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Abstract—We investigate the fading cognitive multiple-access
wiretap channel (CMAC-WT), in which two secondary-user trans-
mitters (STs) send secure messages to a secondary-user receiver
(SR) in the presence of an eavesdropper and subject to inter-
ference threshold constraints at multiple primary-user receivers
(PRs). We design linear precoders to maximize the average secrecy
sum rate for a multiple-input–multiple-output (MIMO) fading
CMAC-WT under finite-alphabet inputs and statistical channel
state information at STs. For this nondeterministic polynomial-
time NP-hard problem, we utilize an accurate approximation
of the average secrecy sum rate to reduce the computational
complexity and then present a two-layer algorithm by embed-
ding the convex–concave procedure into an outer-approximation
framework. The idea behind this algorithm is to reformulate the
approximated average secrecy sum rate as a difference of convex
functions and then generate a sequence of simpler relaxed sets to
approach the nonconvex feasible set. Subsequently, we maximize
the approximated average secrecy sum rate over the sequence of
relaxed sets by using the convex–concave procedure. Numerical
results indicate that our proposed precoding algorithm is superior
to the conventional Gaussian precoding method in the medium and
high signal-to-noise ratio (SNR) regimes.

Index Terms—Cognitive multiple-access wiretap channel
(CMAC-WT), finite-alphabet inputs, linear precoding, multiple-
input multiple-output (MIMO), physical-layer security, statistical
channel state information (CSI).
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I. INTRODUCTION

S PECTRUM sharing has been widely recognized as a
promising technology to improve the utilization efficiency

of the limited spectrum resources in cognitive radio networks
[1]. In a spectrum sharing cognitive radio network, unlicensed
secondary users are allowed to concurrently communicate with
licensed primary users over the same bandwidth as long as
the interference power at primary-user receivers (PRs) is kept
below a given threshold. Related works in [2] and [3] considered
the weighted sum-rate optimization in cognitive radio networks
with interference threshold constraints.

Meanwhile, due to the open and broadcast nature of ra-
dio propagation, such spectrum sharing may cause security
problems because all kinds of wireless equipment devices are
able to overhear the licensed spectrum. Therefore, security is
a critical issue in cognitive radio networks. Traditionally, the
security of a network has been entrusted in the network layer
through cryptography and authentication, which often require
additional system complexity for key generation and complex
encryption/decryption algorithms [4].

In recent years, there has been growing interest in physical-
layer security that enables secure communication over the
physical layer. Physical-layer security or information-theoretic
security originated from Shannon’s notion of perfect secrecy
[5]. It was first studied in a wiretap channel by Wyner [6]
and later in a broadcast channel with confidential messages
by Csiszár and Körner [7]. The study of physical-layer se-
curity is then extended to several multiuser communication
scenarios. In [8], Tekin and Yener introduced the degraded
Gaussian multiple-access wiretap channel, where an additional
eavesdropper (ED) is able to access the multiple-access channel
output via a degraded wiretap channel. In [9], an achievable
secrecy rate region with Gaussian inputs was proposed for the
nondegraded Gaussian multiple-access wiretap channel, and
the power allocations maximizing the corresponding secrecy
sum rate were also determined. Related works in [10]–[14]
further investigated linear precoding designs that maximize
the secrecy (sum) rate in other multiple-input multiple-output
(MIMO) multiuser channels.

The precoding designs in [10]–[14] require instantaneous
channel state information (CSI) of both legitimate receivers
and EDs. However, such a requirement is overoptimistic for
fast-fading channels, of which the channel coherence time
may be shorter than the feedback delay caused by channel
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Fig. 1. System model of the fading CMAC-WT.

estimation. In this case, when the instantaneous CSI arrives at
transmitters, the channel state has already changed. Therefore,
it is more realistic to exploit channel statistics at transmitters
for precoding design, due to its much slower changes compared
with instantaneous CSI.

