

}⋂{
Z̄D(1) + Z̄D(2) ≤ 0

}
,

(20)
Z̄D(1) and Z̄D(2) represent the horizontal coordinate and ver-
tical coordinate of Z̄D , respectively. In Fig. 4, we present the
constellation at destination after the coordinate transformation
and its decision regions.

When T1 and T2 are transmitted by the sources, the error
probabilities at the destination, given that the relay transmits
the correct symbol, is denoted by P

(E|√ERxR = κ1, T1
)

and P
(E|√ERxR = κ2, T2

)
, respectively. Based on the de-

cision regions of the new IDC, regarding the probability
P
(E|√ERxR = κ1, T1

)
, we have

P
(
E|√ERxR = κ1, T1

)
=

∫ ∞

0

d(Z̄D(2))

∫ Z̄D(2)

−Z̄D(2)

fZD

(
Z̄D;V

D
i (1),V

D
i (2)

)
d(Z̄D(1)),

= Pw3

(
||V̄ D

1 ||/σ2, | arg(V̄ D
1 )− θD|, |π

2
− arg(V̄ D

1 ) + θD|
)

(21)

where fZD(·) is the probability density function of

Z̄D, V
D
i (1) and V

D
i (2) represent the horizontal coordi-

nate and vertical coordinate of V
D
i , respectively, θD =

arcsin

(√
BD(1,1)−λD

1

λD
2 −λD

1

)
is the rotation angle corresponding to

rotation matrix QD. Similar to (21), regarding the probability
P
(E|√ERxR = κ2, T2

)
, we have

P
(
E|√ERxR = κ2, T2

)
= Pw3

(
||V̄ D

2 ||/σ2,
1

2
|θD − arg(V̄ D

2 )|, π
2
− |θD − arg(V̄ D

2 )|
)
.

(22)
When the relay detects the received signal unsuccessfully,

the reference points in (14) will change according to the
incorrect relay decisions. In particular, if sources transmit
T1 and the relay wrongly forwards κ2,−κ2,−κ1, then the
reference point V D

1 in Fig. 3 will change to V D
5 , V D

6 , and
V D
7 , respectively. And if sources transmit T2 and the relay

wrongly forwards κ1,−κ2,−κ1, then the reference point V D
2

in Fig. 3 will change to V D
8 , V D

9 , and V D
10 , respectively. Denote

V̄ D
i for i ∈ {5, · · · , 10} the reference point after coordinate

transformation.
In the case when T1 is transmitted by the sources, and the

relay wrongly forwards κ2,−κ2,−κ1, the error probabilities
that destination makes wrong decisions are given by (23),
when k1 = κ2,−κ2,−κ1, then j = 5, 6, 7, respectively.

In the case when T2 is transmitted by the sources, and the
relay wrongly forwards κ1,−κ2,−κ1, the error probabilities
that destination makes wrong decisions are given by (24),
where when k1 = κ1,−κ2,−κ1, then l = 8, 9, 10, respec-
tively.

V. SYSTEM OPTIMIZATION

In this section, we obtain the optimal power levels by
separately discussing the derivations of the power scaling
factor and the power adaptation factors, respectively. We first
develop a practical method at the relay side to address the
error propagation problem. With the designed methods, the
system is proved to achieve a full diversity when the relay
cannot detect all the received signals successfully. Specifically,
we propose a power scaling scheme where the relay power
adapts to the channel conditions. In order to obtain the power
scaling factor, we model a complex MARC system as a
degraded virtual one-source one-relay one destination model
(triangle model), and show that the relay power should be
chosen to balance the SNRs of source-relay channel and
relay-destination channel. Moreover, we formulate a sub-
optimal Euclidean distance optimization problem to obtain
the optimized power adaptation parameters κ̃1 and κ̃2 that
minimize the end-to-end SPER.

A. The Design of Power Scaling Factor at the Relay

Before introducing the design of power scaling factor at the
relay, we present the diversity performance of the proposed
PANC and the CXNC scheme in the following Theorem 1. In
the CXNC scheme, we do not consider any relay processes to
identify or drop erroneous symbols and thus mitigate error
propagation from source-relay channel to destination, e.g.,
outage event detection, CRC, and etc. In order to measure
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P
(
E|
√
ERxR = k1, T1

)
=

{
1− Pw3

(||V̄ D
j ||/σ2, | arg(V̄ D

j )− θD|, |π2 − arg(V̄ D
j ) + θD|

)
, when V D

j ∈ ΩV D
1
,

1− Pw1

(||V̄ D
j ||/σ2, |π2 − θD + arg(V̄ D

j )|, |π − θD + arg(V̄ D
j )|) , when V D

j �∈ ΩV D
1
,
(23)

P
(
E|
√
ERxR = k2, T2

)
=

{
1− Pw3

(||V̄ D
l ||/σ2, | arg(V̄ D

l ) + θD|, |π2 − arg(V̄ D
l )− θD|

)
, when V D

l ∈ ΩV D
2
,

1− Pw1

(||V̄ D
l ||/σ2, |π − arg(V̄ D

l )− θD|, | 3π2 − arg(V̄ D
l )− θD|

)
, when V D

l �∈ ΩV D
2
,
(24)

