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Abstract—In this paper, we propose a threshold-based one-bit
soft forwarding (TOB-SF) protocol for a multi-source relaying
system with network coding, where two sources communicate
with the destination with the help of a relay. Specifically in the
TOB-SF protocol, the relay calculates the log-likelihood ratio
(LLR) value of each network coded symbol, compares this LLR
value with a pre-optimized threshold, and determines whether to
transmit or keep silent. We are interested in optimizing the TOB-
SF protocol in fading channels, and consider both the uncoded
and low-density parity check coded systems. In the uncoded
system, we first derive the bit error rate (BER) expressions at
the destination, based on which, we derive the optimal threshold.
Then we theoretically prove that the system can achieve the full
diversity gain by using this threshold. Further, we optimize the
power allocation at the relay to achieve a higher coding gain.
In the coded system, we first optimize the LLR threshold. Then
we develop a methodology to track the BER evolution at the
destination by using Gaussian approximations. Based on the BER
evolution, we further optimize the power allocation at the relay
which minimizes the system BER. Simulation results show that
the proposed TOB-SF protocol outperforms other conventional
relaying protocols in terms of error performance.

Index Terms—One-bit soft forwarding, log-likelihood ratio,
wireless network coding, power allocation.

I. INTRODUCTION

RELAY technology is an efficient tool to combat chan-
nel fading and enhance transmission rate by exploiting

spatial degree of freedom [1–3]. In wireless relay networks,
one or more relays listen to the signals transmitted by the
source, perform signal processing on the received signals, and
forward the processed signals to the destination. By combining
the signals from the source and the relays, the destination can
thus take the advantage of spatial diversity and make a reliable
decision on the source’s information.
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Early publications mainly suggest two relaying protocols,
namely, amplify-and-forward (AF) and decode-and-forward
(DF) [2]. In the AF protocol, the relay amplifies the sig-
nals from the source, and forwards them to the destination.
Although it is simple, the AF protocol suffers from noise
propagations as the relay forwards noisy signals without
processing. In the DF protocol, the relay detects/decodes the
source’s messages and forwards them to the destination. By
explicitly obtaining the source’s messages, the relay forwards
recovered signals without noise. Another advantage of the
DF protocol is that it can be jointly designed with channel
codes [4–6] or wireless network coding [7, 8] to achieve a
higher coding gain. However, if the relay makes a wrong
decision, the error will propagate to the destination, causing a
loss in diversity gain.

Channel-aware demodulators and link adaptive solutions
are proposed to eliminate the error propagations in the con-
ventional DF so as to achieve a full diversity gain [9–16].
Specifically, [9–13] propose novel network coding schemes
to achieve the full diversity gain with the assumption that
frame errors at the relay can be detected by using some CRC
codes. If an error is detected in a frame, the relay will discard
this frame when doing network coding. We have to mention
that (1) by using CRC codes, extra check information will
be transmitted, which increase the transmission delay; (2)
by detecting and dropping the erroneous frames at the relay,
some useful information inside the frame is discarded as well,
which will reduce the coding gain of the system. In [14–
16], channel-aware demodulators (i.e., some smart signal
combining methods) at the destination are proposed to achieve
the full diversity by weighing the signals from the sources
and the relay. Intuitively, if the source-to-relay channel is
worse than the relay-to-destination channel, the signal from the
relay will multiply a smaller weight to alleviate the impact of
possible error from the relay. However, instantaneous source-
to-relay channel state information is needed.

Consequently, an advanced relay protocol by forwarding
soft information, namely, estimate-and-forward (EF), is pro-
posed to obtain a better error performance [17–20]. Rather
than forwarding the received signals passively as the AF, or
making hard decisions on the source’ messages aggressively as
the DF, the relay in the EF protocol generates and forwards
intermediate soft information. Usually, the soft information
can be in the form of log-likelihood ratio (LLR) [17], soft
bit [18], or soft mutual information [19, 20]. The EF protocol
is shown to achieve a better error performance than the AF and
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DF protocols. However, the EF protocol requires the relay to
forward real values via wireless channels, which is impractical.
Also, the optimal combining of the signals from the relay and
the source is still an open problem. Sub-optimal combining
causes performance loss, especially in the scenarios where
there are multiple relays [21].

More practically, LLR-threshold based one-bit soft infor-
mation forwarding (TOB-SF) protocol is proposed [22–24],
where the relay calculates the LLR value of each received
symbol transmitted by the source, and compares the LLR
value with a pre-determined threshold. The relay forwards
the hard decision of the corresponding symbol if the LLR
value is larger than the threshold, and keeps silent otherwise.
The TOB-SF protocol requires the same bandwidth as the DF
protocol, while it achieves a better performance than the DF
by reducing error propagations.

We note that the TOB-SF protocol is mainly investigated
in one-way relay channels [22, 23]. In [24], a network coded
TOB-SF protocol is proposed for two-way relay channels,
which is a simple extension of [22] since a two-way relay
channel, with perfect side information, can be decomposed
into two one-way relay channels. However, these results are
not directly applicable for general multi-source relay channels,
where multiple sources communicate with their destination
with the help of the relay.

Multi-source relay channels are common and basic building
blocks in wireless networks, especially in cellular networks.
Therefore, investigating efficient relaying protocols to control
error propagations in such channels is an important issue [25–
27]. In [25], the LLR values of network coded symbols are
forwarded by the relay. As discussed above, transmitting LLR
values over bandwidth-limited wireless channels is imprac-
tical. Also, the sub-optimal combining of the signals at the
destination will lead to a performance loss. In [26], quantiza-
tion schemes on the LLR values are proposed. However, the
iterative quantization process is complex, and impractical to
change a quantization codebook each time when the source-to-
relay channels change. In addition, the quantization scheme of
[26] is based on the maximization of the mutual information
between the LLR and its quantized result, which cannot guar-
antee the optimal error performance at the destination. In [27],
the authors extend the power scaling schemes for one-way
relay channels [28] to multi-source relay channels. Although
the full diversity gain is achieved, the error performance is not
fully optimized, i.e., the coding gain can be further improved.

In this paper, we design a network coded TOB-SF pro-
tocol in a two-source relaying system over fading channels,
and consider both the uncoded and low-density parity check
(LDPC) [29, 30] coded systems. In the uncoded system, we
first derive the bit error rate (BER) expressions at the destina-
tion and optimize the threshold by minimizing the BER. Then
we theoretically prove that the system can achieve the full
diversity gain by using the proposed threshold. Furthermore,
we optimize the power allocation at the relay to achieve a
higher coding gain. In the coded system with LDPC codes, we
first optimize the threshold. Then we develop a methodology
to track the BER evolutions in the iterative receiver at the
destination, based on which, we further optimize the power
allocation at the relay.

The theoretical contributions of this paper are as follows.
In the uncoded system, we (a) derive the BER expressions at
the destination, (b) derive the exact expression of the optimal
threshold, which is in the form of ln ρ + c, where ρ is the
signal-to-noise ratio (SNR), and c is a constant to SNR,
(c) prove theoretically that the system can achieve the full
diversity gain by using the optimal threshold, and (d) optimize
the power allocation at the relay to further enhance the error
performance. In the coded system with LDPC codes, we (a)
optimize the threshold, (b) develop a methodology to track the
BER evolution of the iterative receiver at the destination by
using Gaussian approximations, and (c) optimize the power
allocation at the relay based on the BER evolution results.
In the simulations, we use the DF, EF, and the power scaling
scheme from [27] as benchmarks. Simulation results show that
the proposed TOB-SF protocol outperforms the benchmarks in
terms of the error performance.

II. SYSTEM MODEL

Consider an orthogonal uplink relay channel with two
sources, one relay and one destination as shown in Fig. 1,
where the two sources S1 and S2 broadcast their messages to
the common destination D with the help of a half-duplex relay
R. Each transmission period consists of three phases. In the
first phase, S1 broadcasts its message, and in second phase, S2

broadcasts its message, to the relay and the destination. After
the first two phases, the relay generates the network coded
message based on the signals from the two sources, which is
then forwarded to the destination during the third phase. At
the end of each transmission period, the destination decodes
the messages of the two sources based on the signals from the
sources and the relay.

As three phases are needed in each transmission period,
one may consider to take the advantage of the physical layer
network coding (PNC) to reduce one transmission phase.
In [31], a novel decoder has been proposed to solve the
synchronization problem in the PNC. However, the assumption
that the amplitudes of the two source-to-relay channels are
identical makes the PNC inapplicable in our system, since we
model the channels as random fading.

We denote hiR, i = 1, 2, hiD , and hRD as the channel co-
efficients between Si and R, between Si and D, and between
R and D, respectively, as shown in Fig. 1, and denote diR,
diD , and dRD as the distances between Si and R, between
Si and D, and between R and D, respectively. We assume
that hiR, hiD , and hRD are independent and identically
Rayleigh distributed with the channel gains as λiR, λiD , and
λRD , respectively. These channel gains are related to the
corresponding distances with the attenuation exponent γ, i.e.,
λiR = 1/(diR)γ , λiD = 1/(diD)γ , and λRD = 1/(dRD)γ .
We consider quasi-static fading channels, i.e., the channel
coefficients are constant during one transmission period, and
change independently from one period to another.

Let us assume that each phase in a transmission period
consists of l time slots, and thus each transmission period
lasts 3l time slots. Each source Si transmits the binary phase-
shift keying (BPSK) symbol vector xi = (x1

i , · · · , xl
i)

T ,
xj
i ∈ {±1} and j ∈ {1, · · · , l}, with the power Ei. The
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Fig. 1. The orthogonal uplink relay channel with two sources, one relay,
and one destination.

received signals at the relay and at the destination from Si

can be expressed as

yiR = hiR
√
Eixi + niR,

yiD = hiD
√
Eixi + niD,

(1)

respectively, where the vectors yiR and yiD consist of l
received signals, i.e., yiR = (y1iR, · · · , yliR)T and yiD =
(y1iD, · · · , yliD)T , the vector niR = (n1

iR, · · · , nl
iR)T consists

of l additive white Gaussian noise (AWGN) samples at the
relay, and the vector, niD = (n1

iD, · · · , nl
iD)

T , consists of
l AWGN samples at the destination. We assume that all the
noise samples at the relay and the destination are with a mean
zero and the same variance σ2, and the sources’ power satisfies
E1 = E2 = 1. We define the SNR as ρ � 1/σ2.

