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A Joint Resource Allocation Scheme for
Multiuser Two-Way Relay Networks

Guftaar Ahmad Sardar Sidhu, Feifei Gao, Wen Chen, and A. Nallanathan

Abstract—In this letter, we study the problem of resource
allocation in amplify-and-forward (AF) based multiuser two-way
relay network that is operated under orthogonal frequency
division multiple access (OFDMA) modulation. We formulate an
end-to-end throughput maximization problem subject to limited
power constraint at individual user and relay. The optimization
targets to find the best sub-carrier allocation to each user, sub-
carrier pairing at the relay, as well as the power allocation at
all nodes, which turns out to be a mixed integer programming
problem. We then derive an asymptotically optimal solution
through Lagrange dual decomposition approach and further
design a suboptimal algorithm to trade the performance for com-
putational complexity. Finally, simulation results are provided to
demonstrate the performance gain of the proposed algorithms.

Index Terms—Two-way relay network, amplify-and-forward,
OFDMA, resource allocation, multiuser communications.

I. INTRODUCTION

THE relay networks have gained much interest due to their
capability of enhancing the communication reliability

and enlarging the transmission range [1], [2]. Meanwhile,
multi-carrier transmissions are known to combat the frequency
selective fading channels and, when combined with the re-
lay transmission, can provide improved performance through
adaptive resource allocation. Hence, various research on multi-
carrier aided relay network have been carried out during the
past few years, for example, channel estimation [3], precoder
design [4], and throughput analysis via resource allocation [5]–
[7].

Resource allocation in orthogonal frequency division multi-
plexing (OFDM) based two-way relay network (TWRN) have
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been proposed in [8]–[13]. The authors in [8] studied the
throughput maximization problem in a three node network,
where two user terminals exchange information with the help
of a relay node using OFDM transmission, subject to an
individual power constraint at each node. The results showed
an enhanced system performance from an optimized power
allocation via dual decomposition technique and a greedy sub-
carrier pairing scheme. This scheme is further exploited in
[9] under a total power constraint where a two step power
allocation strategy was proposed. Joint power allocation and
sub-carrier assignment problem in multiple-relay scenario,
where two terminals exchange information with the help of
more than one intermediate relay nodes, was considered in
[10]. The problem is solved by a suboptimal algorithm where
each resource is optimized by fixing the other. The authors
further applied the idea to the orthogonal frequency division
multiple access (OFDMA) based multi-user multi-relay sys-
tems in [11] and proposed a sub-carrier allocation algorithm
for the known power allocation. The work in [12] studied the
power and sub-carrier allocation problem in OFDMA multi-
user relay network. More recently, relay power allocation
problem in a multi-user system, where a number of user
pairs exchange information through a single relay station,
was considered in [13]. However a unified resource allocation
scheme considering tone permutation, power optimization, and
sub-carrier allocation all together has not been reported yet,
to the best of authors’ knowledge.

In this work, we consider a multiuser two-way OFDMA
system, where users communicate with each other through a
single relay node. The previous reported works have shown the
enhanced throughput results in OFDM systems by optimizing
either of the following:

∙ Power allocation over different subcarriers at each trans-
mitting node.

∙ Subcarrier allocation among different users.
∙ Subcarrier pairing at relay node, where the signal re-

ceived at relay over one subcarrier is re-transmitted on a
different subcarrier.

This motivates us to find a unified framework where all
resources are jointly optimized. Further, the distributed nature
of the wireless systems prohibits to impose a total power
constraint over all nodes. Thus, we assume that each node
has a limited power supply, which makes our consideration
closer to practical scenarios. The problem is then formulated
as maximizing the end to end system throughput and is solved
by dual decomposition technique that yields a nearly optimal
solution for OFDMA system when the number of sub-carriers
is sufficiently large, regardless of the non-convexity of the
original problem [15]. To reduce the complexity, we further
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Fig. 1. System model for an OFMDA aided multiuser two-way relay network.

propose a suboptimal method that sacrifices very little on the
performance as demonstrated by the numerical examples.

The rest of this letter is organized as follows. In Section
II, we present the system model of multi-user two-way re-
lay transmission and formulate the joint resource allocation
problem. In Section III, we develop the dual decomposition
method as well as the suboptimal method. Simulation results
are presented in Section IV and conclusions are made in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a two-way multi-user relay network that con-
sists of 𝑀 pre-assigned pairs of mobile users (MUs) and one
fixed relay station (RS), all equipped with only one antenna
that cannot transmit and receive simultaneously, as shown
in Fig. 1. The mutlicarrier two-way transmission protocol is
divided into two phases: the multiple access (MA) phase and
the broadcast (BC) phase. In MA phase, all MUs transmit
information to RS simultaneously via non-overlapping car-
riers. In BC phase RS broadcasts the received signal after
certain processing, for example power amplifying and carrier
permutation. The two users of the 𝑚-th user pair, denoted as
𝐴𝑚 and 𝐵𝑚, transmit simultaneously on the same carriers,
for example the 𝑘th carrier in MA phase,1 while the received
signal will be sent back over the 𝑗-th sub-carrier in the BC
phase. Assigning which carrier to which user-pair, as well as
the pairing strategy (𝑘, 𝑗) will be optimized in this letter.