Virtual Source Relay: Destination

SR RD

Sx Dx
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1 2( , )R RE x

Power Levels: 1 2,
Power Adaptation FactorsPower Scaling Factor
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Fig. 5. Virtual channel model. In particular, the channel gains γSR and γSD
with respect to virtual channels will be introduced in detail in the following
paragraph. xS̃ is the virtual source message, which is generated from the
original transmitted signal as xS̃ = x1 � x2. xR is the real transmitted
signal from the relay to destination. And xD is also equal to x1 � x2.

the performance of PANC and CXNC schemes in the high
SNR regime, the diversity order D [28] is calculated by

D = − lim
ρ→∞

logP ((x̂1, x̂2) �= (x1, x2))

log ρ
, (25)

where ρ represents the transmission SNR, (x1, x2) is the
source symbol pair, (x̂1, x̂2) is the decoded symbol pair at
destination and P ((x̂1, x̂2) �= (x1, x2)) is the SPER.

Theorem 1: Without power scaling factor at the relay, both
the PANC scheme and the CXNC scheme can only achieve
the diversity of one in MARC system for error propagation
issue.

Proof: Please refer to Appendix C. �
From Theorem 1, we can see that the error propagation

from the source-relay hop degrades the performance of the
system. In this case, we adopt a power scaling factor at the
relay to mitigate the effect of error propagation by adjusting
the relay transmission power to the channel conditions. Such
a link adaptive ratio (LAR) was first introduced for the single-
source decode-and-forward (DF) system in [29]. However,
LAR cannot be directly applied to the multi-user PANC
system.

To extend the LAR concept, we first develop a virtual
channel model for the source-relay-destination link, as shown
in Fig. 4. In the first phase, the two sources transmit to the
relay simultaneously. For such multiple-access channel, the
union bound of SPER in a multiple-access channel (MAC) is

PMAC ≤ P
upper
MAC = Q1

(√
2E1|h1R|2/σ2

)
+Q1

(√
2E2|h2R|2/σ2

)
+Q1

(√
2|
√
E1h1R +

√
E2h2R|2/σ2

)
,

(26)

where the first term in the right side of (26) represents the error
probability that the relay fails to decode x1 and successfully
decode x2. Likewise, the second term is the error probability
that the relay fails to decode x2 while successfully decode
x1. Also, the third term is the error probability that the relay
fails to decode both x1 and x2. The union bound P upper

MAC can
be further approximated as (27), which is quite tight when
E1|h1R|2/σ2, E2|h2R|2/σ2, |√E1h1R +

√
E2h2R|2/σ2 and

their difference are reasonably large, as the one-dimensional
Q-function Q1(x) decays fast as x grows. The advantage
of such an approximation is that we can now model the
multiple access source-relay channel as a single-input single-
output channel with the input being the virtual source mes-
sage xS̃ = x1 � x2 and the instantaneous received SNR
being γSR � min(E1|h1R|2/σ2, E2|h2R|2/σ2, |√E1h1R +√
E2h2R|2)/σ2, which represents the SNR of the worse

source-relay channel4. The idea of regarding a virtual source
message as network coded sources’ signals is that we im-
plement network coding at the relay. Thus, the virtual trans-
mitting information from source to destination via the aid
of relay becomes the same, i.e., xS̃ = xR. Following the
similar derivation of γSR, we can model the multiple access
source-destination channel as a point-to-point channel with the
instantaneous received SNR, denoted by γSD, which is defined

γSD �

min

(
E1|h1D|2

σ2
,
E2|h2D|2

σ2
,
|√E1|h1D|+

√
E2|h2D||2

σ2

)
.

(28)
So far, we have successfully reduced the complex MARC

system to a traditional triangle model. Based on the conclusion
in [29], the power scaling factor α with instantaneous γSR and
γRD is

α = min

(
γSR
γRD

, 1

)
. (29)

Note that, the instantaneous received SNR γRD can be re-
placed by statistical received SNR γ̄RD , which will be proved
in Appendix D. The advantage of using γ̄RD to obtain α is
that the relay does not need the feedback of relay-destination
channel. Later, we will show that using both instantaneous and
statistical relay-destination received SNR can result in a full
diversity in the proposed PANC scheme.

Theorem 2: Given the instantaneous source-relay received
SNR, and instantaneous (or statistical) relay-destination re-

4Note that our approximation is different from the equivalent channels
shown in [14] [30], in which the authors consider an orthogonal MARC
system.
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PU
MAC ≈ Q1

(√
2min

[
E1|h1R|2/σ2, E2|h2R|2/σ2, |

√
E1h1R +

√
E2h2R|2/σ2

])
, (27)

ceived SNR, the power scaled PANC scheme can achieve a
diversity of two, i.e., the full diversity, in the MARC system
with two sources, while the power scaled conventional NC
scheme can only achieve the diversity of one even with the
power scaling.