After receiving yiR, the relay detects/decodes xi and gen-
erates the network coded message as xR = (x1

R, · · · , xl
R)T ,

xj
R ∈ {±1}, based on the hard decisions of xi, denoted by

x̂i. Since the network coding operation, i.e., XOR, between
two bits is equivalent to the multiplication of their BPSK
symbols, a network coded symbol xj

R can be obtained by
xj
R = x̂j

1x̂
j
2, where x̂j

i is the hard decision of xj
i at the

relay. Hence, the network coded message xR is obtained by
implementing inner product (vector-wise multiplication) on
x̂1 and x̂2. Note that as shown in [10], non-binary NC is
necessary to achieve the full diversity gain in multiple-relay
cases. However, since we only consider the one-relay case, we
can use the conventional XOR based NC to achieve the full
diversity, i.e., two-order diversity, in our system. Then we have
xR = x̂1 ·x̂2 = (x̂1

1x̂
1
2, · · · , x̂l

1x̂
l
2)

T . In our TOB-SF protocol,
the relay only forwards those network coded symbols in xR
whose absolute LLR values are larger than a preset threshold,
and keeps silent otherwise. Then the received signal at the
destination from the relay can be written as

yRD = hRD
√
αv · xR + nRD, (2)

where 0 < α ≤ 1 is the power allocation at the relay, and v =
(v1, · · · , vl)T is an indicator vector, with vj = 1 representing
the transmission of xj

R, and vj = 0 representing being silent
of the relay. Also in (2), yRD = (y1RD, · · · , ylRD)

T is the
received signal vector, and nRD = (n1

RD, · · · , nl
RD)

T is the
AWGN vector at the destination.

III. THRESHOLD-BASED ONE-BIT SOFT FORWARDING

PROTOCOL

Recall that in the DF protocol, decision errors in xR are
largely propagated to the destination from the relay, which
leads to a severe performance degradation. On the other hand,
the EF protocol mitigates the error propagations by forwarding
the soft information of each symbol. However, it is quite
impractical of the EF protocol to transmit a real number
instead of a single bit along the R-to-D channel. The TOB-SF
protocol combines the advantages of both protocols by allevi-
ating error propagations with simple one-bit transmissions.

In the TOB-SF protocol, we consider both uncoded system
and coded system. For the uncoded system, there is no channel
coding at each source, while for the coded system, LDPC
codes are applied to the two sources. Without a loss of
generality, we focus on the j-th symbol in xi, i.e., xj

i . Based
on the detection/decoding results of xj

1 and xj
2, the relay

calculates the LLR value for each network coded symbol
xj
R in xR. We denote Lxj

i ,R as the LLR value of xj
i after

detection/decoding at the relay, and denote Lxj
R,R as the LLR

value of xj
R. Then we have

Lxj
R,R = 2 tanh−1

(
tanh

(
Lxj

1,R
2

)
tanh

(
Lxj

2,R
2

))
,

(3)
where tanh(z) = exp(2z)−1

exp(2z)+1 is the hyperbolic function. In the
uncoded system, Lxj

i ,R is calculated based on the conditional

probability density function (PDF) of yjiR, i.e.,

Lxj
i ,R = ln

p(yjiR|xj
i = 1, hiR)

p(yjiR|xj
i = −1, hiR)

=
2hiR
σ2

yjiR.

(4)

For the LDPC coded system, Lxj
i ,R can be obtained from the

output of the decoder at the relay.
After obtaining Lxj

R,R based on (4), the relay compares
|Lxj

R,R| with a preset threshold LT (LT ≥ 0). If |Lxj
R,R| is

larger than LT , the j-th indicator vj in the vector v is set to
one, otherwise it is set to zero, i.e.,

vj =

{
1, |Lxj

R,R| > LT ,

0, |Lxj
R,R| ≤ LT .

(5)

By applying the indicator vector v, the relay either transmits
BPSK symbols or keeps silent.

Practically, the destination does not know the indicator
vector v at the relay. However, the destination can detect
whether a symbol is transmitted from the relay by monitoring
the power of the received signal. When the received SNR from
the relay is large, the destination can always make a correct
detection. To simplify the following analysis, we assume that
the destination can perfectly detect the relay’s status. When
the destination makes a decision that relay is silent, it will
only adopts the signals from the sources.

In the following, we will discuss the optimizations of the
threshold LT and the power allocation α at the relay to
enhance the BER performance at the destination. Practically,
we assume that the instantaneous channel state information
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(CSI) of h1R and h2R, and the statistical CSI of h1D, h2D, and
hRD are available at the relay during the optimizations. The
extension from BPSK to a higher order modulation is possible,
where multiple thresholds need to be set and jointly optimized
to minimize the BER. However, since binary NC and binary
LDPC code are considered in the following analysis, we only
adopt the BPSK modulation in our paper.

IV. OPTIMIZATIONS AND PERFORMANCE ANALYSIS FOR

UNCODED SYSTEM

A. Threshold Optimization

We denote Ec as the event that |Lxj
R,R| is larger than LT

and xj
R is correct, denote Ee as the event that |Lxj

R,R| is larger

than LT and xj
R is in error, and denote Es as the event that

|Lxj
R,R| is no larger than LT , i.e.,

Ec : |Lxj
R,R| > LT , and xj

R = xj
1x

j
2,

Ee : |Lxj
R,R| > LT , and xj

R �= xj
1x

j
2,

Es : |Lxj
R,R| ≤ LT .

(6)

Given a set of channel realizations h1R, h2R, h1D, h2D , and
hRD, we denote Pe as the average BER of the two sources
at the destination. We have Pe = 1

2 (Pe,1 + Pe,2), where Pe,i

is the BER of Si at the destination. We also denote Pi,mrc,
Pi,neg , and Pi,dir as the error probabilities of a symbol xj

i at
the destination given that the relay forwards the correct xj

R to
the destination, forwards the incorrect xj

R to the destination,
and keeps silent, respectively. Note that Pi,mrc, Pi,neg , and
Pi,dir rely on the channels h1D , h2D , and hRD , while Pr(Ec),
Pr(Ee), and Pr(Es) rely on the channels h1R and h2R. When
averaged over h1D, h2D , and hRD, we have

Eh1D ,h2D,hRD(Pe,i) = Eh1D ,h2D,hRD(Pi,mrc) Pr(Ec)+
Eh1D ,h2D,hRD(Pi,neg) Pr(Ee)+Eh1D ,h2D ,hRD(Pi,dir) Pr(Es).

(7)

For the sake of simplicity, we use E(·) instead of
Eh1D ,h2D,hRD(·) in the following analysis.

We focus on the calculations of Pr(Ec), Pr(Ee), and Pr(Es).
First, we investigate the PDF of the LLR value Lxj

R,R at
the relay. For a given channel realization, Lxj

R,R can be
approximated as a Gaussian variable, whose variance is twice
the absolute value of its mean [32]. Therefore, the PDF of
Lxj

R,R can be written as

pL
x
j
R,R

(L) =
1√

2πσL⊕
exp

(
− (L−mL⊕)2

2σ2
L⊕

)
, (8)

where mL⊕ is the mean value, σ2
L⊕ is the variance of the

Lxj
R,R, and we have σ2

L⊕ = 2|mL⊕|.
Then we determine Pr(Ec), Pr(Ee), and Pr(Es), which

depend on the PDF pL
x
j
R,R

(L) and the threshold LT . Without

a loss of generality, we consider xj
1x

j
2 = 1, and we have

Pr(Ec) =
∫ +∞

LT

pL
x
j
R,R

(L)dL,

Pr(Ee) =
∫ −LT

−∞
pL

x
j
R,R

(L)dL,

Pr(Es) =
∫ LT

−LT

pL
x
j
R,R

(L)dL

= 1− Pr(Ec)− Pr(Ee).

(9)

At the destination, the average BER Pe can be minimized by
optimizing the threshold LT . The following theorem offers the
solution of this optimization problem.

Theorem 1: When the statistical CSI of h1D, h2D , and hRD
is available at the relay, the optimal threshold that minimizes
the BER at the destination can be written as

L�
T = ln

E(Pneg)− E(Pdir)

E(Pdir)− E(Pmrc)
, (10)

where E(Pmrc) = 1
2 (E(P1,mrc) + E(P2,mrc)), E(Pneg) =

1
2 (E(P1,neg) + E(P2,neg)), and E(Pdir) = 1

2 (E(P1,dir) +
E(P2,dir)).

Proof: Please refer to Appendix A. �

B. Analysis on E(Pi,mrc), E(Pi,neg), and E(Pi,dir)

We can see from (10) that the optimal threshold L�
T is based

on Pi,mrc, Pi,neg , and Pi,dir at the destination, which are
related to the channels h1D, h2D , and hRD . Now, we will
determine these three probabilities when the statistical CSI of
h1D , h2D, and hRD is available at the relay.

We assume that LLR combining is applied at the destination
to detect the symbol xj

i . We denote Lxj
i ,D and Lxj

R,D as

the received LLR values at the destination for xj
i and xj

R,
respectively, and denote Lxj

i ,D,ext as the extrinsic LLR for xj
i

from the network coding between xj
ī

and xj
R, where ī = 1, 2

and ī �= i. The combined LLR for xj
i , denoted by Lxj

i ,D,comb,
is calculated as

Lxj
i ,D,comb = Lxj

i ,D + Lxj
i ,D,ext

= Lxj
i ,D + 2 tanh−1

(
tanh

(
Lxj

ī
,D

2

)
tanh

(
Lxj

R,D
2

))
.

(11)

In (11), given hiD and hRD, the received LLRs at the destina-
tion, i.e., Lxj

i ,D and Lxj
R,D , are Gaussian distributed with their

variances being twice the absolute values of their means [33].
In addition, the LLR Lxj

i ,D,ext from the network coding
process can be approximated as a Gaussian variable with its
variance being twice the absolute value of its mean [32].