Furthermore, the results in [10]–[14] rely on the ideal as-
sumption of Gaussian inputs. Although Gaussian inputs are
proven to be capacity achieving in a variety of Gaussian chan-
nels, they are hardly implemented in practice. It is well known
that practical inputs are drawn from finite constellation sets
such as phase-shift keying (PSK), pulse-amplitude modulation,
or quadrature amplitude modulation. More importantly, the
common approach of designing a linear precoder in a MIMO
system under Gaussian inputs and then applying it to the prac-
tical system may lead to significant performance loss [15], [16].
Therefore, the precoding design with finite-alphabet inputs has
drawn increasing research interest in recent years [17]–[28].

As shown in Fig. 1, we consider the underlay cognitive
multiple-access wiretap channel (CMAC-WT), where two
secondary-user transmitters (STs) communicate with one
secondary-user receiver (SR) in the presence of an ED and
subject to interference threshold constraints at PRs. Each node
in the system is equipped with multiple antennas. To the best
of our knowledge, this is a general model that has not been
addressed yet. We design linear precoding matrices to achieve
the maximum average secrecy sum rate under finite-alphabet
inputs and statistical CSI at STs. The problem setting is much
closer to practical systems because it targets finite-alphabet
inputs directly and exploits statistical CSI of fading channels.
However, this problem is extremely difficult to solve due to
two reasons: First, the computational complexity for evaluating
the average secrecy sum rate is prohibitively high. Second, and
more importantly, the optimization problem itself is a noncon-
vex and nondeterministic polynomial-time NP-hard problem.

A subset of nonconvex optimization, which is called the dif-
ference of convex functions (DC) optimization, has been exten-
sively studied by exploiting its underlying structure [29]–[31].

DC optimization aims to maximize a DC function under some
DC constraints. In [29], a basic outer-approximation framework
was proposed for solving DC problems. In [30], a new DC
algorithm was introduced by exploiting the duality theory of
DC optimization. In [31], Yuille and Rangarajan presented the
convex–concave procedure, which can be regarded as a special
case of the algorithm in [30]. Since any twice continuously dif-
ferentiable function is a DC function [29], our linear precoding
problem is a DC optimization problem. However, no practical
algorithm is known to construct DC decomposition for an
arbitrary twice continuously differentiable function. Moreover,
if we do not carefully design the DC representation of the
average secrecy sum rate, the algorithms in [29]–[31] will suffer
from very slow convergence [32]. Therefore, DC representation
is a main factor that affects the performance of DC algorithms.

We solve our problem efficiently by combining the convex–
concave procedure with an outer-approximation framework.
We first exploit an accurate approximation of the average
secrecy sum rate to reduce the complexity and then reformulate
the approximated average secrecy sum rate as a DC function.
Subsequently, we generate a sequence of relaxed sets, which
can be explicitly expressed as the union of convex sets, to ap-
proach the nonconvex feasible set. This way, near-optimal pre-
coders are obtained by maximizing the approximated average
secrecy sum rate over these convex sets. Numerical results show
that when considering finite-alphabet inputs, our proposed al-
gorithm significantly outperforms the conventional Gaussian
precoding method, which designs precoding matrices to max-
imize the average secrecy sum rate under Gaussian inputs, in
the medium and high signal-to-noise ratio (SNR) regimes.

The rest of this paper is organized as follows. Section II
introduces the system model and formulates the linear pre-
coding problem, Section III develops a numerical algorithm to
maximize the average secrecy sum rate under finite-alphabet
inputs and statistical CSI, Section IV presents several numerical
results, and Section V draws the conclusion.

Notations: Boldface lowercase letters, boldface uppercase
letters, and calligraphic letters are used to denote vectors,
matrices, and sets, respectively. The superscripts (·)T and (·)H
represent transpose and Hermitian operations, respectively. [·]+
denotes max(·, 0); diag(·) represents a block diagonal matrix
whose diagonal elements are matrices. tr(·) is the trace of
a matrix; vec(·) is a column vector formed by stacking the
columns of a matrix; ‖ · ‖ denotes the Euclidean norm of a
vector; A⊗B is the Kronecker product of two matrices A and
B; E(·) represents the statistical expectation; �(·) and �(·)
denote the real and imaginary parts of a complex vector or
matrix; ≥ and ≤ are defined component-wise. I and 0 denote an
identity matrix and a zero matrix, respectively, with appropriate
dimensions; A � 0 denotes the positive semidefiniteness of A.
The symbol I(·) represents the mutual information; log(·) and
ln(·) are used for the base-2 logarithm and natural logarithm,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the fading CMAC-WT shown in Fig. 1. The
ith ST has NTi