Proof: Please refer to Appendix D. �

B. The Design of Power Adaptation Factors

From the derivations of the instantaneous system SPER in
Section IV, we note that the expressions of the SPER depends
on the power adaptation levels κ̃1 and κ̃2 at the relay. To
minimize the SPER requires an optimization of κ̃1 and κ̃2.
However, directly minimizing the SPER is very complicated
and leads to no closed form expressions for κ̃1 and κ̃2.
Here, we propose a sub-optimal criterion for the instantaneous
SPER minimization, i.e., maximizing the minimum Euclidean
distances of the coordinate transformed IDC [31]. Since we
consider slow fading channel, i.e., the channel coefficients
are constant with a transmission period, the power adaptation
factors κ̃1 and κ̃2 are optimized for each transmission period.
For the coordinate transformed IDC, we only consider the two
edges of the rectangle, since the two edges are always less
than the diagonals of the rectangle. The Euclidean distance
optimization problem under the power constraint is formulated
as

(κ̃∗1, κ̃
∗
2) = argmax

κ̃1,κ̃2

min
j=2,3

{||V̄ D
1 − V̄ D

j ||2}
s. t. κ̃21 + κ̃22 ≤ 2Eave

R , κ̃1, κ̃2 ∈ R,
(30)

where the lengths of the rectangle’s two edges are V̄ D
1 V̄ D

2 =

V D
1 V D

2 = ||V D
1 − V D

2 ||2 = 4E1|h1D|2 + α|hRD|2(κ̃1 − κ̃2)
2

and V̄ D
1 V̄ D

3 = V D
1 V D

3 = 4E2|h2D|2 + α|hRD|2(κ̃1 + κ̃2)
2

because the coordinate transformation of IDC preserves the
length of the geometry’s sides as introduced in Appendix B.
Defining V as the set of

{
V̄ D
1 V̄ D

2 , V̄ D
1 V̄ D

3

}
, and introducing

a variable u � min{V}, after some manipulations, the
Euclidean distance optimization problem in (30) can be further
described as a maximization problem

maxu

s. t. − (4E1|h1D|2 + α|hRD|2(κ̃1 − κ̃2)
2) ≤ −u,

− (4E2|h2D|2 + α|hRD|2(κ̃1 + κ̃2)
2) ≤ −u,

κ̃21 + κ̃22 ≤ 2Eave
R .

(31)

Since the objective function of the new maximization problem
is an affine function and the constraints are quadratic functions
of κ̃1 and κ̃2 in (31), it is a convex optimization problem.
We can adopt the Lagrange Multiplier method to obtain the
solutions. The Lagrange equation is given by

L(κ̃1, κ̃2, u, μ1, μ2, μ3)

= u+ μ1(u− 4E1|h1D|2 − α|hRD|2(κ̃1 − κ̃2)
2)

+ μ2(u− 4E2|h2D|2 − α|hRD|2(κ̃1 + κ̃2)
2)

+ μ3(κ̃
2
1 + κ̃22 − Eave

R ).

(32)

Specifically, when μi = 0, it represents that the ith constraint
is not binding. Then we can ignore the ith constraint, and de-
rive the optimal κ̃1 and κ̃2 combining the Lagrangian function
and other KKT conditions. When μi �= 0, it represents that
the ith constraint is binding. Then we can obtain an equality
of parameters κ̃1 and κ̃2 with respect to the ith constraint. For
instance, when μ1 �= 0, we will have

u− 4E1|h1D|2 − α|hRD|2(κ̃1 − κ̃2)
2 = 0. (33)

In this case, there are totally 8 solutions with respect to the
value of μi, among which, we present positive real κ̃1 and κ̃2
that correspond to the maximum u as follows.

κ̃∗1 =
1

2

(√
2 (αEave

R |hRD|2 + E2|h2D|2 − E1|h1D|2)
α|hRD|2

+

√
2 (αEave

R |hRD|2 + E1|h1D|2 − E2|h2D|2)
α|hRD|2

)
,

κ̃∗2 =
1

2

(√
2 (αEave

R |hRD|2 + E1|h1D|2 − E2|h2D|2)
α|hRD|2

−
√

2 (αEave
R |hRD|2 + E2|h2D|2 − E1|h1D|2)

α|hRD|2
)
.

(34)
In summary, combining the results of power scaling factor

given in (29) and optimal power adaptation factors given in
(34), the optimal power level at the relay is given by κi = ακ̃∗i
for i = 1, 2.

VI. DISCUSSION

A. Extension to Coded System

For the coded case, we assume that channel codes, e.g.,
LDPC codes, are applied at both sources, and the codewords
x1 and x2 are transmitted by S1 and S2, respectively. At
the relay, a multi-user iterative receiver (Please refer to [32]
for the structure of a multi-user iterative receiver) is used to
iteratively detect and decode the two sources’ information.
After decoding xi, the relay encodes the information of Si

with an LDPC code, and obtain the codeword xRi. Assuming
xR1 and xR2 have the same length, the relay implements
the mapping operations on xR1 and xR2 symbol-by-symbol
according to (5) in the paper, and obtain the network coded
vector xR, which consists of the mapping results. Specifically,
for the k-th symbol in xRi, i.e., xRi,k, we map the symbol
pair (xR1,k, xR2,k) to (κ1, κ2,−κ2,−κ1) according to the
rule illustrated in the second paragraph of Section III in our
paper, where κ1 = ακ̃1 and κ2 = ακ̃2.

At the destination, the receiver first processes the signals
from the relay, denoted by y2. From the k-th signal of y2,
denoted by y2,k, the receiver obtains the probability density
function (PDF) p (y2,k|xR,k = κ) as

p (y2,k|xR,k = κ) =
1√
2πσ2

exp

{
− (y2,k − hRDκ)2

2σ2

}
.