Denote the channel coefficient from 𝐴𝑚 to RS as ℎ𝑚,𝑘, the
one from 𝐵𝑚 to RS as 𝑔𝑚,𝑘, the one from RS to 𝐴𝑚 as ℎ̃𝑚,𝑗 ,
and the one from RS to 𝐵𝑚 as 𝑔𝑚,𝑗 .2 Then the received signal
at RS is

𝑦RS
𝑘 =

√
𝑝𝐴𝑚,𝑘ℎ𝑚,𝑘𝑥

𝐴
𝑚,𝑘 +

√
𝑝𝐵𝑚,𝑘𝑔𝑚,𝑘𝑥

𝐵
𝑚,𝑘 + 𝑤𝑅𝑆

𝑘 , (1)

where 𝑥𝐴𝑚,𝑘 and 𝑥𝐵𝑚,𝑘 are the information symbols to be
exchanged, 𝑝𝐴𝑚,𝑘 and 𝑝𝐵𝑚,𝑘 are the corresponding powers over
the 𝑘-th carrier, and 𝑤𝑅𝑆

𝑘 is the additive white Gaussian noise
with variance 𝜎2.

If the power allocated at RS over sub-carrier 𝑗 is represented
as 𝑝𝑅𝑗 , then the signals received at the 𝑚-th user pair can be

1That is to say, 𝐴𝑚1 and 𝐵𝑚2 will not transmit on the same carrier during
MA phase.

2By letting ˜ℎ𝑚,𝑗 = ℎ𝑚,𝑗 and 𝑔𝑚,𝑗 = 𝑔𝑚,𝑗 , the scenario here reduces to
the reciprocal channels.

written as

𝑦A
𝑚,𝑗 =

√
𝑝𝑅𝑗 ℎ̃𝑚,𝑗𝜌𝑗

√
𝑝𝐴𝑚,𝑘ℎ𝑚,𝑘𝑥

𝐴
𝑚,𝑘 +

√
𝑝𝑅𝑗 𝜌𝑗 ℎ̃𝑚,𝑗𝑤

𝑅𝑆
𝑘

+
√
𝑝𝑅𝑗 ℎ̃𝑚,𝑗𝜌𝑗

√
𝑝𝐵𝑚,𝑘𝑔𝑚,𝑘𝑥

𝐵
𝑚,𝑘 + 𝑤

𝐴
𝑚,𝑗 , (2)

𝑦𝐵𝑚,𝑗 =
√
𝑝𝑅𝑗 𝜌𝑗𝑔𝑚,𝑗

√
𝑝𝐵𝑚,𝑘𝑔𝑚,𝑘𝑥

𝐵
𝑚,𝑘 +

√
𝑝𝑅𝑗 𝜌𝑗𝑔𝑚,𝑗𝑤

𝑅𝑆
𝑘

+
√
𝑝𝑅𝑗 𝑔𝑚,𝑗𝜌𝑗

√
𝑝𝐴𝑚,𝑘ℎ𝑚,𝑘𝑥

𝐴
𝑚,𝑘 + 𝑤

𝐵
𝑚,𝑗 , (3)

where 𝜌𝑗 ≜
√

1
𝑝𝐴
𝑚,𝑘∣ℎ𝑚,𝑘∣2+𝑝𝐵

𝑚,𝑘∣𝑔𝑚,𝑘∣2+𝜎2 is the scaling factor

to keep the power constraint, while 𝑤𝐴
𝑚,𝑗 and 𝑤𝐵

𝑚,𝑗 are the
received additive white Gaussian noises (AWGN) at 𝐴𝑚 and
𝐵𝑚, respectively, both with variance 𝜎2. Assuming a perfect
self-interference cancellation, the corresponding SNRs can be
written as

SNR𝐴
𝑚,𝑗 =

𝑝𝑅𝑗 ∣ℎ̃𝑚,𝑗 ∣2𝜌2𝑗𝑝𝐵𝑚,𝑘∣𝑔𝑚,𝑘∣2(
𝑝𝑅𝑗 𝜌

2
𝑗 ∣ℎ̃𝑚,𝑗 ∣2 + 1

)
𝜎2
, (4)