antennas, i = 1, 2; the SR has NR antennas;
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the ED has NE antennas; and the jth PR has Nj antennas
j = 1, 2, . . . , J . The channel output at the SR, the ED, and the
jth PR are, respectively, given by

yR = H1P1s1 +H2P2s2 + nR

zE = G1P1s1 +G2P2s2 + nE

wj = F1,jP1s1 + F2,jP2s2 + nj , j = 1, 2, . . . , J (1)

where Hi, Gi, and Fi,j are complex channel matrices from
the ith ST to the SR, the ED, and the jth PR, respectively; Pi

is the linear precoding matrix at the ith ST, i = 1, 2; si is the
input data vector at the ith ST with zero mean and covariance
Esi [sis

H
i ] = I, i = 1, 2; and nR, nE , and nj are independent

and identically distributed (i.i.d.) zero-mean circularly symmet-
ric complex Gaussian noise with covariance matrices σ2

RI, σ
2
EI,

and σ2
j I, respectively.

The channel matrices considered in this paper are modeled
as [33]

Hi = Φ
1
2

h H̃iΨ
1
2

hi
, i = 1, 2

Gi = Φ
1
2
g G̃iΨ

1
2
gi , i = 1, 2

Fi,j = Φ
1
2

fj
F̃i,jΨ

1
2

fi,j
∀(i, j) (2)

where H̃i, G̃i, and F̃i,j are random matrices with i.i.d. zero-
mean unit variance complex Gaussian entries; Φh, Φg , and Φfj

are positive semidefinite receive correlation matrices of Hi, Gi,
and Fi,j , respectively; and Ψhi

, Ψgi , and Ψfi,j are positive
semidefinite transmit correlation matrices of Hi, Gi, and Fi,j ,
respectively.

We assume that the SR has instantaneous channel realiza-
tions of {H1,H2}, the ED has instantaneous channel realiza-
tions of {G1,G2}, and STs only know the transmit and receive
correlation matrices of {H1,H2,G1,G2,Fi,j , ∀(i, j)} as
well as the distributions of {H̃1, H̃2, G̃1, G̃2, F̃i,j , ∀(i, j)}.
Under these assumptions, the following secrecy sum rate is
achievable [9]:

[I(s1, s2;yR|H)− I(s1, s2; zE |G)]+

=
[
EHI(s1, s2;yR|H = H̄)−EGI(s1, s2; zE |G = Ḡ)

]+
where H = [H1,H2], and G = [G1,G2]; H̄ and Ḡ represent
the instantaneous channel realizations of H and G, respec-
tively. For notational simplicity, we omit the given channel
realization condition in mutual information expressions, and
then, the average secrecy sum rate can be expressed as

Ravg(P1,P2) = [EHI(s1, s2;yR)−EGI(s1, s2; zE)]+. (3)

We maximize Ravg(P1,P2) subject to power constraints at
STs and interference threshold constraints at PRs. The average
transmit power conforms to the power constraint βi, i.e.,

Esi tr
(
Pisis

H
i PH

i

)
= tr

(
PH

i Pi

)
≤ βi, i = 1, 2 (4)

and the average interference power at the jth PR is limited by
γj , i.e.,

2∑
i=1

Esi,Fi,j

[
tr
(
Fi,jPisis

H
i PH

i FH
i,j

)]

=

2∑
i=1

EF̃i,j

[
tr

(
PH

i

(
Ψ

1
2

fi,j

)H
F̃H

i,jΦfj F̃i,jΨ
1
2

fi,j
Pi

)]

= tr
(
Φfj

)
·

2∑
i=1

tr
(
PH

i Ψfi,jPi

)
≤ γj ∀j. (5)