(35)
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lxR1,k
= log

p(y2,k|xR,k = κ1)P (xR,k = κ1) + p(y2,k|xR,k = κ2)P (xR,k = κ2)

p(y2,k|xR,k = −κ2)P (xR,k = −κ2) + p(y2,k|xR,k = −κ1)P (xR,k = −κ1) , (36)

Based on p (y2,k|xR,k = κ), we can thus obtain the log-
likelihood ratio (LLR) for xR1,k as (36), where the priori
probabilities P (xR,k = κ1), P (xR,k = κ2), P (xR,k = −κ1),
and P (xR,k = −κ2) are all equal to 1

4 . Similarly, we can
calculate the LLR lxR2,k

. By using the LLR values lxR1,k

and lxR2,k
as the input of the LDPC codes implemented at

the relay, we can obtain the LLR values for the information
symbols of each source. We denote by l(R)

xi,k the LLR value of
the symbol xi,k based on the signals from the relay.

Next, for the signals from the direct source-to-destination
channels, i.e., y1, the destination adopts a multi-user iterative
receiver to iteratively detect and decode the two sources’
information. The detector at destination obtains the LLR lxi,k

with i ∈ {1, 2} for the symbol xi,k based on the k-th signal
from y1 as shown in [32].

Finally, the detector combines l(R)
xi,k and lxi,k

together and
carry the sum of the two LLRs to the decoder to update the
LLR of xi,k. After a fixed number of iterations between the
detector and the decoder, the destination makes a hard decision
based on the LLR value of xi,k.

From the diversity gain point of view, since our scheme can
achieve the full diversity gain in the uncoded system, it is easy
to prove that it can also achieve the full diversity gain in the
coded system.

B. Extension to Higher-order Modulation

Although we focus primarily on BPSK signals so far, our
work can be extended to higher-order modulations. Specifi-
cally, for the PANC at relay, parameters κ1 and κ2 denote
the higher and lower power levels, respectively. The relay
transmitted signal is xR = x̂1 � x̂2 = sign(|h1R|�{x̂1} +
|h2R|�{x̂2})+ i sign(|h1R|�{x̂1}+ |h2R|�{x̂2}), where i is
the unit imaginary number.

For error performance analysis, by defining Ti = (m1 +
in1,m2 + in2) for m1,m2, n1, n2 ∈ {±κ1,±κ2}, we can
adopt the union bound of SPER to evaluate the proposed
PANC scheme as (37).

For power scaling factor, we observe that the coefficients
α we develop is independent of the detailed modulation
schemes. Through some straightforward algebra, it is easy
to show that our virtual channel model still fits for higher-
order modulations, i.e., the quality of source-relay channel and
source-destination channel are approximately characterized by
the worst channel. Therefore, full diversity can be achieved
by using the same power scaling scheme in the higher-order
modulations.

For power adaptation factors optimization, we can optimize
parameters κ̃1 and κ̃2 by solving the following optimization
problem

min
∑

i,j∈[1,16],i�=j

P(Ti→Tj) (κ̃1, κ̃2)

s.t. κ̃21 + κ̃22 ≤ 2Eave
R ; κ̃1, κ̃2 ≥ 0; κ̃1 ≥ κ̃2.

(38)

Alternatively, we can also adopt Euclidean distance opti-
mization method to optimize parameters κ̃1 and κ̃2 as

max u
s.t. − ViVj ≤ −u;

κ̃21 + κ̃22 ≤ 2Eave
R ; κ̃1, κ̃2 ≥ 0;κ1 ≥ κ2,

(39)

where Vi =
(√
E1|h1D|x1 +

√
E2|h2D|x2, |hRD|xR

)
and xR

is the correct network coded signal at relay corresponding to
sources’ information (x1, x2).

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
PANC scheme by simulations. Consider a two dimensional
cartesian coordinate system, where nodes S1, S2 and D are
located at (0,

√
3
3 ), (0,−

√
3
3 ), and (1, 0), respectively. The

relay is moving from the origin point (0, 0) to (1, 0) at X-
axis. Throughout our simulations, we use the path loss model
γij = d−3

ij , where γij is the channel gain. The notation dij
is the distance between two terminals, where i ∈ {S1,S2,R}
and j ∈ {R,D}. We assume that E1 = E2 = Eave

R = 1,
and the SNR in the simulation is defined as ρ = E1/σ

2.
The average SNR range is [0, 30] dB. To simplify the legends
of simulation results figures, ’sim’ stands for Monte-Carlo
simulation result, ’thy’ stands for the theoretical results.

In order to investigate the performance of our proposed
scheme comprehensively, we consider the relay placed at
different locations, resulting in different channel scenarios.
Firstly, we consider the relay is located at (0, 0), so the relay
is close to the sources, i.e., forming an asymmetric network
with strong source-relay channel, shown in Fig. 6. Then, we
consider the relay is located at (13 , 0), so the distance between
the source and relay is equal to the distance between the relay
and destination, i.e., forming a symmetric network, shown in
Fig. 7. Finally, we consider the relay is located at (0.8, 0),
so the distance between the sources and relay is larger than
the distance between the relay to destination, i.e., forming an
asymmetric network with a strong relay-destination channel,
shown in Fig. 8.

In each realization of nodes locations, we evaluate the
performance of the proposed PANC scheme as follows: (a)
the SPER performance of the original received constellation
with optimized κ̃1 and κ̃2 given in (34) by monte carlo
simulation, denoted by Origin-sim; (b) the SPER performance
of the received constellation after a coordinate transformation
with optimized κ̃1 and κ̃2 given in (34) by both monte carlo
simulation and theoretical expressions, denoted by CT-sim and
CT-thy, respectively.