SNR𝐵
𝑚,𝑗 =

𝑝𝑅𝑗 ∣𝑔𝑚,𝑗 ∣2𝜌2𝑗𝑝𝐴𝑚,𝑘∣ℎ𝑚,𝑘∣2(
𝑝𝑅𝑗 𝜌

2
𝑗 ∣𝑔𝑚,𝑗∣2 + 1

)
𝜎2

. (5)

B. Problem Formulation

Due to the exclusive sub-carrier pairing constraint, each sub-
carrier in MA phase can only be paired with one sub-carrier
in BC phase. We then define 𝜋(𝑘,𝑗) ∈ {0, 1} as the binary
variable for the sub-carrier pairing such that 𝜋(𝑘,𝑗) = 1 if
the 𝑘-th sub-carrier is paired with the 𝑗-th sub-carrier, while
𝜋(𝑘,𝑗) = 0 otherwise. Further, we define binary variables
𝜏𝑚,(𝑘,𝑗) ∈ {0, 1}, such that 𝜏𝑚,(𝑘,𝑗) = 1 if sub-carrier pair
(𝑘, 𝑗) is allocated to the 𝑚-th MU pair while 𝜏𝑚,(𝑘,𝑗) = 0
otherwise.

We seek to jointly optimize the sub-carrier allocation, sub-
carrier pairing, and the power allocation such that the overall
system throughput is maximized under individual power con-
straints at MUs and RS. Let 𝑃𝐴𝑚 , 𝑃𝑅, and 𝑃𝐵𝑚 denote the
total available powers at 𝐴𝑚, RS, and 𝐵𝑚, respectively. The
optimization can be formulated as

max
𝝅,𝝉 ,𝒑𝐴,𝒑𝑅,𝒑𝐵

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜋(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)

(
1

2
𝐶
(
SNR𝐴

𝑚,𝑗

)

+
1

2
𝐶
(
SNR𝐵

𝑚,𝑗

))
(6)

s.t.
𝐾∑

𝑘=1

𝜋(𝑘,𝑗) = 1, ∀𝑗,
𝐾∑
𝑗=1

𝜋(𝑘,𝑗) = 1, ∀𝑘,

𝑀∑
𝑚=1

𝜏𝑚,(𝑘,𝑗) = 1, ∀(𝑘, 𝑗),
𝐾∑
𝑗=1

𝑝𝑅𝑗 ≤ 𝑃𝑅,

𝐾∑
𝑘=1

𝑝𝐴𝑚,𝑘≤ 𝑃𝐴𝑚 ,∀𝑚,
𝐾∑

𝑘=1

𝑝𝐵𝑚,𝑘≤ 𝑃𝐵𝑚 ,∀𝑚,

𝑝𝐴𝑚,𝑘 ≥ 0, 𝑝𝑅𝑗 ≥ 0, 𝑝𝐵𝑚,𝑘 ≥ 0, ∀𝑚, 𝑘, 𝑗,
where 𝐶(𝑥) ≜ log2(1 + 𝑥), and 𝝉 = {𝜏𝑚,(𝑘,𝑗)}, 𝝅 =
{𝜋(𝑘,𝑗)}, p𝐴 = {𝑝𝐴𝑚,𝑘}, p𝐵 = {𝑝𝐵𝑚,𝑘}, p𝑅 = {𝑝𝑅𝑗 } for all
𝑚 = {1, ...,𝑀}, 𝑘 = {1, ...,𝐾}, 𝑗 = {1, ...,𝐾}. The 1

2
factor appears due to the two time slots used for a complete
transmission.
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The first and the second constraints are originated from the
the fact that each sub-carrier in MA phase can be coupled with
one and only one sub-carrier in BC phase and vice verse.
The third constraint ensures the exclusive allocation of the
sub-carrier pair (𝑘, 𝑗) to the 𝑚-th user pair (𝐴𝑚, 𝐵𝑚) only.
However more than one sub-carrier pairs can be allocated to
a particular MU pair. Other constraints represent individual
power constraint at each node.

III. RESOURCE ALLOCATION SCHEME

It is easily known that (6) is a mixed integer non-linear
programming problem [14], and thus an exhaustive search over
all variables is required to find the optimal solution. Thanks to
[15], we know that the duality gap between the primal problem
and the dual problem in a multi-carrier system approaches to
zero for a sufficiently large number of sub-carriers. Thus we
can solve the dual problem instead of the original problem.
The dual problem associated with the primal problem (6) is
defined as [16]

min
𝝂,𝜆,𝜼

𝐷(𝝂, 𝜆,𝜼) (7)

s.t. 𝜈𝑚 ≥ 0, 𝜂𝑚 ≥ 0, ∀𝑚,𝜆 ≥ 0,

where 𝐷(𝝂, 𝜆,𝜼) is the dual function given by

𝐷 (𝝂, 𝜆,𝜼) =

max
𝝅,𝝉 ,𝒑𝐴,𝒑𝑅,𝒑𝐵

{ 𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜋(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)