Denote by mLiD � 2h2
iDxj

i

σ2 the mean value of Lxj
i ,D, and

by mLRD � 2h2
RDαv2

jx
j
R

σ2 the mean value of Lxj
R,D . Then

the mean value of Lxj
i ,D,ext, denoted by mLiD,ext, can be

calculated by utilizing the function φ(·) defined in [32], i.e.,

mLiD ,ext = xj
ī
xj
Rφ−1(φ(|mLīD |)+

φ(|mLRD |)− φ(|mLīD |)φ(|mLRD |)), (12)
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where the function φ(·) is expressed as

φ(z) =

{
1− 1√

4πz

∫∞
−∞ tanh

(
u
2

)
exp
(
− (u−z)2

4z

)
du, z > 0,

1, z = 0.
(13)

When z > 0, the function φ(·) is bounded as [32]√
π

z
exp

(
−z

4

)(
1− 3

z

)
< φ(z) <

√
π

z
exp

(
−z

4

)(
1 +

1

7z

)
.

(14)
We can see from (14) that when z is large enough, the two
bounds converge to

√
π
z exp
(− z

4

)
. Therefore, given z1 and

z2, when both of them are large enough, we have

φ(z1) + φ(z2)− φ(z1)φ(z2) ≈ max(φ(z1), φ(z2)). (15)

Similarly, we can approximate mLiD ,ext in (12) in the high
SNR region as

mLiD ,ext ≈ xj
ī
xj
Rφ−1(max(φ(|mLīD |), φ(|mLRD |)))

=
2xj

ī
xj
R

σ2
min(h2

īD, h
2
RDαv

2
j ).

(16)

As we have Lxj
i ,D,comb = Lxj

i ,D+Lxj
i ,D,ext, the combined

LLR Lxj
i ,D,comb can be viewed as a Gaussian variable with the

mean mLiD +mLiD,ext and variance 2(|mLiD |+ |mLiD,ext|).
Given the channel coefficients h1D , h2D, and hRD, the instan-
taneous error probabilities can be obtained by utilizing Q(·)
function, where Q(z) = 1√

2π

∫∞
z

exp
(
−u2

2

)
du. Specifically,

when Ec happens to the symbol xj
R, we have xj

i = xj
ī
xj
R. In

this case, mLiD and mLiD,ext have the same sign, and thus
|mLiD + mLiD ,ext| = |mLiD | + |mLiD,ext|. Therefore, we
obtain the error probability of xj

i as

Pi,mrc = Q

(√
|mLiD |+ |mLiD,ext|

2

)
. (17)

When Ee happens, we have xj
i = −xj

ī
xj
R. In this case, mLiD

and mLiD,ext have the opposite signs, and we have |mLiD +
mLiD,ext| = ||mLiD | − |mLiD,ext||. The calculation of Pi,neg

depends on the relation between |mLiD | and |mLiD,ext|, i.e.,

Pi,neg =⎧⎪⎪⎨
⎪⎪⎩
Q

(√
(|mLiD |−|mLiD,ext|)2
2(|mLiD |+|mLiD,ext|)

)
, |mLiD | > |mLiD,ext| ,

1−Q

(√
(|mLiD |−|mLiD,ext|)2
2(|mLiD |+|mLiD,ext|)

)
, |mLiD | ≤ |mLiD,ext| .

(18)

When Es happens, we have vj = 0. Thus, the mean value
mLiD,ext equals zero, and we obtain

Pi,dir = Q

(√
|mLiD |

2

)
. (19)

The statistical CSI based error probabilities can be obtained
by averaging Pi,mrc, Pi,neg , and Pi,dir over h2

1D , h2
2D, and

h2
RD, where the PDFs of h2

iD and h2
RD are ph2

iD
(h) =

1
λiD

exp
(
− h

λiD

)
and ph2

RD
(h) = 1

λRD
exp
(
− h

λRD

)
, re-

spectively. Alternatively, by defining mLiD,mrc � |mLiD | +
|mLiD,ext|, by defining mLiD ,neg � (|mLiD |−|mLiD ,ext|)2

|mLiD |+|mLiD,ext| ,

and by defining mLiD,dir � |mLiD |, we average Pi,mrc,
Pi,neg , and Pi,dir over the variables mLiD,mrc, mLiD,neg , and
mLiD,dir, respectively. The PDFs of these three variables are
given in the following lemma.

Lemma 1: The PDF of mLiD,mrc can be expressed as

pmLiD,mrc(m) =
λiλ̄i

λi − λ̄i

(
exp
(−λ̄im

)− exp (−λim)
)
,

(20)
where λi =

1
2
σ2 λiD

and λ̄i =
1

2
σ2 λīD

+ 1
2α
σ2 λRD

. The PDF of

mLiD,neg can be expressed as

pmLiD,neg(m) =
λ2
i λ̄

2
i

λ2
i − λ̄2

i

∫ ∞

0

u2

√
m
(exp
(−λ̄iu

2 − λi

√
mu
)

− exp
(−λiu

2 − λi

√
mu
)
)du.

(21)

The PDF of mLiD,dir can be expressed as

pmLiD,dir
(m) = λi exp (−λim) . (22)

Proof: Please refer to Appendix B. �
Based on Lemma 1, we can derive the statistical CSI based

error probabilities, i.e., the expectations of Pi,mrc, Pi,neg , and
Pi,dir . Specifically, the expectation of Pi,mrc is calculated as

E(Pi,mrc) =
λi

λi − λ̄i

∫ ∞

0

Q

(√
m

2

)
λ̄i exp
(−λ̄im

)
dm−

λ̄i

λi − λ̄i

∫ ∞

0

Q

(√
m

2

)
λi exp (−λim) dm

=
λi

2(λi − λ̄i)

(
1−
√

1

1 + 4λ̄i

)
−

λ̄i

2(λi − λ̄i)

(
1−
√

1

1 + 4λi

)
.

(23)

The expectation of Pi,neg is calculated as follows. First,
we calculate the probability that |mLiD | > |mLiD ,ext|, i.e.,
Pr(|mLiD | > |mLiD,ext|). From Appendix B, we have

Pr(|mLiD | > |mLiD ,ext|) = λ̄i

λi + λ̄i
. (24)

Then we obtain the expectation of Pi,neg as [22]

E(Pi,neg) =∫ ∞

0

Q

(√
m

2

)
pmLiD,neg (m)dmPr(|mLiD | > |mLiD,ext|)

+

(
1−
∫ ∞

0

Q

(√
m

2

)
pmLiD,neg (m)dm

)
·

Pr(|mLiD | ≤ |mLiD,ext|)

=
λi

λi + λ̄i
− λi − λ̄i

λi + λ̄i

∫ ∞

0

Q

(√
m

2

)
pmLiD,neg(m)dm

=
λi

λi + λ̄i
− λ2

i λ̄
2
i

(λi + λ̄i)2

(
f

(
1

4
, λ̄i, λi

)
− f

(
1

4
, λi, λi

))
,

(25)

where the function f(·) is defined in Equation (A·4) in [22].
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The expectation of Pi,dir is calculated as

E(Pi,dir) =

∫ ∞

0

Q

(√
m

2

)
λi exp (−λim) dm

=
1

2

(
1−
√

1

1 + 4λi

)
.

(26)

Hence, when the statistical CSI of h1D , h2D , and hRD is
available at the relay, we can obtain the optimal threshold L�

T

based on (10) with E(Pi,mrc), E(Pi,neg), and E(Pi,dir).

C. Diversity Gain

We now investigate the diversity order of the system with
our TOB-SF protocol. When the SNR ρ = 1

σ2 is large
enough, we make approximations on E(Pi,mrc), E(Pi,neg),
and E(Pi,dir). First, since the function f(·) in (25) is pro-
portional to ρ−1 [22], it is straightforward to obtain the
approximation of E(Pi,neg) from (25), i.e.,

E(Pi,neg)≈
λi

λi + λ̄i

=
λīDλRD

λīDλRD + λiDλRD + 1
αλiDλīD

.
(27)

Then by utilizing the property of the function Q(·) shown
in [34], we have

E(Pi,mrc) ≈
3

4λiD
αλīDλRD
λīD+αλRD

ρ−2,

E(Pi,dir) ≈
1

2λiD
ρ−1.

(28)

Based on (27) and (28), when ρ is large enough, we can
approximate the statistical CSI based optimal threshold as

L�
T ≈ ln

E(P1,neg) + E(P2,neg)

E(P1,dir) + E(P2,dir)

≈ ln ρ+ ln
2λ1Dλ2DλRD

λ1DλRD + λ2DλRD + 1
αλ1Dλ2D

.
(29)

By defining c � ln 2λ1Dλ2DλRD
λ1DλRD+λ2DλRD+ 1

αλ1Dλ2D
, we can see

that c does not depend on ρ, but depends on the channel gains
and the power allocation α. Hence, we have lim

ρ→∞L�
T = ln ρ.

We now focus on the diversity gain of each source with the
optimal threshold L�

T . Since we have lim
ρ→∞L�

T = ln ρ, we only

need to investigate the diversity gain with the threshold ln ρ.
Theorem 2: By utilizing the TOB-SF protocol with the

threshold ln ρ, each source can achieve the full diversity gain
of the system, i.e., a diversity of two.

Proof: Please refer to Appendix C. �
From the proof of Theorem 2, we can see that by using

the threshold ln ρ, the probability E(Pr(Ee)) is proportional
to ρ−2, and E(Pr(Es)) is proportional to ρ−1. Considering
the probabilities in (27) and (28), we can obtain that the BER
for Si, i.e., Pe,i, is proportional to ρ−2 when averaged over
all channel parameters h1R, h2R, h1D, h2D, and hRD . Thus,
each source can achieve an order of two diversity gain by
using the threshold ln ρ.

Remark 1: The optimal threshold L�
T can be approximated

in the form of ln ρ+ c, where ln ρ is the key to guaranteeing
the full diversity gain, as shown in the proof of Theorem 2,
and c is the key to achieving the optimal coding gain.