As the references, we simulate the following schemes: (a)
the SPER performance of the CXNC scheme [7, 33] in which
the relay transmits an XORed signal to the destination in
the second transmission phase, denoted by CXNC; (b) the
SPER performance of the CXNC scheme in which the relay
transmits a power scaled XORed signal to the destination in
the second transmission phase, denoted by CXNCα; (c) the
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SPER ≤
{ ∑

i,j∈{1,··· ,4},i�=j

∑
m,n∈{±κ1,±κ2}

P
(
Tj

∣∣√ERxR = m+ in, Ti, h1D, h2D, hRD

)
P
(√

ERxR = m+ in |Ti, h1R, h2R

)}
.

(37)
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Fig. 6. Error performance with strong source-relay channel.
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Fig. 7. Error performance in a symmetric network.

SPER performance of a selective-and-forward network coding
scheme based on [20], denoted by Selective-and-Forward; (d)
the SPER performance of a genie-aided PANC scheme, under
the hypothetical assumption that the symbols are perfectly
detected at the relay and both κ̃1 and κ̃2 are optimized by
(34), denoted by Genie; (e) the SPER performance of the
PANC scheme with randomly generated κ̃1 and κ̃2, in which
κ̃1 is a uniformly distributed random variable between [1,

√
2]

and κ̃2 =
√
2Eave

R − κ̃21. Both κ̃1 and κ̃2 are regenerated in
different transmission periods, denoted by Random; and (f)
the SPER performance of the PANC scheme with randomly
generated κ̃1 and κ̃2, in which κ̃1 = 3κ̃2 = 3/

√
5. Both κ̃1

and κ̃2 are fixed in all the transmissions, denoted by Fixed.
Firstly, the CXNC without power scaling can only achieve

a diversity of one, due to the error propagation from the
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Fig. 8. Error performance with strong relay-destination channel.

source-relay hop as Theorem 1 indicates. The CXNC with
power scaling still cannot achieve a full diversity due to the
multi-user interference of non-orthogonal MARC as Theorem
2 infers. The proposed PANC scheme with a power scaling
factor can achieve a full diversity no matter what power levels
it adopts at the relay, which verify the proof of Theorem 2.
The Genie method serves as the benchmark of the system
performance, since it assumes that a genie exists at the relay
and guarantees that the relay transmits correct information to
the destination. We can conclude from the simulation results
that the PANC scheme with the proposed design of allocating
different power levels and adopting a power scaling factor can
achieve full diversity in a MARC system.

In addition, the SPER performance based on a new coor-
dinate system is larger than the SPER based on the original
coordinate system for low SNR (e.g., from 0dB to 5dB), and
coincides after 10dB. The reason for such phenomenon is
that the detector based on the new coordinate system is sub-
optimal comparing to the optimal ML detection in (3). Thus,
the error performance based on the new coordinate system is
poorer than its counterpart based on the original coordinate. As
the SNR increases, the minimum Euclidean distance between
the constellation points in both original and new coordinates
systems increases, so the error performances become perfectly
matched. Note that the theoretical results of the transformed
coordinate systems match the Monte-Carlo simulation results.
This shows that the closed-form SPER expressions obtained
by the CT methods are accurate.

Note that, allocating different power levels at the relay may
vary the coding gain of the system. In particular, the SPER
performance of optimized κ̃1 and κ̃2, based on the Euclidean
distance optimization method, has the best coding gain for
both original coordinate and CT case. The SPER performance



WEI et al.: POWER ADAPTIVE NETWORK CODING FOR A NON-ORTHOGONAL MULTIPLE-ACCESS RELAY CHANNEL 883

for random or fixed chosen κ̃1 and κ̃2 has a lower coding gain
performance because they are not adaptive to the instantaneous
CSI comparing with the optimized κ̃1 and κ̃2. Although the
selective-and-forward network coding scheme can achieve full
diversity, it has a lower coding gain comparing to the PANC
scheme.

Since there exists error propagation from the source-relay
hop to the destination, we notice that the gap between the
SPER performance of a genie-aided PANC scheme and the
SPER performance of the original received constellation with
optimized κ̃1 and κ̃2 is different with three relay location
realizations. In particular, such gap is quite small when we
have a strong source-relay channel, and the gap grows as
the relay moves further from the source and closer to the
destination. The reason is that with a strong source-relay
channel, the relay will generate more reliable information and
thus reduces the influence of error propagation.

VIII. CONCLUSION

In this paper we propose a novel PANC scheme to achieve
full diversity and a high coding gain for a non-orthogonal
MARC. Firstly, we propose a coordinate transformation
method to transform the parallelogram received constellation
to a rectangle one at both relay and destination. Then we derive
the approximate SPER based on the coordinate transformed
constellation. Next, we discuss the derivation of optimal power
levels by separately obtaining the power scaling factor and
optimal power adaptation factors. In particular, by applying the
power scaling factor at the relay, the proposed PANC scheme
can achieve a full diversity. Also, we propose a Euclidean
distance optimization problem to obtain the optimal power
levels at the relay. Finally, simulation results show that the
SPER expressions based on our method can well approximate
the exact SPER with a much lower complexity, and our PANC
scheme with power adaptation factors optimization and power
scaling factor design can achieve a full diversity and a higher
coding gain compared to other network coding schemes.