(
1

2
𝐶
(
SNR𝐴

𝑚,𝑗

)

+
1

2
𝐶
(
SNR𝐵

𝑚,𝑗

))
+

𝑀∑
𝑚=1

𝜈𝑚

(
𝑃𝐴𝑚−

𝐾∑
𝑘=1

𝑝𝐴𝑚,𝑘

)

+

𝑀∑
𝑚=1

𝜂𝑚

(
𝑃𝐵𝑚 −

𝐾∑
𝑘=1

𝑝𝐵𝑚,𝑘

)
+ 𝜆

(
𝑃𝑅−

𝐾∑
𝑗=1

𝑝𝑅𝑗

)∣∣∣∣
𝐾∑

𝑘=1

𝜋(𝑘,𝑗)= 1,∀𝑗,
𝐾∑
𝑗=1

𝜋(𝑘,𝑗)= 1,∀𝑘,

𝑀∑
𝑚=1

𝜏𝑚,(𝑘,𝑗) = 1, ∀(𝑘, 𝑗)
}
, (8)

and 𝝂 = [𝜈1, . . . , 𝜈𝑀 ]𝑇 , 𝜆, 𝜼 = [𝜂1, . . . , 𝜂𝑀 ]𝑇 are the
associated Lagrange multiplies or the dual variables.

A. Lagrange Dual Decomposition: Solving the Dual Function

To proceed with the dual problem (7), we need to first find
the dual function (8) for given initial 𝜆, 𝝂, and 𝜼. The dual
function can be re-expressed as

𝐷(𝝂, 𝜆,𝜼) =

max
𝝅,𝝉 ,p𝐴,p𝑅,p𝐵

{ 𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜋(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)

(
1

2
𝐶
(
SNR𝐴

𝑚,𝑗

)
+

1

2
𝐶
(
SNR𝐵

𝑚,𝑗

)− 𝜈𝑚𝑝𝐴𝑚,𝑘− 𝜆𝑝𝑅𝑗 −𝜂𝑚𝑝𝐵𝑚,𝑘

)

+

𝑀∑
𝑚=1

𝜈𝑚𝑃𝐴𝑚 + 𝜆𝑃𝑅 +

𝑀∑
𝑚=1

𝜂𝑚𝑃𝐵𝑚

∣∣∣∣

𝐾∑
𝑘=1

𝜋(𝑘,𝑗) = 1, ∀𝑗,
𝐾∑
𝑗=1

𝜋(𝑘,𝑗) = 1, ∀𝑘,

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝜏𝑚,(𝑘,𝑗) = 1, ∀(𝑘, 𝑗)
}
. (9)

Clearly, for given 𝝅, 𝝉 , the optimal p𝐴, p𝑅, and p𝐵 could
be found from the following sub-problems:

max
𝑝𝐴
𝑚,𝑘,𝑝

𝑅
𝑗 ,𝑝𝐵

𝑚,𝑘

1

2
𝐶
(
SNR𝐴

𝑚,𝑗

)
+

1

2
𝐶
(
SNR𝐵

𝑚,𝑗

)− 𝜈𝑚𝑝𝐴𝑚,𝑘

− 𝜆𝑝𝑅𝑗 − 𝜂𝑚𝑝𝐵𝑚,𝑘, (10)

s.t. 𝑝𝐴𝑚,𝑘 ≥ 0, 𝑝𝑅𝑗 ≥ 0, 𝑝𝐵𝑚,𝑘 ≥ 0.

We solve (10) for all 𝑚, 𝑘, 𝑗, thus there are total 𝑀𝐾2

sub-problems. The power allocation problem in (10) is non-
convex and finding the closed form solution is not trivial.
Nevertheless, the optimal solution (𝑝𝐴𝑚,𝑘, 𝑝

𝑅
𝑗 , 𝑝𝐵𝑚,𝑘) can be

obtained through searching over 𝑝𝐴𝑚,𝑘, 𝑝
𝑅
𝑗 , and 𝑝𝐵𝑚,𝑘, assuming

that each takes discrete values [8], [9]. This approach requires
𝑂(𝑍3) computational complexity where 𝑍 is the number of
power levels that can be taken by each of 𝑝𝐴𝑚,𝑘, 𝑝

𝑅
𝑗 , and 𝑝𝐵𝑚,𝑘.

Therefore the total complexity of solving power allocation for
all 𝑚, (𝑘, 𝑗) is 𝑂(𝑀𝐾2𝑍3).