D. Power Allocation

In this subsection, we will further enhance the error per-
formance by optimizing the power allocation α at the re-
lay. Specifically, by averaging Pe,i over the channels h1D,
h2D , and hRD , we have E(Pe,i) = E(Pi,mrc) Pr(Ec) +
E(Pi,neg) Pr(Ee)+E(Pi,dir) Pr(Es). We minimize the average
BER, i.e., E(Pe) =

1
2 (E(Pe,1) + E(Pe,2)), by optimizing α,

and obtain the optimal α by solving ∂E(Pe)
∂α = 0 with the

constraint 0 < α ≤ 1.
However, from the expression of the optimal threshold L�

T

in (29), we can see that L�
T is a function of α. If L�

T is used
as the threshold, it is difficult to obtain the closed form of
the optimal α when solving ∂E(Pe)

∂α = 0. Fortunately, from the
previous subsection, we know that ln ρ can serve as a sub-
optimal threshold to achieve the full diversity gain. Since ln ρ
is independent of α, the items Pr(Ec), Pr(Ee), and Pr(Es) are
constants relative to α if we use ln ρ as the threshold. Hence,
the derivation of the optimal α can be simplified and a closed
form of the optimal α is obtained. In the sequel, we optimize
α by assuming that ln ρ is applied as the threshold.

With the power constraint 0 < α ≤ 1, by utilizing the
approximations in (27) and (28), we derive the optimal power
allocation, denoted by α�, at the relay as follows. First, we
relax the constraint of α, and let ∂E(Pe)

∂α = 0, which lead to
two solutions for α, i.e.,

α1 =
λ1Dλ2D√

4Pr(Ee)
3Pr(Ec)

ρλ1Dλ2DλRD − λ1DλRD − λ2DλRD
,

α2 =
λ1Dλ2D

−
√

4Pr(Ee)
3Pr(Ec)

ρλ1Dλ2DλRD − λ1DλRD − λ2DλRD
.

(30)

Note that from (30), we have α2 < 0 and α2 < α1. Also,
α1 can be a negative value or a positive value, depending on
Pr(Ec), Pr(Ee), ρ, and the channel gains.

Then we investigate the optimal power allocation α� based
on the two value ranges of α1, i.e., α1 ≤ 0 and α1 > 0.
When α1 ≤ 0, we first relax the constraint of α and have the
following two facts. (i) E(Pe) is a monotonically increasing
function (MIF) of α if α2 < α ≤ α1, and (ii) E(Pe) is a
monotonically decreasing function (MDF) of α if α ≤ α2

or α > α1. Then we consider the optimal α with the
constraint 0 < α ≤ 1. We can see that within the range
0 < α ≤ 1, E(Pe) is an MDF of α. Therefore, the optimal
power allocation can be obtained as α� = 1 when α1 ≤ 0.

When α1 > 0, we first relax the constraint of α and have the
following two facts. (i) E(Pe) is an MDF of α if α2 < α ≤ α1,
and (ii) E(Pe) is an MIF of α if α ≤ α2 or α > α1. Then we
optimize α with the constraint 0 < α ≤ 1. We can see that if
α1 > 1, E(Pe) is an MDF of α in the range 0 < α ≤ 1. Thus
the optimal power allocation can be obtained as α� = 1 when
α1 > 1. Also, if 0 < α1 ≤ 1, E(Pe) is an MDF of α when
0 < α ≤ α1, and is an MIF of α when α1 < α ≤ 1. Thus,
the optimal power allocation can be obtained as α� = α1

when 0 < α1 ≤ 1. With above discussions, the optimal power
allocation α� at the relay is given as

α� =

{
1, α1 ≤ 0 or α1 > 1,

α1, 0 < α1 ≤ 1.
(31)
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L

Fig. 2. The SISO iterative receiver at the destination. Note that ‘
⊕

’
represents the LLR combining by addition, and ‘

⊗
’ represents the LLR

combining by network coding. SISO DECi represents the SISO decoder for
the source Si.

Till now, we have optimized the threshold and power
allocation for the uncoded system. In the next section, we
will extend these optimizations to the LDPC coded system.

V. EXTENSIONS TO LDPC CODED SYSTEM

For the coded system, we assume that LDPC codes are
applied at the two sources. Therefore, we can view xi as
an LDPC codeword of length l. The relay first decodes the
two codewords of the two sources, and obtains the decoded
codewords x̂1 and x̂2. Then network coding is implemented
on the two decoded codewords to obtain xR.

At the destination, a soft-input soft-output (SISO) iterative
receiver is designed as shown in Fig. 2. We assume that each
SISO decoder performs the sum-product decoding algorithm.
As defined in the previous section, Lxj

i ,D and Lxj
R,D in Fig. 2

are the received LLR values at the destination from the source
Si and the relay, respectively. The extrinsic LLR Lxj

i ,D,ext for

xj
i is from the network coding between the symbols xj

ī
and

xj
R. The combined LLR Lxj

i ,D,comb is utilized as the input of
Si’s decoder. The output LLR of Si’s decoder is denoted by
Lxj

i ,dec
. At the end of the final iteration, hard decision of xj

i

is made based on the sign of Lxj
i ,dec

.
From Fig. 2 we can see that Lxj

i ,D,ext is updated during
each iteration. Specifically, in the first iteration, there is no
output from the SISO decoders, and Lxj

i ,D,ext is obtained by
following the same method as that in the uncoded system,
i.e., Lxj

i ,D,ext is calculated based on the received LLRs Lxj

ī
,D

and Lxj
R,D, as shown in (11). After the first iteration, the

channel input Lxj

ī
,D is replaced by Lxj

ī
,dec − Lxj

ī
,D,ext to

update Lxj
i ,D,ext, i.e.,

Lxj
i ,D,ext = 2 tanh−1(
tanh

(
Lxj

ī
,dec − Lxj

ī
,D,ext

2

)
tanh

(
Lxj

R,D
2

))
. (32)

Since the output of the decoder is updated in each iteration,
Lxj

i ,D,ext is updated accordingly.

A. Threshold Optimization

Recall that in the uncoded system, the LLR value of xj
R

at the relay, i.e., Lxj
R,R, is approximated as a Gaussian

variable, as shown in (8). In the coded system, since the
relay implements network coding based on the decoded LDPC
codewords, it is difficult to track the exact PDF of Lxj

R,R.
Here, we can still view Lxj

R,R as a Gaussian variable, and
we assume that its variance is twice the absolute value of its
mean. This Gaussian approximation is proved in [32] to be
accurate enough for a coded system with LDPC codes.

Now, we minimize the BER for the coded system by
optimizing the LLR threshold LT . Recall that in the uncoded
system, the values of E(Pi,mrc), E(Pi,neg), and E(Pi,dir), as
shown in (23), (25), and (26), respectively, are independent on
the threshold LT . Therefore, we can obtain the closed form of
the optimal threshold. On the other hand, in the coded system,
the values of E(Pi,mrc), E(Pi,neg), and E(Pi,dir) at the output
of the decoders are correlated with the threshold LT , which
complicates the derivation of the optimal threshold. Also, there
are no closed forms for these three error probability values in
the coded system with LDPC codes. Hence, we focus on how
to obtain a sub-optimal threshold in a simple closed form.

One sub-optimal method is that we only minimize the
average BER at the input of the decoders (or “input BER” for
simplicity) in the first iteration, rather than at the output of the
decoders (or “output BER” for simplicity) in the final iteration.
This is based on the fact that a good input performance will
lead to a good output performance. Since the decoding process
has not been performed yet, the calculations of E(Pi,mrc),
E(Pi,neg), and E(Pi,dir) at the input of the decoders in the
first iteration are the same as those in the uncoded system.
The following theorem gives the optimal threshold based on
the minimization of the input BER in the first iteration.

Theorem 3: When the statistical CSI of h1D, h2D , and hRD
is available at the relay, the optimal threshold that minimizes
the input BER at the destination can be written as

L�
T,c = ln

E(Pneg)− E(Pdir)

E(Pdir)− E(Pmrc)
, (33)

where E(Pmrc) = 1
2 (E(P1,mrc) + E(P2,mrc)), E(Pneg) =

1
2 (E(P1,neg) + E(P2,neg)), and E(Pdir) = 1

2 (E(P1,dir) +
E(P2,dir)). The expressions of E(Pi,mrc), E(Pi,neg), and
E(Pi,dir) are given in (23), (25), and (26), respectively.

Proof: We can obtain the proof by following the same
method in the proof of Theorem 1. �

We can see that the threshold given in Theorem 3 has a
similar form as that in the uncoded system given in Theorem 1.
This is due to the fact that similar to the uncoded system, the
LLR Lxj

R,R in the coded system can still be approximated as
a Gaussian variable with its variance being twice the absolute
value of its mean.

B. BER Evolution

Once the threshold is fixed, we can further investigate the
evolution of the BER Pe,i in the iterative receiver at the
destination. More precisely, we track the statistical CSI based
BER E(Pe,i) by averaging Pe,i over the channels h1D , h2D,
and hRD. Here, by using the term BER evolution, we mean
that the BER result is derived in an iterative manner, which
mimics the iterative process at the receiver. We first track the
BER at the input of the decoder, and then track the BER at
the output of the decoder.
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Before tracking the BER evolution, we have the following
preliminaries. Given the channel parameter hiD, the LLR

Lxj
i ,D is a Gaussian variable with mean mLiD =

2h2
iDxj

i

σ2 . By
averaging the PDF of Lxj

i ,D over the channel hiD , we have
the expectation of the PDF as [33, 35]

E(pL
x
j
i
,D
(L)) =

σ2

2
√
λ2
iD + 2λiDσ2

exp

⎛
⎝xj

iL− |L|
√
1 + 2σ2

λiD

2

⎞
⎠ . (34)

The average channel crossover probability over the channel
hiD is shown in (26) as E(Pi,dir).

Similarly to the calculation of E(Pi,dir), the crossover
probability of the channel hRD , denoted by PR,dir, when
averaged over all the possible hRD, can be written as

E(PR,dir) =
1

2

(
1−
√

1

1 + 4λR

)
, (35)

where

λR =
1

2αv2
j

σ2 λRD
. (36)

The error probability of the network coded symbol xj
R at

the destination has different values corresponding to the three
events Ec, Ee, and Es defined in (6). Specifically, when Ec
happens to the symbol xj

R, it means that the relay has made a
correct decision on xj

R. Therefore, the error probability of xj
R

at the destination is exactly the crossover probability of the
channel hRD , i.e., E(PR,dir). When Ee happens to the symbol
xj
R, it means that the relay has made a wrong decision on xj

R,
and we calculate the error probability of xj

R as 1−E(PR,dir).
When Es happens to the symbol xj

R, we have vj = 0, and the
error probability of xj

R is 0.5.
Based on the above preliminaries, we now track the BER

evolution as follows.
1) BER at the Input of Decoders: Note that the BER at the

input of Si’s decoder is equivalent to the error probability of xj
i

associated with Lxj
i ,D,comb. In the sequel, the superscript [k] is

attached to variables, e.g., LLRs, to represent these variables
in the k-th iteration of the receiver.