APPENDIX

A. Computations on Wedge Probability

The wedge probability computation method [23, 34] can be
utilized to derive the SPER with irregular decision regions.
In the following, we will discuss three wedge prototypes as
shown in Fig. 9. Let us first review the wedges discussed
in [34]. Let us denote a CP by Vi and a vertex of the wedge
by Mk. We assume that the angle in the counter-clockwise
direction is positive and in the clockwise direction is negative.

There are two types of wedge error probabilities to be
considered when Vi is outside the wedge region. For φ1φ2 ≥ 0
as presented in Fig. 9 (1), the wedge probability is given
by [34]

Pw1(dik, φ1, φ2) =
1

2

{
Q2

(√
2dik sinφ2;

tan2 φ2 − 1

tan2 φ2 + 1

)

−Q2

(√
2dik sinφ1;

tan2 φ1 − 1

tan2 φ1 + 1

)}
,

(40)

(1) (2) (3)

1
12 2

ikD

iV

iV

kM kM
ikD

1

2
1

2
1 2

ikD
iV

kM

Fig. 9. Demonstrations for the basic patterns of wedge probabilities. dik
(or dij ) is the normalized distance between CP Vi and wedge vertex Mk (or
Mj ). In particular, both (1) and (2) are introduced in [34]. And in (3), φi

with i ∈ {1, 2} are included angle between line ViMk and wedge sides; and
φi + φ̄i = π.

where the two-dimensional Q-function Q2(x; ρ) is defined in
the Notations, and its closed-form solution can be found in
Eqs (5.74) on [35].

Similarly, for φ1φ2 < 0 as shown in Fig. 9 (2), the wedge
error probability is given by [34]

Pw2(dik, φ1, φ2) =
1

2

{
Q2

(√
2dik sinφ1;

tan2 φ1 − 1

tan2 φ2 + 1

)

−Q2

(√
2dik sin(−φ2); tan

2 φ2 − 1

tan2 φ1 + 1

)}
.

(41)
Next, we discuss the probability of correct decisions, i.e.,

the received signal is inside the decision region of Vi. We use
two different ways to represent the probabilities corresponding
to two different decision regions, as shown in Fig. 9 (4) and
(5). In particular, the probability of a received signal within
the wedge region with vertex Mk, shown in Fig. 9 (3), is given
by

Pw3(dik, φ1, φ2)

=
1

2π

2∑
n=1

(
1−
∫ φ̄n

0

exp

(
− dik sin

2 φn

sin2(φn + φ)

)
dφ

)
+

φ1 + φ2

2π

=
1

2π

2∑
n=1

(
Q2

(√
2dik sinφn;

tan2 φn − 1

tan2 φn + 1

)

−πQ1

(√
2dik sinφn

))
+

φ1 + φ2 + 2

2π
.

(42)

B. Derivation of the coordinate transformation at the relay

Let us define Z = [�{yR},�{yR}]T as the point on the
original coordinate, where (·)T is the transform operation of
the matrix or vector, 2×1 vector Z′ as the intermediate trans-
formed point, A as the intermediate coordinate transformation
matrix. The relationship between Z and Z′ is Z = AZ′, where
A is a 2× 2 matrix and det(A) �= 0. The probability density
function of Z can be represented by Z′ as

fZ(z) =
1

2π|Σ|1/2 exp

(
−1

2
(z−Vi)

TΣ−1(z−Vi)

)

=
1

2π|Σ|1/2 exp

(
−1

2
(z′ −A−1Vi)

TATΣ−1A(z′ −A−1Vi)

)
,

(43)

where Σ = [σ2/2, 0; 0, σ2/2], and |Σ| is the determinant
of Σ, i ∈ {1, · · · , 4}. Note that the covariance matrix
B � ATΣ−1A is not diagonal. We apply the eigenvalue
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decomposition to B and obtain

fZ(z) =
1

2π|Σ|1/2 exp

(
−1

2
(z′ −A−1VT

i )
T [ψ1, ψ2]

T

[
λ1 0
0 λ2

]
[ψ1, ψ2](z

′ −A−1VT
i )

)
,

(44)
where ψi for i = 1, 2 and λi are the eigenvectors and eigen-
values of B, respectively. Thus, we define Z = [ψ1, ψ2](z

′ −
A−1VT

i ), which is a complex Gaussian random variable with
the mean Vi = [ψ1, ψ2]A

−1VT
i and covariance [λ1, 0; 0, λ2],

as the point on the transformed coordinate. Let Q = [ψ1, ψ2],
the relationship between the original received signal Z and
the transformed received signal Z, the original RP Vi and the
transformed RP Vi after the coordinate transformation and
decorrelation are

Z = QA−1Z and Vi = QA−1VT
i , (45)

respectively. To transform the RP-composed parallelogram to
a rectangle centered at the origin point and preserve the length

of the geometry’s sides, e.g.,
−−−→
V iV j =

−−→
ViVj , the transformation

matrix A is given by

A =

[ −−→
V1V2 −−−→

V1V2−−→
V1V3

−−→
V1V3

][
V1(1) V2(1)
V1(2) V2(2)