Substituting optimal power values 𝑝𝐴𝑚,𝑘, 𝑝
𝑅
𝑗 , and 𝑝𝐵𝑚,𝑘 into

(9), we obtain

𝐷(𝝂, 𝜆,𝜼)

= max
𝝅,𝝉

{ 𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜋(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)𝐹𝑚,(𝑘,𝑗) +

𝑀∑
𝑚=1

𝜈𝑚𝑃𝐴𝑚

+ 𝜆𝑃𝑅 +

𝑀∑
𝑚=1

𝜂𝑚𝑃𝐵𝑚

∣∣∣∣
𝐾∑

𝑘=1

𝜋(𝑘,𝑗) = 1, ∀𝑗,

𝐾∑
𝑗=1

𝜋(𝑘,𝑗) = 1, ∀𝑘,
𝑀∑

𝑚=1

𝜏𝑚,(𝑘,𝑗) = 1, ∀(𝑘, 𝑗)
}
,

(11)

where 𝐹𝑚,(𝑘,𝑗) is obtained by substituting 𝑝𝐴𝑚,𝑘, 𝑝
𝑅
𝑗 , and 𝑝𝐵𝑚,𝑘

into the objective of (10).
To find the optimum sub-carrier allocation under a given

sub-carrier pairing, (11) becomes

max
𝝉

{ 𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜏𝑚,(𝑘,𝑗)𝐹𝑚,(𝑘,𝑗) +

𝑀∑
𝑚=1

𝜈𝑚𝑃𝐴𝑚 + 𝜆𝑃𝑅

+

𝑀∑
𝑚=1

𝜂𝑚𝑃𝐵𝑚

∣∣∣∣
𝑀∑

𝑚=1

𝜏𝑚,(𝑘,𝑗) = 1, ∀(𝑘, 𝑗)
}
. (12)

The optimal solution of (12) is obtained by choosing an MU
pair that maximizes 𝐹𝑚,(𝑘,𝑗), i.e.,

𝜏𝑚,(𝑘,𝑗) =

{
1, for 𝑚 = argmax𝑚 𝐹𝑚,(𝑘,𝑗), ∀(𝑘, 𝑗),
0, otherwise.

(13)

For a given 𝜋(𝑘,𝑗), each maximization operation in (13) has
the complexity of 𝑂(𝑀) and the total complexity of solving
sub-carrier allocation problem thus is 𝑂(𝑀𝐾2).
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It remains to find the optimal sub-carrier pairing �̂�. Substi-
tuting (13) into (11), we obtain

𝐷 (𝝂, 𝜆,𝜼)

= max
𝝅

{ 𝐾∑
𝑘=1

𝐾∑
𝑗=1

𝜋(𝑘,𝑗)𝐹𝑚∗,(𝑘,𝑗) +

𝑀∑
𝑚=1

𝜈𝑚𝑃𝐴𝑚 + 𝜆𝑃𝑅+

𝑀∑
𝑚=1

𝜂𝑚𝑃𝐵𝑚

∣∣∣∣
𝐾∑

𝑘=1

𝜋(𝑘,𝑗)=1, ∀𝑗,
𝐾∑
𝑗=1

𝜋(𝑘,𝑗)=1, ∀𝑘
}
,

(14)

where 𝐹𝑚∗,(𝑘,𝑗) = max𝑚 𝐹𝑚,(𝑘,𝑗), ∀(𝑘, 𝑗). Let F be a 𝐾×𝐾
matrix such that

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝐹𝑚∗,(1,1) 𝐹𝑚∗,(1,2) ... 𝐹𝑚∗,(1,𝐾)

𝐹𝑚∗,(2,1) 𝐹𝑚∗,(2,2) ... 𝐹𝑚∗,(2,𝐾)

: : :
. . .

𝐹𝑚∗,(𝐾−1,1) 𝐹𝑚∗,(𝐾−1,2) ... 𝐹𝑚∗,(𝐾−1,𝐾)

𝐹𝑚∗,(𝐾,1) 𝐹𝑚∗,(𝐾,2) ... 𝐹𝑚∗,(𝐾,𝐾)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(15)

The matrix F can be considered as a profit matrix with row
indices being different operators and column indices being
different machines to be operated, i.e., a total of 𝐾 different
machines to be operated by 𝐾 different operators. The value
of each entry can be treated as the profit from operating a
particular machine by a particular operator. Problem (14) is
equivalent to maximizing the sum profit by choosing the best
strategy where each operator (𝑘) can operate only one machine
(𝑗). Such kind of linear assignment problem can be solved
efficiently from the standard Hungarian algorithm with the
complexity O(𝐾3) [17]. The steps of Hungarian algorithm
are briefly described as follows:

1) Subtract the values in each row from the maximum
number in the row. and subtract the minimum number
in each column from the entire column.

2) Cover all zeroes in the matrix with as few lines as
possible.

3) If the number of lines equals to the size of the matrix,
find the solution. Otherwise, find the minimum number
that is uncovered. Subtract this minimum number from all
uncovered values and add it to values at the intersections
of lines, and go to step 2.