To obtain the error probability of xj
i associated with

Lxj
i ,D,comb, we begin with the error probability of xj

i associ-
ated with Lxj

i ,D,ext in each iteration. In the first iteration, the

LLR L
[1]

xj
i ,D,ext

is calculated based on the received LLRs Lxj

ī
,D

and Lxj
R,D , as shown in (11). Therefore, the error probability

of xj
i associated with Lxj

i ,D,ext can be obtained from the

error probability of xj
ī

associated with Lxj

ī
,D, and the error

probability of xj
R associated with Lxj

R,D. Specifically, when

Ec happens to the symbol xj
R, we have the error probability

of xj
i , denoted by Pi,ext,Ec , as

P
[1]
i,ext,Ec

=
1

2

(
1− (1 − 2E(PR,dir))(1 − 2E(Pī,dir))

)
= E(PR,dir) + E(Pī,dir)− 2E(PR,dir)E(Pī,dir).

(37)

When Ee happens to the symbol xj
R, the error probability

of xj
i associated with Lxj

i ,D,ext, denoted by Pi,ext,Ee , can be
calculated as

P
[1]
i,ext,Ee

=
1

2

(
1− (1− 2(1− E(PR,dir)))(1 − 2E(Pī,dir))

)
= 1− P

[1]
i,ext,Ec

.

(38)

We now focus on P
[k]
i,ext,Ec

and P
[k]
i,ext,Ee

, k > 1, in the k-th

iteration. Note that L[k]

xj
i ,D,ext

in the k-th iteration is updated

based on the LLR L
[k−1]

xj

ī
,dec

− L
[k−1]

xj

ī
,D,ext

from the (k − 1)-th

iteration. The calculation of L
[k]

xj
i ,D,ext

can be found in (32).

We denote Pī,dec,ext as the error probability of xj
ī

associated
with the LLR Lxj

ī
,dec−Lxj

ī
,D,ext. Note that the calculation of

Pī,dec,ext is related to the output of Sī’s decoder, i.e., Lxj

ī
,dec.

In the k-th iteration, we can obtain the error probabilities
P

[k]
i,ext,Ec

and P
[k]
i,ext,Ee

by replacing E(Pī,dir) in (37) and (38)

with P
[k−1]

ī,dec,ext
, respectively.

In addition, when Es happens to the symbol xj
R, we can see

that E(PR,dir) is fixed to a constant 0.5 for all the iterations. In
this case, the error probability of xj

i associated with Lxj
i ,D,ext,

denoted by Pi,ext,Es , equals 0.5 for all the iterations.
The LLR Lxj

i ,D,ext in each iteration is approximated as a
conditional Gaussian variable given one of the three events
Ec, Ee, and Es, where its variance is assumed to be twice
the absolute value of its mean. Corresponding to these three
events, the mean of Lxj

i ,D,ext has three possible values,
denoted by mLiD,ext,Ec , mLiD,ext,Ee , and mLiD,ext,Es , re-
spectively. More precisely, the mean of Lxj

i ,D,ext equals
mLiD,ext,Ec , mLiD,ext,Ee , and mLiD,ext,Es with probabilities
Pr(Ec), Pr(Ee), and Pr(Es), respectively. In the k-th iteration,
these three mean values can be calculated as

m
[k]
LiD,ext,Ec

= 2xj
i

(
Q−1
(
P

[k]
i,ext,Ec

))2
,

m
[k]
LiD,ext,Ee

= −m
[k]
LiD,ext,Ec

,

m
[k]
LiD ,ext,Es

= 0.

(39)

Note that in (39), the second equation comes from the result
P

[k]
i,ext,Ee

= 1−P
[k]
i,ext,Ec

, and the third equation holds because

of the fact that P [k]
i,ext,Es

= 0.5.
With above discussions, we now investigate the BER at

the input of Si’s decoder, which is equivalent to the error
probability of xj

i associated with the LLR Lxj
i ,D,comb. We

first derive the PDF of Lxj
i ,D,comb, denoted by pL

x
j
i
,D,comb

(L).

Then we obtain the error probability based on this PDF. Since
we have Lxj

i ,D,comb = Lxj
i ,D + Lxj

i ,D,ext, we can derive the
PDF of Lxj

i ,D,comb through convolution of E(pL
x
j
i
,D
(L)) and

the PDF of Lxj
i ,D,ext [33, 35]. Note that Lxj

i ,D,ext has three
possible mean values associated with the three events Ec, Ee,
and Es, as shown in (39). For a given mean value of Lxj

i ,D,ext,
we can derive the corresponding PDF of Lxj

i ,D,comb.
Specifically, when the mean value of Lxj

i ,D,ext equals
mLiD,ext,Ec , we denote σ2

LiD,ext,Ec
as the variance of

Lxj
i ,D,ext, and we have σ2

LiD ,ext,Ec
= 2|mLiD,ext,Ec |. In this
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p
[k]
L

x
j
i
,D,comb

(L) =
σ2

2
√
λ2
iD + 2λiDσ2

exp

(
−xj

im
[k]
LiD,ext,Ec

2
+

1 + σ2

λiD
4

(
σ
[k]
LiD ,ext,Ec

)2)
×⎡

⎢⎣exp
⎛
⎜⎝xj

iL+
√
1 + 2σ2

λiD
L

2
+

√
1 + 2σ2

λiD xj
i

(
σ
[k]
LiD ,ext,Ec

)2
4

−
√
1 + 2σ2

λiD
m

[k]
LiD,ext,Ec

2

⎞
⎟⎠×

Q

⎛
⎝ L

σ
[k]
LiD,ext,Ec

+

√
1 + 2σ2

λiD
σ
[k]
LiD ,ext,Ec

2
+

xj
iσ

[k]
LiD,ext,Ec

2
− m

[k]
LiD,ext,Ec

σ
[k]
LiD ,ext,Ec

⎞
⎠+

exp

⎛
⎜⎝xj

iL−
√
1 + 2σ2

λiD
L

2
−

√
1 + 2σ2

λiD xj
i

(
σ
[k]
LiD ,ext,Ec

)2
4

+

√
1 + 2σ2

λiD
m

[k]
LiD,ext,Ec

2

⎞
⎟⎠×

Q

⎛
⎝ −L

σ
[k]
LiD,ext,Ec

+

√
1 + 2σ2

λiD σ
[k]
LiD ,ext,Ec

2
− xj

iσ
[k]
LiD,ext,Ec

2
+

m
[k]
LiD,ext,Ec

σ
[k]
LiD ,ext,Ec

⎞
⎠
⎤
⎦ .

(40)

case, the PDF of Lxj
i ,D,comb in the k-th iteration can be

calculated as (40).
The error probability of xj

i associated with the LLR
Lxj

i ,D,comb, denoted by Pi,comb,Ec , can be calculated based

on pL
x
j
i
,D,comb

(L) in (40). Considering xj
i = 1, we obtain

Pi,comb,Ec by integration

Pi,comb,Ec =

∫ 0

−∞
pL

x
j
i
,D,comb

(L)dL. (41)

Then in the k-th iteration, we have P
[k]
i,comb,Ec

shown in (42).
We denote Pi,comb,Ee and Pi,comb,Es as the error probabili-

ties of xj
i associated with Lxj

i ,D,comb when Ee and Es happen,

respectively. In the k-th iteration, we can obtain P
[k]
i,comb,Ee

and

P
[k]
i,comb,Es

by following the similar calculation in (42).
We view xi as an LDPC codeword of code length l. In

the k-th iteration of the receiver, at the input of Si’s decoder,
there are average lPr(Ec) symbols in xi with BER P

[k]
i,comb,Ec

,

lPr(Ee) symbols in xi with BER P
[k]
i,comb,Ee

, and lPr(Es)
symbols in xi with BER P

[k]
i,comb,Es

. With these input BERs,
we will analyze the BER evolution inside the decoder.

2) BER at the Output of Decoders: Assume the sum-
product iterative decoding algorithm [29, 30] is applied to each
decoder. The superscript [t, k] is attached to variables, e.g.,
LLRs, to represent these variables in the t-th iteration of the
decoder and the k-th iteration of the receiver.

An LDPC code can be defined by a Tanner graph [29,
30] formed by variable nodes and check nodes connected by
edges. Assuming dv (resp. dc) is the maximum variable (resp.
check) node degree, we denote λ(z) =

∑dv

d λdz
d−1 (resp.

ρ(z) =
∑dc

d ρdz
d−1) as the variable (resp. check) node degree

distribution polynomial of the graph from node perspective.
More precisely, λd (resp. ρd) represents the fraction of variable
(resp. check) nodes of degree d. Please refer to [29, 30] for
more details about LDPC codes and the sum-product iterative
decoding algorithm.

We denote Ci as the LDPC code implemented at Si, and
denote Gi as the Tanner graph associated with the code Ci.

, ciV , eiV, siV

d

, ciE , siE , eiE

c
d

s
d e

d

Fig. 3. A subgraph of Gi, which contains one check node and multiple
variable nodes. The variable nodes are divided into three sets, i.e., V i,Ec ,
V i,Ee , and V i,Es . The edges are classified into three edge types, i.e., Ei,Ec ,
Ei,Ee , and Ei,Es . The degree of the check node is d, in which, dEc edges
are from the edge type Ei,Ec , dEe edges are from the edge type Ei,Ee , and
dEs edges are from the edge type Ei,Es .

Also, we divide all the variable nodes in Gi into three sets,
namely, V i,Ec , V i,Ee , and V i,Es , which are associated with the
symbols in the codeword xi whose input BERs are Pi,comb,Ec ,
Pi,comb,Ee , and Pi,comb,Es , respectively. Accordingly, all the
edges in Gi are classified into three edge types, namely, Ei,Ec ,
Ei,Ee , and Ei,Es . That is, edges emanating from the variable
nodes in the sets V i,Ec , V i,Ee , and V i,Es are classified into
the types Ei,Ec , Ei,Ee , and Ei,Es , respectively. It is clear that
an edge belongs to the edge types Ei,Ec , Ei,Ee , and Ei,Es

with probabilities Pr(Ec), Pr(Ee), and Pr(Es), respectively.