]−1

=
2

β

[ |h1R|�{h2R} −|h1R|�{h2R}
−|h2R|�{h1R} |h2R|�{h1R}

]
,

(46)

where β = �{h1R}�{h2R} − �{h2R}�{h1R} and matrix
B shown in (47). For i = 1, 2, the eigenvalues are given
by (48). From (47) and (48) we can see that B is a real
orthogonal symmetric matrix. In this case, matrix Q is a
rotation matrix. Hence, the coordinate transformed by A is
a rectangle with its sides parallel to the axis, and after the
eigenvalue decomposition, the new constellation is still a
rectangle and being rotated counterclockwise through an angle
θ, which is defined by Q = [cos(θ), sin(θ);− sin(θ), cos(θ)]T .
The corresponding eigenvectors matrix is given by (18). In this
case, the final coordinate transform matrix C is given by

C = QA−1, (49)

where A−1 is shown in (18).

C. Proof of Theorem 1

Firstly, we consider the case that T1 is wrongly decoded
in to other symbol pairs. The average probability that T1 is
wrongly decoded into T4 at the destination is given by (50).

Without loss of generality, we assume E1 = E2 = ER = E
in the following. Let us define ρ = E/σ2 as the reference
system SNR for i ∈ {1, 2,R}. In general, averaging the fol-
lowing one-dimensional Q-function over channel distributions,
we have

E

{
Q1

(√
2ρ|hij |2

)}
=

1

π

∫ π/2

0

(
1 +

ργij

sin2 θ

)−1

dθ

ρ→∞≈ 1

4γij
ρ−1.

(51)

Likewise, E
{
Q1

(√
2ρ
∑

t∈{ij,mn} |ht|2
)}

ρ→∞≈ 3
16γijγmn

ρ−2

and E{Q1(
√
2ρ
∑

t∈{ij,mn,pq} |ht|2)}
ρ→∞≈ 5

32γijγmnγpq
ρ−3. According to the result in [36], we

have the high-SNR approximation

E

⎧⎪⎪⎨
⎪⎪⎩Q1

⎡
⎢⎢⎣
√
2

((∑2
i=1

√
Ei|hiD|

)2
− |hRD|2κ1κ2

)
√
(E1|h1D|2 + E2|h2D|2 + |hRD|2κ21)σ2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

≈ γRD
γ1D + γ2D + γRD

.

(52)
With the approximations in (51) and (52), averaging the

probability P (T1 → T4|h) in (50) over channel distributions,
we further have

P (T1 → T4) ≈ 5

32γ1Dγ2DγRD
ρ−3 +

5

128γ1Dγ2DγRDγ1R
ρ−4

+
γRD

4γ2R(γ1D + γ2D + γRD)
ρ−1

+
γRD

4γ12R(γ1D + γ2D + γRD)
ρ−1,

(53)
where γ12R = γ1R + γ2R. Likewise, we can derive P (T2 →
T3).

When only one error occurs, we further have (54). Similarly,
we can derive P (T1 → T3), P (T2 → T4). From (53) and
(54), we conclude that the PANC scheme can only achieve
the diversity of one in a MARC system without power scaling.
In the NC based MARC, averaging the related PEPs over the
channel coefficients, we have

P (T1 → T4) ≈ 5

32γ12DγRDγ1R
ρ−3

+
5

32γ12DγRDγ2R
ρ−3 +

1

4γ12D
ρ−1,

P (T1 → T2) ≈ 3

16γ1Dγ1R
ρ−2

+
3

16γ1Dγ2R
ρ−2 +

3

16γ1DγRD
ρ−2.

(55)

where γ12D = γ1D + γ2D . Similarly, we can derive P (T1 →
T3), P (T2 → T3) and P (T2 → T4). In this case, we can
conclude that the MARC system with network coding cannot
achieve full diversity.

D. Proof of Theorem 2

We prove Theorem 2 by using our virtual channel model.
After some manipulations, it is easy to show that given any
power scaling coefficient α employed at the relay side, the
lower bound of the SPER can be in general approximated as
(56).

After applying the Chernoff bound Q1(x) ≤ 1
2 exp

(
−x2

2

)
,

we can further obtain (57), where Λi, r are the ith non-zero
eigenvalue and the rank of the diagonal matrix
[ (

√
E1|h1D|(x1−x̂1)+

√
E2|h2D|(x2−x̂2))

2

4 , 0; 0, γSRD(xR−x̂R)2

4 ],
respectively. γSRD = min{γSR, γRD} is an
exponential distributed random variable with the mean

γ1Rγ2RγRD
γ1Rγ2R+γ1RγRD+γ2RγRD

, which is proven as follows. Let
us define T = min(E1|h1R|2, E2|h2R|2). Since γSRD =
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B =
4

βσ2

[ |h1R|2�2{h2R}+ |h2R|2�2{h1R} −|h1R|2�{h2R}�{h2R} − |h2R|2�{h1R}�{h1R}
−|h1R|2�{h2R}�{h2R} − |h2R|2�{h1R}�{h1R} |h1R|2�2{h2R}+ |h2R|2�2{h1R}

]
. (47)

λi =
B(1, 1) +B(2, 2)±√B(1, 1)2 +B(2, 2)2 + 4B(1, 2)2 − 2B(1, 1)B(2, 2)

2
. (48)

