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Comments on “A New ML Based
Interference Cancellation Technique for Layered Space-Time Codes”
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Abstract—In this comment, we justify that the computational
complexity proposed in the paper ”A New ML Based Interference
Cancellation Technique for Layered Space-Time Codes” (IEEE
Trans. on Communications, vol. 57, no. 4, pp. 930-936, 2009) is
𝑂(𝑁3) rather than the claimed 𝑂(𝑁2), where 𝑁 is the number
of receive antennas.

Index Terms—Interference cancellation, layered space time
codes, computational complexity.

A MAXIMUM likelihood (ML) based interference can-
cellation (IC) detector was proposed in [1] for double

space-time transmit diversity (DSTTD), which consists of two
Alamouti’s space-time block codes (STBC) units [2]. In many
application areas of interest, the computational complexity
of the detector in [1] can be less than that of the conven-
tional minimum mean squared error (MMSE) IC detector for
DSTTD [3]. However, the complexity claimed in [1] needs to
be modified, as will be discussed in this comment.

Let 𝑁 denote the number of receive antennas. In [1], the
theoretical analysis gaves a complexity of 𝑂(𝑁2) (i.e. 7𝑁2+
62𝑁 − 103 real multiplications and 12𝑁2 + 47𝑁 − 103 real
additions) [1, Table I], while numerical experiments were not
carried out to verify the given complexity. In what follows, we
show that the complexity is not 𝑂(𝑁2), but 𝑂(𝑁3), and then
give the exact complexity that is verified by our numerical
experiments.

Firstly, we show that a complexity of 𝑂(𝑁3) is required to
perform the orthonormalization process by equations (9), (13),
(14) and (15) in [1]. Let (∙)𝑇 and (∙)𝐻 denote transpose and
conjugate transpose of a vector, respectively. Equation (9) in
[1] defines the basis vectors

v𝑖 =
[
𝑎𝑖 𝑏𝑖 e𝑇𝑖

]𝑇
, (1)

where 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 2𝑁−2, and e𝑖 is the (2𝑁−2)×1 vector
with the 𝑖𝑡ℎ element to be 1 and all others to be zero. Equation
(13) in [1] utilizes v1 and v2, which is

θ1 = v1/ ∥v1∥ , θ2 = v2/ ∥v2∥ . (2)
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Moreover, we represent equations (14) and (15) in [1] as⎧⎨
⎩

θ2𝑛−1 =

(
v2𝑛−1 −

∑2𝑛−2

𝑗=1
𝑐𝑗2𝑛−1θ𝑗

)
/ ∥⋅ ⋅ ⋅ ∥ , (3a)

θ2𝑛 =

(
v2𝑛 −

∑2𝑛−2

𝑗=1
𝑐𝑗2𝑛θ𝑗

)
/ ∥⋅ ⋅ ⋅ ∥ , (3b)

where {
𝑐𝑗2𝑛−1 = θ𝐻𝑗 v2𝑛−1, (4a)

𝑐𝑗2𝑛 = θ𝐻𝑗 v2𝑛, (4b)

and 𝑛 = 2, 3, ⋅ ⋅ ⋅ , 𝑁 − 1. It can be seen that
[
θ2𝑛−1 θ2𝑛

]
consists of 2×2 Alamouti sub-blocks [4]. Thus we can obtain
θ2𝑛 from θ2𝑛−1, to avoid computing (3b) and (4b).

Let θ ∼ ⌊𝑖, 𝑗, ⋅ ⋅ ⋅ , 𝑘⌋ denote that only the 𝑖𝑡ℎ, 𝑗𝑡ℎ, ⋅ ⋅ ⋅ , 𝑘𝑡ℎ
entries in the vector θ are non-zero. From (1), we obtain

v𝑖 ∼ ⌊1, 2, 𝑖+ 2⌋ , (5)

where 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 2𝑁 − 2. From (2) and (5), we obtain

θ1 ∼ ⌊1, 2, 3⌋ , θ2 ∼ ⌊1, 2, 4⌋ . (6)

Let 𝑛 = 2 in (3) to obtain

θ3 =
(
v3 − 𝑐13θ1 − 𝑐23θ2

)
/ ∥⋅ ⋅ ⋅ ∥
∼ ⌊1, 2, 3, 4, 5⌋ = ⌊1− 5⌋ (7)

and

θ4 =
(
v4 − 𝑐14θ1 − 𝑐24θ2

)
/ ∥⋅ ⋅ ⋅ ∥ ∼ ⌊1− 4, 6⌋ , (8)

where (5) and (6) are utilized. From (6)−(8), it can be seen
that for 𝑛 = 1, 2, we have