Fig. 3 shows a subgraph of Gi with a check node of degree d
and multiple variable nodes. The three sets of variable nodes
and the three edge types are illustrated in Fig. 3. Also, we
can see that the check node in Fig. 3 have dEc , dEe , and dEs

edges in the edge types Ei,Ec , Ei,Ee , and Ei,Es , respectively,
where d = dEc + dEe + dEs . We denote Ci,(d,dEc ,dEe ,dEs)

as
the set of check nodes which have the same degree property
as the one in Fig. 3. For all the check nodes of degree d,
we denote ζ(d, dEc , dEe , dEs) as the fraction of the check
nodes that belong to Ci,(d,dEc ,dEe ,dEs )

. From the expansion
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+
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×
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⎜⎜⎜⎜⎜⎜⎝
exp

⎛
⎝√

1+ 2σ2

λiD

((
σ
[k]
LiD ,ext,Ec

)2−2m
[k]
LiD ,ext,Ec

)

4

⎞
⎠Q

((
1+

√
1+ 2σ2

λiD

)
σ
[k]
LiD ,ext,Ec
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λiD

) −

exp

⎛
⎝√

1+ 2σ2

λiD

(
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σ
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)2
)

4

⎞
⎠Q

((√
1+ 2σ2

λiD −1
)
σ
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LiD ,ext,Ec

2 +
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[k]
LiD,ext,Ec

σ
[k]
LiD ,ext,Ec

)
√
λ2
iD + 2λiDσ2

(√
1 + 2σ2

λiD − 1
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⎞
⎟⎟⎟⎟⎟⎟⎠ .

(42)

of
(
Pr(Ec) + Pr(Ee) + Pr(Es)

)d
, we can obtain that

ζ(d, dEc , dEe , dEs) =

d!

dEc !dEe !dEs !

(
Pr(Ec)
)dEc
(
Pr(Ee)
)dEe
(
Pr(Es)
)dEs . (43)

Within the edge type Ei,Ec (resp. Ei,Ee , Ei,Es), we denote
λ
dEc

(d,dEc ,dEe ,dEs )
(resp. λdEe

(d,dEc ,dEe ,dEs)
, λdEs

(d,dEc ,dEe ,dEs)
) as the

fraction of the edges connected to the check nodes in the set
Ci,(d,dEc ,dEe ,dEs)

. As the total number of edges in Ei,Ec after
normalization is Pr(Ec)

∑dc

d1=0 d1ρd1 , we have

λ
dEc

(d,dEc ,dEe ,dEs )
=

dEcζ(d, dEc , dEe , dEs)ρd

Pr(Ec)
∑dc

d1=0 d1ρd1

. (44)

We can obtain λ
dEe

(d,dEc ,dEe ,dEs )
(resp. λdEs

(d,dEc ,dEe ,dEs)
) by fol-

lowing the same method as in (44).

In the t-th iteration of the decoder and the k-th iteration
of the receiver, we denote P

[t,k]
i,var,Ec

(resp. P [t,k]
i,var,Ee

, P [t,k]
i,var,Es

)
as the average BER associated with the LLRs sent from the
variable nodes in V i,Ec (resp. V i,Ee , V i,Es) to the check
nodes, on each edge of the edge type Ei,Ec (resp. Ei,Ee ,
Ei,Es). Also, we denote P [t,k]

i,chk,Ec
(resp. P [t,k]

i,chk,Ee
, P [t,k]

i,chk,Es
) as

the average BER associated with the LLRs sent from the check
nodes to the variable nodes in V i,Ec (resp. V i,Ee , V i,Es), on
each edge of the edge type Ei,Ec (resp. Ei,Ee , Ei,Es ). Initially,
we have P

[1,k]
i,var,Ec

= P
[k]
i,comb,Ec

, P
[1,k]
i,var,Ee

= P
[k]
i,comb,Ee

, and

P
[1,k]
i,var,Ec

= P
[k]
i,comb,Ee

.

Now, we investigate the BER evolution from the check
nodes to the variable nodes in the t-th iteration of the decoder
and the k-th iteration of the receiver. Without a loss of
generality, we focus on the derivation of P

[t,k]
i,chk,Ec

. Note that

P
[t,k]
i,chk,Ec

is an average BER associated with the LLRs within
the edge type Ei,Ec . For a given vector (d, dEc , dEe , dEs), we
denote P

[t,k]
i,chk,Ec

(d, dEc , dEe , dEs) as the BER associated with
the LLRs sent from the check nodes in Ci,(d,dEc ,dEe ,dEs )

to

the variable nodes in V i,Ec . Then we have

P
[t,k]
i,chk,Ec

(d, dEc , dEe , dEs) =
1

2

(
1−
(
1− 2P

[t,k]
i,var,Ec

)dEc−1

(
1− 2P

[t,k]
i,var,Ee

)dEe
(
1− 2P

[t,k]
i,var,Es

)dEs

)
. (45)

In (45), if dEc = 0, we set P [t,k]
i,chk,Ec

(d, dEc , dEe , dEs) to zero.

Since P [t,k]
i,chk,Ec

(d, dEc , dEe , dEs) in (45) varies according to dif-

ferent (d, dEc , dEe , dEs), we average P
[t,k]
i,chk,Ec

(d, dEc , dEe , dEs)
over all possible values of d, dEc , dEe , and dEs . We hence
obtain the average BER P

[t,k]
i,chk,Ec

as

P
[t,k]
i,chk,Ec

=

dc∑
d=0

d∑
dEc=0

d−dEc∑
dEe=0

P
[t,k]
i,chk,Ec

(d, dEc , dEe , dEs)λ
dEc

(d,dEc ,dEe ,dEs )
. (46)

Similarly, we can obtain P
[t,k]
i,chk,Ee

(resp. P [t,k]
i,chk,Es

) by using

λ
dEe

(d,dEc ,dEe ,dEs )
(resp. λdEs

(dd,Ec ,dEe ,dEs)
) and following the same

method as in (46).
Within each edge type, we make Gaussian approxima-

tions on the LLRs sent from the check nodes to the vari-
able nodes, where the variances of these LLRs are twice
the absolute values of their means. We denote mi,chk,Ec

(resp. mi,chk,Ee , mi,chk,Es) as the mean, and denote σ2
i,chk,Ec

(resp. σ2
i,chk,Ee

, σ2
i,chk,Es

) as the variance, of the LLR sent
from the check nodes to each variable node in the set
V i,Ec (resp. Ei,Ee , Ei,Es). Then we have

∣∣∣m[t,k]
i,chk,Ec

∣∣∣ =

2
(
Q−1
(
P

[t,k]
i,chk,Ec

))2
,
∣∣∣m[t,k]

i,chk,Ee

∣∣∣ = 2
(
Q−1
(
P

[t,k]
i,chk,Ee

))2
,

and
∣∣∣m[t,k]

i,chk,Es

∣∣∣ = 2
(
Q−1
(
P

[t,k]
i,chk,Es

))2
. Also, we have(

σ
[t,k]
i,chk,Ec

)2
= 2
∣∣∣m[t,k]

i,chk,Ec

∣∣∣, (σ[t,k]
i,chk,Ee

)2
= 2
∣∣∣m[t,k]

i,chk,Ee

∣∣∣,
and
(
σ
[t,k]
i,chk,Es

)2
= 2
∣∣∣m[t,k]

i,chk,Es

∣∣∣.
Next, we investigate the BER evolution from the variable

nodes to the check nodes in the (t + 1)-th iteration of the
decoder and the k-th iteration of the receiver. Without a loss
of generality, we focus on the variable node of degree d
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Fig. 4. The variable node of degree d associated with the symbol xj
i . The

value of the LLR Ld sent from this variable node to a check node is calculated
based on the input LLR L

x
j
i
,D,comb

and the LLRs L1, L2, · · · , Ld−1 sent

from other d− 1 check nodes to this variable node.

associated with the symbol xj
i . Fig. 4 shows the message

transfer. The calculation of Ld is based on the input LLR
Lxj

i ,D,comb and the LLRs L1, L2, · · · , Ld−1 from other d− 1
check nodes. That is

Ld = Lxj
i ,D,comb +

d−1∑
ι=1

Ldι = Lxj
i ,D + Lxj

i ,D,ext +

d−1∑
ι=1

Ldι .

(47)
Since Lxj

i ,D,ext and Lι, ι = 1, · · · , d − 1, are approximated

as Gaussian variables, we can view Lxj
i ,D,ext +

∑d−1
ι=1 Ldι as

a Gaussian variable. The PDF of Ld can be obtained through
the convolution of E(pL

x
j
i
,D
(L)) and the PDF of Lxj

i ,D,ext +∑d−1
ι=1 Ldι , based on which, we can obtain the BER associated

with LD. In fact, we can use (42) to obtain the BER associated

with LD by replacing m
[k]
LiD,ext,Ec

and
(
σ
[k]
LiD,ext,Ec

)2
in

(42) with the mean and variance of Lxj
i ,D,ext +

∑d−1
ι=1 Ldι ,

respectively. Assuming that the variable node associated with
xj
i is in the set V i,Ec , we define the BER associated with Ld by

P
[t+1,k]
i,var,Ec

(d). The mean and variance of Lxj
i ,D,ext+

∑d−1
ι=1 Ldι

can be calculated as m
[k]
LiD ,ext,Ec

+ (d − 1)m
[t,k]
i,chk,Ec

and(
σ
[k]
LiD,ext,Ec

)2
+(d−1)

(
σ
[t,k]
i,chk,Ec

)2
, respectively. Hence, we

can obtain P
[t+1,k]
i,var,Ec

(d) by using (42) with the corresponding

mean and variance. By averaging P
[t+1,k]
i,var,Ec

(d) over all the
variable degrees, we have

P
[t+1,k]
i,var,Ec

=

dv∑
d=0

λdd∑dv

d1=0 λd1d1
P

[t+1,k]
i,var,Ec

(d). (48)

By following the similar method, we can obtain P
[t+1,k]
i,var,Ee

and

P
[t+1,k]
i,var,Es

. Based on P
[t+1,k]
i,var,Ec

, P [t+1,k]
i,var,Ee

, and P
[t+1,k]
i,var,Es

, we can
thus update the BERs from the check nodes to the variable
nodes in the t + 1-th iteration of the decoder, i.e., P [t+1,k]

i,chk,Ec
,

P
[t+1,k]
i,chk,Ee

, and P
[t+1,k]
i,chk,Es

, by following (45) and (46).
Assume there are total K iterations in the receiver, and in

each iteration of the receiver, there are total T iterations of
the decoding, we obtain the final BER results at the output of
the receiver as P

[T,K]
i,var,Ec

, P [T,K]
i,var,Es

, and P
[T,K]
i,var,Es

. These BER
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Fig. 5. Error performance for Case 1, i.e., the strong source-to-relay link
scenario, in the uncoded system.

results will be used to optimize the power allocation in the
following subsection.