P (T1 → T4) = E{P (T1 → T4|h)}

= E

⎧⎨
⎩

∑
k∈{±κ1,±κ2}

P (T1 → T4|
√
ERxR = k, T1, h1D, h2D , hRD)P (

√
ERxR = k|T1, h1R, h2R)

⎫⎬
⎭

= E

⎧⎨
⎩Q1

⎡
⎣

√
2
((∑2

i=1

√
Ei|hiD |)2 + |hRD|2κ2

1

)
√

(E1|h1D |2 + E2|h2D |2 + |hRD|2κ2
1) σ

2

⎤
⎦[1− 2∑

i=1

Q1

(√
2 (Ei|hiR|2/σ2)

)

−Q1

⎛
⎜⎝
√√√√2

(
2∑

i=1

√
EihiR

)2

/σ2

⎞
⎟⎠
⎤
⎥⎦ +Q1

⎡
⎣
√
2
((∑2

i=1

√
Ei|hiD |)2 + |hRD|2κ1κ2

)
√

(E1|h1D|2 + E2|h2D |2 + |hRD|2κ2
1)σ

2

⎤
⎦Q1

(√
2 (E1|h1R|2/σ2)

)

+Q1

⎡
⎣
√
2
((∑2

i=1

√
Ei|hiD|)2 − |hRD|2κ1κ2

)
√

(E1|h1D |2 +E2|h2D|2 + |hRD|2κ2
1) σ

2

⎤
⎦Q1

(√
2 (E2|h2R|2/σ2)

)

+Q1

⎡
⎣

√
2
((∑2

i=1

√
Ei|hiD|)2 − |hRD|2κ2

1

)
√

(E1|h1D|2 + E2|h2D |2 + |hRD|2κ2
1) σ

2

⎤
⎦Q1

⎛
⎜⎝
√√√√2

(
2∑

i=1

√
EihiR

)2

/σ2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

(50)

P (T1 → T2) ≈

⎧⎪⎨
⎪⎩

3
16γ1DγRD ρ−2 + 1

4γ1R ρ−1 + 1
4γ2R ρ−1 + 1

4γ12R ρ−1, when κ1 > κ2,
3

16γ1DγRD ρ−2 + 1
4γ1R ρ−1 + 3

64γ1DγRDγ2R ρ−3 + 3
64γ1DγRDγ12R ρ−3, when κ1 < κ2,

3
16γ1DγRD ρ−2 + 1

4γ1R ρ−1 + 1
16γ1Dγ2R ρ−2 + 1

16γ1Dγ12R ρ−2, when κ1 = κ2.

(54)

Pv � P ((x1, x2, xR) → (x̂1, x̂2, x̂R))

=E

[
Q

((√
E1|h1D | (x1 − x̂1) +

√
E2|h2D | (x2 − x̂2)

)2
+ α|hRD |2(xR − x̂R)2√

E1|h1D|2(x1 − x̂1)2 + E2|h2D|2(x2 − x̂2)2 + α|hRD|2(xR − x̂R)2

)]

(x+y)2≤2(x2+y2)
≤ E

⎡
⎣Q
⎛
⎝ (√

E1|h1D | (x1 − x̂1) +
√
E2|h2D| (x2 − x̂2)

)2
+ α|hRD|2(xR − x̂R)2

2
√(√

E1|h1D |(x1 − x̂1) +
√
E2|h2D |(x2 − x̂2)

)2
+ α|hRD|2(xR − x̂R)2

⎞
⎠
⎤
⎦ .

(56)

Pv ≤ E

[
1

2
exp

(
−
(√

E1|h1D |(x1 − x̂1) +
√
E2|h2D|(x2 − x̂2)

)2
+ γSRD|xR − x̂R|2

4

)]
ρ→∞≈ 1

2

(
r∏

k=1

Λi

)−1

ρ−r (57)

P ((x1, x2, xR) → (−x̂1, x̂2, x̂R)) ≈ E

[
Q

(
2E1|h1D|2√

E1|h1D |2(x1 − x̂1)2 + E2|h2D |2(x2 − x̂2)2 + α|hRD|2(xR − x̂R)2

)]
. (58)

min{E1|h1R|2, E2|h2R|2, (√E1|h1R| + √
E2|h2R|)2, γRD},

we have

2γSRD ≥ min{2E1|h1R|2, 2E2|h2R|2,
2∑

i=1

Ei|hiR|2, 2γRD}

≥ 2min{T, γRD}.
(59)

Because if X and Y are i.i.d. exponentially distributed
random variables with the mean vx and vy , respectively,
min{X,Y } is a also an exponentially distributed random
variable with the mean vx + vy . Hence, we have proved that

γSRD is also an exponentially distributed random variable.
Since both two diagonal elements are non-zero when an
error event happens or two error events happen, we have
max
x̂ �=x

Pr (x→ x̂) = O
(
Γ−2

)
. Note that, replacing γRD in (57)

by γ̄RD will not change the diversity value, which completes
the proof of the theorem.

If we apply the power scaling on CXNC scheme, when one
error occurs, i.e., x̂i = −xi for i ∈ {1, 2}, we have (58).

Averaging the probability in (58) over channel distributions,
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we further have

P ((x1, x2, xR) → (−x̂1, x̂2, x̂R)) ≈ 1

4γ1D
ρ−1. (60)

Hence, we can conclude that the power scaled CXNC scheme
still cannot achieve the full diversity.
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