Interested readers are referred to [17] for more details.
Finally, the dual function can be obtained by substituting

�̂�, 𝝉 , 𝒑𝐴, 𝒑𝑅, and 𝒑𝐵 into (8).

B. Solving the Dual Problem with Sub-gradient Method

Next we solve the dual problem (7) to find the optimal
values of dual variables. From the sub-gradient method [18],
we could pick up initial dual variables 𝜆(0), 𝝂(0), and 𝜼(0) to
find the power allocation in (10). Then with the obtained 𝒑𝐴,
𝒑𝑅, and 𝒑𝐵 , the dual variables at (𝑖 + 1)-th iteration should

be updated as

𝜈(𝑖+1)
𝑚 =

⎡
⎣𝜈(𝑖)𝑚 −𝛿(𝑖)

⎛
⎝𝑃𝐴𝑚 −

𝐾∑
𝑘=1

𝐾∑
𝑗=1

�̂�(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)𝑝
𝐴
𝑚,𝑘

⎞
⎠
⎤
⎦
+

,

(16)

𝜂(𝑖+1)
𝑚 =

⎡
⎣𝜂(𝑖)𝑚 −𝛿(𝑖)

⎛
⎝𝑃𝐵𝑚 −

𝐾∑
𝑘=1

𝐾∑
𝑗=1

�̂�(𝑘,𝑗)𝜏𝑚,(𝑘,𝑗)𝑝
𝐵
𝑚,𝑘

⎞
⎠
⎤
⎦
+

,

(17)

for all 𝑚, and

𝜆(𝑖+1) =

⎡
⎣𝜆(𝑖) − 𝛿(𝑖)

⎛
⎝𝑃𝑅 −

𝐾∑
𝑗=1

𝑝𝑅𝑗

⎞
⎠
⎤
⎦
+

, (18)

where [𝑥]+ ≜ max (0, 𝑥), and 𝛿(𝑖) is an appropriate step
size of the 𝑖th iteration. Note that, for each iteration, all the
variables �̂�(𝑘,𝑗), 𝜏𝑚,(𝑘,𝑗), 𝑝𝐴𝑚,𝑘, 𝑝

𝐵
𝑚,𝑘 and 𝑝𝑅𝑗 should be re-

computed under 𝜆(𝑖), 𝜈𝑚(𝑖), and 𝜂𝑚(𝑖). The iteration will be
stopped once certain criterion is fulfilled. Then, we normalize
𝒑𝐴, 𝒑𝑅, and 𝒑𝐵 so that the power constraint at each node is
satisfied.

If the dual objective function 𝐷(𝝂, 𝜆,𝜼) is minimized
within 𝑁 iterations, the total computational complexity of our
proposed scheme becomes 𝑂(𝑁𝐾2(𝑀(𝑍3+1)+𝐾)) which
is much less than that of solving problem by exhaustive search,
i.e., 𝑂(𝑁𝑀𝐾!𝑍3).

C. Suboptimal Algorithm

The algorithm derived in previous subsections provides a
near optimal solution for the large number of sub-carriers.
However the computational efficiency decreases with the
increasing of 𝐾 and 𝑀 . In this subsection we propose a
suboptimal algorithm which trades the performance for lower
complexity. We solve the optimization (6) following a step-
wise approach where each resource is optimized while fixing
the others. The algorithm is outlined as:

1) Sub-carrier Allocation for Given Power Allocation:
Initially, we fix the power allocation by equally distributing
the available powers at RS and each MU to the 𝐾 sub-
carriers, i.e., 𝑝𝑅𝑘 = 𝑃𝑅

𝐾 , ∀𝑘, 𝑝𝐴𝑚,𝑘 =
𝑃𝐴𝑚

𝐾 , ∀𝑚, 𝑘, and 𝑝𝐵𝑚,𝑘 =
𝑃𝐵𝑚

𝐾 , ∀𝑚, 𝑘. Then each sub-carrier 𝑘 is assigned to an 𝑚-th
user pair, denoted as 𝑚∗

𝑘, such that

𝑚∗
𝑘 = argmax

𝑚
(SNR𝐴

𝑚,𝑘 + SNR𝐵
𝑚,𝑘), ∀𝑘, (19)

where SNR𝐴
𝑚,𝑘 =

𝑝𝑅
𝑘 ∣˜ℎ𝑚,𝑘∣2𝜌2

𝑘𝑝
𝐵
𝑚,𝑘∣𝑔𝑚,𝑘∣2

(𝑝𝑅
𝑘 𝜌2

𝑘∣˜ℎ𝑚,𝑘∣2+1)𝜎2
, SNR𝐵

𝑚,𝑘 =

𝑝𝑅
𝑘 ∣𝑔𝑚,𝑘∣2𝜌2

𝑘𝑝
𝐴
𝑚,𝑘∣ℎ𝑚,𝑘∣2

(𝑝𝑅
𝑘 𝜌2

𝑘∣𝑔𝑚,𝑘∣2+1)𝜎2
. In this process a set of 𝐾𝑚 number

of sub-carriers, denoted as Ω𝑚, is assigned to 𝑚-th MU pair
such that 0 ≤ 𝐾𝑚 ≤ 𝐾 , and

∑𝑀
𝑚=1𝐾𝑚 = 𝐾 .