C. Power Allocation

We optimize the power allocation α at the relay to further
improve the coding gain. Recall that in the uncoded system,
we have derived the optimal power allocation α� in (31) to
improve the BER. Although this α� can be directly applied to
the coded system (the probabilities Pr(Ee) and Pr(Ec) in (31)
need to be recalculated in the coded system) to improve the
input BER, it cannot guarantee the optimality of the output
BER in the coded system.

Here, to optimize the power allocation for the coded system,
we track the BER evolution in each iteration, and minimize
the output BER at the end of the final iteration. Assume there
are total K iterations in the receiver, and in each iteration of
the receiver, there are total T iterations of the decoding. We
fix the threshold and calculate the statistical CSI based BER
E(Pe,i) as

E(Pe,i) = P
[T,K]
i,var,Ec

Pr(Ee)+P
[T,K]
i,var,Ee

Pr(Ee)+P
[T,K]
i,var,Es

Pr(Es).
(49)

We optimize the power allocation α by searching from 0 to
1, and obtain the optimal power allocation α which leads to
the minimum value of 1

2 (E(Pe,1) + E(Pe,2)).

VI. SIMULATIONS

In the simulations, we set the frame (or codeword) length as
l = 10, 000 for the uncoded (or coded) system. Hence, each
transmission period is of length 30, 000. As we consider quasi-
static fading channels, the channel coefficients h1R, h2R, h1D,
h2D , and hRD are constant in each transmission period, and
change independently from one period to another.

We focus on a symmetric scenario where (i) the two sources
have the same distance to the relay and the same distance to
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Fig. 6. Error performance for Case 2, i.e., the symmetric channel scenario,
in the uncoded system.
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Fig. 7. Error performance for Case 3, i.e., the strong relay-to-destination
link scenario, in the uncoded system.

the destination, and (ii) the two sources, the relay, and the
destination are aligned on the same horizontal line. The dis-
tances between the sources and the destination are normalized
as one, i.e., d1D = d2D = 1. The relay is located between the
sources and the destination. In our simulations, we consider
three cases, namely, Case 1, Case 2, and Case 3, according to
the three different locations of the relay. Specifically, In Case
1, we consider a strong source-to-relay link scenario, where
d1R = d2R = 0.3, and dRD = 0.7; In Case 2, we consider the
symmetric scenario, where d1R = d2R = 0.5, and dRD = 0.5;
In Case 3, we consider a strong relay-to-destination scenario,
where d1R = d2R = 0.7, and thus dRD = 0.3. Also, we set
the attenuation exponent γ = 2. Hence, we can obtain the
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Fig. 8. BER performance for Case 1 in the LDPC coded system.
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Fig. 9. BER performance for Case 2 in the LDPC coded system.

channel gains λ1R, λ2R, λ1D , λ2D , and λRD based on γ and
the corresponding distances.

We now evaluate the BER performance in the uncoded
system. Besides the BER, we also investigate the block error
rates (BLER) in the uncoded system, where a block consists
of two frames from the two sources. Fig. 5 shows the error
performance for Case 1. In Fig. 5, the proposed TOB-SF
protocol with the optimal threshold (OT) L�

T is denoted by
‘TOB-SF, OT’, and the proposed TOB-SF protocol with the
sub-optimal threshold (SOT) ln ρ plus the optimal power allo-
cation α� (shown in (31)) is denoted by ‘TOB-SF, SOT+PA’.
We use the conventional DF, network coded EF (i.e., the
network-coded soft bit forwarding protocol proposed in [36]),
and the link-adaptive regeneration (LAR) protocol (i.e., the
power scaling scheme in [27]) as benchmarks, denoted by
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Fig. 10. BER performance for Case 3 in the LDPC coded system.
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Fig. 11. BER performance for the asymmetric case in the uncoded system.

‘DF’, ‘EF’, and ‘LAR’, respectively. Note that the LAR has
a lower computation complexity compared with our TOB-
SF protocols. Specifically, in the LAR, one multiplication
operation is needed for each network coded symbol at the
relay, while in the TOB-SF, the calculation of the LLR value
for each network coded symbol is needed, which includes
the calculations of two tan(·) functions and one tan−1(·)
function. Also, ‘Genie Aided’ protocol in Fig. 5 is a desired
protocol, where the source-to-relay channels are error free.

From Fig. 5 we can see that ‘DF’ can only achieve a
diversity of one, while all the other protocols can achieve the
full diversity gain of the system, i.e., a diversity of two. Our
‘TOB-SF, OT’ and ‘TOB-SF, SOT+PA’ outperform ‘DF’, ‘EF’,
and ‘LAR’ in terms of BER performance, and are close to the
’Genie Aided’. Also, ‘TOB-SF, SOT+PA’ is slightly better than

‘TOB-SF, OT’. The reason why the BER performance of the
two TOB-SF protocols is better than that of the LAR is that
our TOB-SF protocols are optimized to minimize the system
BER, while the LAR is an intuitive power control protocol,
which cannot guarantee the optimality of the system BER. For
the BLER performance, our ‘TOB-SF, SOT+PA’ outperforms
‘DF’, ‘EF’, ‘LAR’, and ‘TOB-SF, OT’. ‘LAR’ is better than
‘TOB-SF, OT’. And ‘EF’ performs the worst.

Fig. 6 and Fig. 7 show the error performance of Case 2
and Case 3, respectively. In both cases, our ‘TOB-SF, OT’
and ‘TOB-SF, SOT+PA’ can achieve the full diversity gain,
and outperform the ‘DF’, ‘EF’ and ‘LAR’ in terms of BER
performance. Also, ‘TOB-SF, SOT+PA’ has a better BER
performance than ‘TOB-SF, OT’. For the BLER performance
in the two cases, the ‘TOB-SF, SOT+PA’ is always better than
the ‘LAR’, while the ‘LAR’ is always better than ‘TOB-SF,
OT’. And the ‘DF’ and ‘EF’ always perform the worst.

From Fig. 5 to Fig. 7, it is clear that ‘TOB-SF, OT’
outperforms ‘LAR’ in terms of BER, since ‘TOB-SF, OT’
is optimized to minimize the BER, while ‘LAR’ cannot
guarantee the optimality of the BER performance. The reason
why ‘LAR’ outperforms ‘TOB-SF, OT’ in terms of BLER
is because that ‘LAR’ adapts the power for each transmitted
block according to the channel information, while ‘TOB-SF,
OT’ does not implement any power control. Also, we can
see that ‘TOB-SF, SOT+PA’, which optimizes the power at
the relay, outperforms ‘TOB-SF, OT’ and‘LAR’ in terms of
both the BER and BLER performance. This again implies that
power control is needed to improve the BLER performance.

Next, we investigate the error performance for the LDPC
coded system. Here, the LDPC codes in both sources are
designed with the same code rate, and the same degree profile.
Specifically, we fix the code rate as 0.7, and the code profile
is as follows. From the variable node point of view, the
degree distribution is λ(z) = 0.4183224z + 0.3317611z2 +
0.069378148z5+0.104535126+0.07600319. From the check
node point of view, the degree distribution is ρ(z) = z14.

Fig. 8, Fig. 9, and Fig. 10 shows the BER performance of
Case1, Case2, and Case3, respectively, for the LDPC coded
system. Again, we use ‘DF’, ‘EF’, and ‘LAR’ as benchmarks.
In the three figures, ‘TOB-SF, OT’ represents the TOB-SF
protocol with the threshold shown in (33), and ‘TOB-SF,
SOT+PA’ represents the TOB-SF protocol with the threshold
ln ρ and the power allocation α� in (31). Note that both ‘TOB-
SF, OT’ and ‘TOB-SF, SOT+PA’ are the same as that in the
uncoded system. That is, they optimize the input BER rather
than the output BER of the receiver at the destination in the
coded system, which leads to a sub-optimal BER performance.
Also, in the three figures, ‘TOB-SF, SOT+EPA’ represents the
TOB-SF protocol with threshold ln ρ plus the BER evolution
based power allocation.

From the three figures, we can see that the ‘DF’ can only
achieve a diversity of one, while all the other protocols can
achieve the full diversity gain. Compared with ‘LAR’ and
‘EF’, the proposed three TOB-SF protocols have better BER
performance. Similar to the uncoded system, the performance
gap between the benchmarks and the proposed TOB-SF proto-
cols become large when the relay is closer to the destination.
Interestingly, ‘LAR’ performs worse and worse when the relay
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becomes closer to the destinations. Among the three TOB-
SF protocols, ‘TOB-SF, SOT+PA’ outperforms ‘TOB-SF, OT’,
while ‘TOB-SF, SOT+EPA’ is always the best. This is because
‘TOB-SF, SOT+EPA’ optimizes the output BER.

Based on the above discussions, the proposed TOB-SF
protocols always perform better than the benchmarks ‘DF’,
‘EF’, and ‘LAR’. Although ‘TOB-SF, SOT+EPA’ performs the
best, the other two TOB-SF protocols, i.e., ‘TOB-SF, SOT+PA’
and ‘TOB-SF, OT’ are simple and easy to implement with a
slight error performance loss.