θ2𝑛−1 ∼ ⌊1− (2𝑛+ 1)⌋ , θ2𝑛 ∼ ⌊1− 2𝑛, 2𝑛+ 2⌋ . (9)

Assume for any 𝑛, θ2𝑛−1 and θ2𝑛 satisfy (9). This as-
sumption will be verified in this paragraph. From (3), it
can be seen that θ2(𝑛+1)−1 includes the sum of θ2𝑛−1, θ2𝑛
and v2(𝑛+1)−1, while θ2(𝑛+1) includes the sum of θ2𝑛−1,
θ2𝑛 and v2(𝑛+1). From (5) and the assumption (9), we can
conclude that θ2(𝑛+1)−1 and θ2(𝑛+1) also satisfy (9). Then
the assumption (9), which is valid for 𝑛 = 1, 2, is still valid
for all the subsequent (𝑛 + 1)s where 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 2.
Thus we have verified the assumption (9) for any 𝑛.

It can be seen from (9) that in (3a), 𝑐𝑗2𝑛−1θ𝑗 requires more
than 𝑗 multiplications, while

∑2𝑛−2
𝑗=1 𝑐𝑗2𝑛−1θ𝑗 requires more

than
∑2𝑛−2

𝑗=1 𝑗 ≈ 2𝑛2 multiplications. Then totally it requires

more than
∑𝑁−1

𝑛=2 2𝑛2 ≈ 2
3𝑁

3 multiplications to compute (3a)
for 𝑛 = 2, 3, ⋅ ⋅ ⋅ , 𝑁 − 1. Thus we have shown that the actual
complexities of the detector in [1] should be at least 𝑂(𝑁3).

The dominant computations of the ML based IC detector
[1] come from equations (9), (11), (13), (14), (23), (25) and
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TABLE I
THE COMPUTATIONAL COMPLEXITIES OF THE EQUATIONS IN [1]

Equation Number Complex Multiplications Complex Additions Real Multiplications Real Additions

(9) and (11) 4(N-1) 2(N-1) 4(N-1)+4 3

(13) 9 4

(14) 2
3
𝑁(𝑁 − 1)(𝑁 − 2) 2

3
𝑁(𝑁 − 1)(𝑁 − 2) (6𝑁 + 5)(𝑁 − 2) 2(𝑁 + 1)(𝑁 − 2)

(23) 2(𝑁 − 1)𝑁 2(𝑁 − 1)𝑁 4(𝑁 − 1)

(25) 2(𝑁 − 1)𝑁 2(𝑁 − 1)𝑁 4(𝑁 − 1)

(28) 4𝑁 4𝑁

Sum 2
3
𝑁3 + 2𝑁2 + 16

3
𝑁 − 4 2

3
𝑁3 + 2𝑁2 + 10

3
𝑁 − 2 6𝑁2 + 5𝑁 − 9 2𝑁2 − 2𝑁 + 3

TABLE II
COMPLEXITY COMPARISON

The ML based IC The MMSE IC

detector for DSTTD [1] detector for DSTTD [3]

Real Real Total Real Real Total

N Mult. Add. Flops Mult. Add. Flops

2 105 83 188 128 135 263

3 252 199 451 360 369 729

4 475 383 858 768 770 1538

5 790 651 1441 1400 1380 2780

6 1213 1019 2232 2304 2241 4545

7 1760 1503 3263 3528 3395 6923

8 2447 2119 4566 5120 4884 10004

(28) in [1], of which the complexities are listed in Table I.
One complex multiplication takes four real multiplications and
two real additions, while one complex addition needs two
real additions. Therefore, it can be seen from Table I that
the complexities of the detector are equivalent to

8

3
𝑁3 + 14𝑁2 +

79

3
𝑁 − 25 (10)

real multiplications and

8

3
𝑁3 + 10𝑁2 +

46

3
𝑁 − 9 (11)

real additions. The total complexity is the sum of real multi-
plications and additions [1], which is

16

3
𝑁3 + 24𝑁2 +

125

3
𝑁 − 34 (12)

floating-point operations (flops). We also carried out numerical
experiments to count the flops required by the detector in
[1]. The results of our numerical experiments are identical
to those computed by (12), i.e., our numerical experiments
have accurately verified (12).

Table I in [1] compared the complexities of the ML based
IC detector for DSTTD in [1] and the conventional MMSE IC
detector for DSTTD in [3]. From (10), (11) and (12), it can
be seen that Table I in [1] should be modified to Table II in
this comment, where the total complexity of the MMSE IC
detector in [3] is

15𝑁3 +
73

2
𝑁2 − 3

2
𝑁 (13)

flops [1]. From Table II, it can be seen that the complexity of
the detector proposed in [1] is about 2.2 times smaller than
that of the MMSE IC detector [3] when the number of receive
antennas is 8.
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