For a given 𝑘, obtaining the optimum 𝑚∗
𝑘 in (19) requires

a complexity of 𝑂(𝑀), and thus the total computational
complexity of sub-carrier allocation becomes 𝑂(𝑀𝐾) which
is 𝑁𝐾 times less than that from (13).
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2) Sub-carrier Pairing for Given Power Allocation and
Sub-carrier Allocation: To find the sub-carrier pairing, we
first re-distribute the power at each of the MU such that
𝑝𝐴𝑚,𝑘 =

𝑃𝐴𝑚

𝐾𝑚
and 𝑝𝐵𝑚,𝑘 =

𝑃𝐵𝑚

𝐾𝑚
, ∀𝑚, 𝑘 ∈ Ω𝑚 . For the 𝑚-th

user pair, we choose a carrier 𝑘∗ in MA phase such that

𝑘∗ = arg max
𝑘∈Ω𝑚

𝑝𝐴𝑚,𝑘∣ℎ𝑚,𝑘∣2 + 𝑝𝐵𝑚,𝑘∣𝑔𝑚,𝑘∣2, (20)

and pair it with sub-carrier 𝑗∗ in the BC phase, where

𝑗∗ = arg max
𝑗∈Ω𝑚

(SNR𝐴
𝑚,𝑗,𝑘∗ + SNR𝐵

𝑚,𝑗,𝑘∗), (21)

and SNR𝐴
𝑚,𝑗,𝑘∗ =

𝑝𝑅
𝑗 ∣˜ℎ𝑚,𝑗 ∣2𝜌2

𝑗𝑝
𝐵
𝑚,𝑘∗ ∣𝑔𝑚,𝑘∗ ∣2

(𝑝𝑅
𝑗 𝜌2

𝑗 ∣˜ℎ𝑚,𝑗∣2+1)𝜎2
, SNR𝐵

𝑚,𝑗,𝑘∗ =

𝑝𝑅
𝑗 ∣𝑔𝑚,𝑗 ∣2𝜌2

𝑗𝑝
𝐴
𝑚,𝑘∗ ∣ℎ𝑚,𝑘∗ ∣2

(𝑝𝑅
𝑗 𝜌2

𝑗 ∣𝑔𝑚,𝑗 ∣2+1)𝜎2
. Each of the maximization in (20)

and (21) have the complexity of 𝑂(𝐾𝑚), and hence the
sub-carrier paring for all 𝑀 users require the complexity of
𝑂(

∑𝑀
𝑚=1 2𝐾

aa𝑚) = 𝑂(2𝐾).
3) Power Allocation for Given Sub-carrier Allocation and

Sub-carrier Pairing: For the obtained sub-carrier allocation
and sub-carrier pairing, we recalculate the power allocation
using the dual decomposition approach, where the dual func-
tion can be decomposed into 𝐾 sub-problems, each being
similar to (10). The dual variables are found from sub-gradient
method in subsection III-B. The solution will converge after
𝑁 ′ updates of (16), (17), and (18).

The power allocation requires a complexity of 𝑂(𝑁 ′𝐾𝑍3),
and thus the total complexity of the algorithm from step 1 to
step 3 is 𝑂(𝐾(𝑀+𝑁 ′𝑍3+2)). Without loss of generality, let
𝑁 ′ = 𝑁 . The overall complexity of the proposed suboptimal
algorithm is much less than 𝑂(𝑁𝐾2(𝑀(𝑍3 + 1) +𝐾)), the
complexity of the joint resource allocation scheme.

IV. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of our proposed algorithms. We consider 6-
tap channels taken from i.i.d. Gaussian random variables for
all links, while the total number of sub-carriers is set as 32.
Without loss of generality, we assume equal power at each
node. The figure of the merit is taken as the per tone rate, i.e.,
sum rate divided by 𝐾 .

We compare the following algorithms:
∙ JntOpt: The joint optimal solution proposed in subsection

III-A and subsection III-B.
∙ SubOpt: The suboptimal solution presented in subsection

III-C.
∙ SolWOP: A solution where power allocation and sub-

carrier allocation is optimized but sub-carrier pairing is
not considered. Algorithm follows the steps for joint
optimization algorithm in subsection III-A and III-B with
𝑘 = 𝑗 and omits the sub-carrier pairing step (14) and (15).