Furthermore, we consider an asymmetric scenario, where
the two sources are asymmetrically located. Specifically, we
assume d1R = 0.5, d2R = 0.2, dRD = 0.5, d1D = 1.0, and
d2D = 0.7. We simulate the BER and BLER performance for
the uncoded case in this scenario. The error performance is
shown in Fig. 11. From this figure, we can see that our ‘TOB-
SF, OT’ and ‘TOB-SF, SOT+PA’ outperform the ‘DF’, ‘EF’
and ‘LAR’ in terms of the BER performance. Also, ‘TOB-SF,
SOT+PA’ has a better BER performance than ‘TOB-SF, OT’.
For the BLER performance, the ‘TOB-SF, SOT+PA’ is better
than the ‘LAR’, and the ‘LAR’ is better than ‘TOB-SF, OT’.
The simulation results show that the performance comparisons
of these protocols in asymmetric scenarios are consistent with
those in the symmetric scenarios.

VII. CONCLUSION

In this paper, we propose and optimize a TOB-SF protocol
for a multi-source relay system with network coding. We
consider both the uncoded and LDPC coded systems. In
the uncoded system, we first derive the BER expressions
at the destination, and develop the optimal threshold. Then
we prove that the TOB-SF protocol can achieve the full
diversity gain by using the optimal threshold. Furthermore,
we optimize the power allocation at the relay to achieve a
better performance. In the coded system with LDPC codes, we
develop a methodology to track the BER evolution by using
Gaussian approximations, and optimize the power allocation
at the relay based on the BER evolution results. Simulation
results show that the proposed TOB-SF protocol with power
allocation outperforms other conventional relaying protocols
in terms of error performance.

APPENDIX A
PROOF OF THEOREM 1

We take the derivation of the average BER E(Pe) =
1
2 (E(Pe,1) +E(Pe,2)) in terms of LT and let the result equal
zero. Then we obtain

(E(Pdir)− E(Pmrc))
∂ Pr(Ec)
∂LT

=

(E(Pneg)− E(Pdir))
∂ Pr(Ee)
∂LT

. (50)

For the case xj
1x

j
2 = 1, Pr(Ec) and Pr(Ee) are shown in (9).

Here, the LLR Lxj
R,R is approximated as a Gaussian variable

with its variance being twice the absolute value of its mean.
Based on the PDF of Lxj

R,R in (8) and the fact that σ2
L⊕ =

2mL⊕, the optimal threshold LT can be derived as shown in
(10). For the case xj

1x
j
2 = −1, we can obtain the same result

on the optimal LT . This completes the proof. �

APPENDIX B
PROOF OF LEMMA 1

We define x � 2h2
iD

σ2 , y � 2h2
īD

σ2 , and v � 2αh2
RD

σ2 . The PDFs
of the three variables can be written as follows.

px(x) =
1

2
σ2 λiD

exp

(
− x

2
σ2 λiD

)
,

py(y) =
1

2
σ2 λīD

exp

(
− y

2
σ2 λīD

)
,

pv(v) =
1

2α
σ2 λRD

exp

(
− v

2α
σ2 λRD

)
.

(51)

According to [37], the PDF of w = min(y, v) can be
calculated as

pw(w) = py(w)(1 − Fv(w)) + pv(w)(1 − Fy(w)), (52)

where Fy(w) =
∫ w
−∞ px(u)du and Fv(w) =

∫ w
−∞ pv(u)du.

Then we obtain

pw(w) =(
1

2
σ2 λīD

+
1

2α
σ2 λRD

)
exp

(
−
(

1
2
σ2 λīD

+
1

2α
σ2 λRD

)
w

)
.

(53)

To simplify the notations, we replace 1
2
σ2 λiD

with λi, and

replace 1
2
σ2 λīD

+ 1
2α
σ2 λRD

with λ̄i. By viewing x as mLiD,dir,

we can directly obtain the PDF of mLiD,dir from (51). Next,
we derive the PDFs for the two variables g = x + w and
q = (x−w)2

x+w . According to [37], we have

pg(g) =
λiλ̄i

λi − λ̄i

(
exp
(−λ̄ig
)− exp (−λig)

)
. (54)

To obtain the PDF of q, we first focus on the PDF of r = x−w,
and we have

pr(r) =
λiλ̄i

λi + λ̄i
exp (−λir) . (55)

Since q = r2

g , based on pg(g) and pr(r), we have [22, 37]

pq(q) =
λ2
i λ̄

2
i

λ2
i − λ̄2

i

∫ ∞

0

u2

√
q(

exp
(−λ̄iu

2 − λi
√
qu
)− exp

(−λiu
2 − λi

√
qu
))

du.
(56)

By viewing g as mLiD,mrc, and viewing q as mLiD ,neg, we
can obtain the PDFs for the variables mLiD,mrc and mLiD,neg ,
respectively. Hence, we complete the proof. �

APPENDIX C
PROOF OF THEOREM 2

Without a loss of generality, we consider the case xj
1x

j
2 = 1,

and focus on the probabilities in (9). In (8), the mean
value mL⊕ can be approximated by following the same
method in (16) in the high SNR region, and we have
mL⊕ = 2

σ2 min(h2
1R, h2

2R). We define another variable � =
min(h2

1R, h2
2R) and we have mL⊕ = 2�ρ. Also, the PDF of �

is written as p�(�) = λ̄ exp
(−λ̄�
)
, where based on the proof

in Lemma 1, we have λ̄ = λ1R+λ2R
λ1Rλ2R

.
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We define the diversity as

D � − lim
ρ→∞

logEh1R,h2R,h1D,h2D,hRD(Pe,i)

log ρ
, (57)

where

Eh1R,h2R,h1D,h2D ,hRD(Pe,i) = E(Pi,mrc)Eh1R,h2R(Pr(Ec))
+E(Pi,neg)Eh1R,h2R(Pr(Ee))+E(Pi,dir)Eh1R,h2R(Pr(Es)).

(58)

As we have derived E(Pi,mrc), E(Pi,neg), and E(Pi,dir),
we will focus on Eh1R,h2R(Pr(Ec)), Eh1R,h2R(Pr(Ee)), and
Eh1R,h2R(Pr(Es)) in the following.

As the optimal threshold can be approximated as L�
T ≈

ln ρ in the high SNR region, after some manipulations, we
calculate the expectation of Pr(Ee) in (9) as

Eh1R,h2R(Pr(Ee)) =
∫ ∞

0

Q

(
ln ρ√
4�ρ

+
√
�ρ

)
p�(�)d�

=

∫ 2 ln ρ
ρ

0

Q

(
ln ρ√
4�ρ

+
√
�ρ

)
p�(�)d�︸ ︷︷ ︸

A

+

∫ ∞

2 ln ρ
ρ

Q

(
ln ρ√
4�ρ

+
√
�ρ

)
p�(�)d�︸ ︷︷ ︸

B

.

(59)

We first note that ln ρ√
4�ρ

+
√
�ρ ≥ 2

√
ln ρ√
4�ρ

√
�ρ = 2

√
1
2 ln ρ.

Then for the function A in (59), when ρ is large, we have

A ≤ Q

(
2

√
1

2
ln ρ

)∫ 2 ln ρ
ρ

0

p�(�)d�

(a)

≤ 1

2
exp (− ln ρ)

(
1− exp

(
−2 ln ρ

ρ

))
(b)≈ ln ρ

ρ2
,

(60)

where (a) in (60) follows the Chernoff bound of Q(·), i.e.,

Q(z) ≤ 1
2 exp
(
− z2

2

)
, and (b) applies the Taylor expansion

exp(z) ≈ 1 + z when z approaches zero.
For the function B in (59), we have

B ≤
∫ ∞

2 ln ρ
ρ

Q
(√

�ρ
)
p�(�)d�

≤ λ̄

2

∫ ∞

2 ln ρ
ρ

exp

(
−�ρ

2
− λ̄�

)
d�

=
λ̄

2

1
ρ
2 + λ̄

exp

(
− ln ρ− 2 ln ρ

ρ
λ̄

)
.

(61)

When ρ goes to infinity, by using base-2 logarithm, we obtain

− lim
ρ→∞

logEh1R,h2R(Pr(Ee))
log ρ

= − lim
ρ→∞

log(A+ B)
log ρ

= 2.

(62)

Next, we investigate the expectation of Pr(Es) in (9), which
can be rewritten as

Eh1R,h2R(Pr(Es)) = Eh1R,h2R

(∫ LT

−∞
pL

x
j
R,R

(L)dL

)
−

Eh1R,h2R

(∫ −LT

−∞
pL

x
j
R,R

(L)dL

)
. (63)

Note that the second item in the right hand side of (63) is
Eh1R,h2R(Pr(Ee)). Therefore, we only focus on the derivation
of the first item, which can be calculated as

Eh1R,h2R

(∫ LT

−∞
pL

x
j
R,R

(L)dL

)
=

∫ ln ρ
2ρ

0

(
1−Q

(
ln ρ√
4�ρ

−
√
�ρ

))
p�(�)d�︸ ︷︷ ︸

C

+

∫ ln ρ
ρ

ln ρ
2ρ

Q

(√
�ρ− ln ρ√

4�ρ

)
p�(�)d�︸ ︷︷ ︸

D

+

∫ ∞

ln ρ
ρ

Q

(√
�ρ− ln ρ√

4�ρ

)
p�(�)d�︸ ︷︷ ︸

F

. (64)

It is easy to obtain that

C +D ≤
∫ ln ρ

ρ

0

p�(�)d�

= 1− exp(− ln ρ

ρ
)

≈ ln ρ

ρ
.

(65)

Regarding the third item in the right hand side of (64), i.e, the
function F , we have

F ≤
∫ ∞

ln ρ
ρ

Q

(
1

2

√
�ρ

)
p�(�)d�

≤ λ̄

2

∫ ∞

ln ρ
ρ

exp

(
−�ρ

8
− λ̄�

)
d�

=
λ̄

2

1
ρ
8 + λ̄

exp

(
− ln ρ

8
− ln ρ

2ρ
λ̄

)
.

(66)

When ρ goes to infinity, we obtain

− lim
ρ→∞

logEh1R,h2R(Pr(Es))
log ρ

= − lim
ρ→∞

log(C +D + F)

log ρ

= 1.
(67)

Combining Eh1R,h2R(Pr(Ee)) and Eh1R,h2R(Pr(Es)) with
the equations in (27) and (28), we thus obtain that
− lim

ρ→∞
log Eh1R,h2R,h1D ,h2D ,hRD (Pe,i)

log ρ = 2. Similarly, we can

obtain the same result for xj
1x

j
2 = −1, and thus each source

can achieve a diversity of two. This completes the proof. �
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