∙ Static: A fixed resource allocation solution where each
user is randomly assigned an amount of sub-carriers and
then the available power is distributed evenly among
the allocated sub-carriers. The tone permutation is not
considered.

The complexity involved in each algorithms is summarized in
Table I, where 𝑁 ′′ denotes the number of iterations required
for subgradient convergence in SolWOP algorithm. Further,
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Fig. 2. Throughput versus SNR for 𝑀 = 10.

the running time of different schemes for different number of
users at SNR= 10 are also displayed. In the first example,
we show the throughput performance of different algorithms
versus SNR for 𝑀 = 10 in Fig. 2. The objective of the dual
problem (Upper-Bound) is also displayed in the same figure.
We observe that the gap between the primal objective and the
dual objective, i.e., the duality gap is close to zero for all
SNR region, which validates the optimality of the proposed
scheme. Moreover it can be seen that JntOpt yields the best
performance over all SNR values. We notice a performance
gain of 2.4 dB over the Static solution at rate equal to 1
bits/sec/Hz, and it increases to 2.85 dB at rate equal to 1.8
bits/sec/Hz. In comparison the rate losses of the suboptimal
algorithm is 0.6 dB and 1 dB, respectively. We observe that the
SolWOP exhibits a slightly lower performance to the SubOpt
over all SNR region but with a much higher complexity.

Next we examine the performance of the end-to-end rate
versus the number of MUs. The corresponding curves at
SNR= 10 dB are shown in Fig. 3. It can be seen that JntOpt
always yields the best performance, and a significant gain over
Static is observed when the number of the users increases. This
is because Static does not exploit multi-user diversity and the
optimization becomes more significant while increasing the
number of users. The performance of SubOpt and SolWOP
also increases with the number of users due to the similar
reasons and both exhibits much better gain over Static. On
the other hand, we observe a significant increase in running
time of JntOpt and SolWOP in table I, when the number of
users increases. The running times of both SubOpt and Static
is much less than that of both JntOpt and SolWOP, and do not
increase much with the increasing of the number of users.

To get a more insight into the performance gain achieved
from sub-carrier pairing, in the next example we compare
JntOpt and SubOpt with SolWOP under the case when
∣ℎ𝑚,1∣ > ∣ℎ𝑚,2∣ . . . > ∣ℎ𝑚,𝐾 ∣, ∣ℎ̃𝑚,1∣ < ∣ℎ̃𝑚,2∣ . . . < ∣ℎ̃𝑚,𝐾 ∣,
∣𝑔𝑚,1∣ > ∣𝑔𝑚,2∣ . . . > ∣𝑔𝑚,𝐾 ∣, ∣𝑔𝑚,1∣ < ∣𝑔𝑚,2∣ . . . < ∣𝑔𝑚,𝐾 ∣,
∀𝑚. The throughput curves versus SNR for 𝑀 = 2 and
𝑀 = 10 are shown in Fig. 4. It can be seen that JntOpt and
SubOpt yield good performance. However, SolWOP exhibits
much worse performance as compared to that in Fig. 2 because
the good channel in MA phase is always paired with the bad
channel in BC phase when no pairing strategy is adopted.
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TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

Algorithm Complexity Running Time (Seconds)
M=2 M=5 M=10 M=15 M=20

JntOpt 𝑂(𝑁𝐾2(𝑀(𝑍3 + 1) +𝐾)) 113.2310 297.6780 598.6954 868.5970 1177.769
SubOpt 𝑂(𝐾(𝑀 +𝑁 ′𝑍3 + 2)) 1.7810 1.8281 1.8910 1.8984 1.9010
SolWOP 𝑂(𝑀𝑁 ′′𝐾2(𝑍3 + 1)) 3.6250 9.1240 19.0121 27.405 35,951
Static 𝑂(𝑀) 0.0155 0.060 0.060 0.060 0.0601
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Fig. 3. Throughput versus the number of users at SNR= 10 dB.

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SNR (dB)

bi
ts

/s
/H

z

JntOpt
SubOpt
SolWOP M=10

M=2

Fig. 4. Throughput versus SNR under anti-symmetric channels for 𝑀 = 2
and 𝑀 = 10, respectively.

V. CONCLUSION

In this letter, we studied the problem of joint resource
allocation for OFDMA assisted two-way relay system. The ob-
jective function is to maximize the sum-rate through joint sub-
carrier allocation, sub-carrier pairing, and power allocation,
under the individual power constraints at each transmitting
node. The problem is solved from the dual decomposition
technique and an asymptotically optimal solution is found,
thanks to the previous result that the duality gap approaches

zero when the number of the sub-carriers is large. To reduce
the complexity of the algorithm, we further proposed a subop-
timal algorithm which showed its comparable performance via
simulation results. Numerical examples demonstrated that the
proposed algorithms significantly outperform other candidates.
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