The second equality in (5) holds because each element of F̃i,j

is an i.i.d. complex Gaussian variable with zero mean and
unit variance, and F̃i,j is independent of si. Then, the average
secrecy sum-rate maximization problem is formulated as

maximize
P1,P2

Ravg(P1,P2)

subject to (4) and (5). (6)

III. LINEAR PRECODING UNDER

FINITE-ALPHABET INPUTS

Here, we solve problem (6) under finite-alphabet inputs. We
assume that each symbol of the input data vector si is taken
independently from an equiprobable discrete constellation with
cardinality Mi, i = 1, 2. The average constellation-constrained
mutual information EHI(s1, s2;yR) and EGI(s1, s2; zE) can
then be expressed, respectively, as [19]

EHI(s;yR) = logN − 1
N

N∑
m=1

EH,nR

{
log

N∑
k=1

exp

(
−‖HPemk+nR‖2+‖nR‖2

σ2
R

)}

(7)

EGI(s; zE) = logN − 1
N

N∑
m=1

EG,nE

{
log

N∑
k=1

exp

(
−‖GPemk+nE‖2+‖nE‖2

σ2
E

)}

(8)

where s=[sT1 , s
T
2 ]

T
, N is a constant and equal to M

NT1
1 M

NT2
2 ,

P = diag(P1,P2), and emk is the difference between dm and
dk, with dm and dk representing two possible distinct signal
vectors from s.

Clearly, the evaluation and optimization of the given average
mutual information is a difficult task. To obtain EHI(s;yR)
and EGI(s; zE), we need to calculate expectations over H and
G as well as nR andnE . Unfortunately, these expectations have
no closed-form expressions. Although we can use the Monte
Carlo method to estimate these expectations, the computational
complexity is prohibitively high particularly when the dimen-
sions of H and G are large.
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This difficulty can be mitigated by employing accurate ap-
proximations of (7) and (8). Based on [21], EHI(s;yR) and
EGI(s; zE) can be approximated, respectively, as

IA(s;yR) = logN − 1
N

N∑
m=1

log

N∑
k=1∏

q

(
1 +

hq

2σ2
R

eHmkP
HΨhPemk

)−1

(9)

IA(s; zE) = logN − 1
N

N∑
m=1

log

N∑
k=1∏

q

(
1 +

gq
2σ2

E

eHmkP
HΨgPemk

)−1

(10)

where Ψh = diag(Ψh1
,Ψh2

), and Ψg = diag(Ψg1 ,Ψg2); hq

and gq represent the qth eigenvalue of Φh and Φg , respectively.
Approximations (9) and (10) are very accurate for arbitrary
correlation matrices and precoders, and the computational com-
plexity of (9) and (10) is several orders of magnitude lower than
that of the original average mutual information [21].

By replacing Ravg(P1,P2) with [IA(s;yR)− IA(s; zE)]+,
problem (6) can be approximated as

maximize
P1,P2

[IA(s;yR)− IA(s; zE)]+

subject to (4) and (5). (11)

A. Precoder Vectorization

We reformulate (11) into a vectorized form by employing the
precoder vectorization technique [28], [34]. This reformulation
can better exploit the inherent structure of (11). For conve-
nience, we first reformulate IA(s;yR) by precoder vectoriza-
tion, and then, the same procedure can be applied for IA(s; zE)
and the constraints of problem (11).

We start by rewriting eHmkP
HΨhPemk as

eHmkP
HΨhPemk =

2∑
i=1

eHmk,iP
H
i Ψhi

Piemk,i (12)

where emk = [eTmk,1, e
T
mk,2]

T
. Using the following matrix

equation [35]:

tr(ATBAC) = vec(A)T · (CT ⊗B) · vec(A) (13)

eHmk,iP
H
i Ψhi

Piemk,i can be rewritten as

eHmk,iP
H
i Ψhi

Piemk,i = tr
(
PH

i Ψhi
PiE

T
mk,i

)
= vec(Pi)

H · (Emk,i ⊗Ψhi
) · vec(Pi)

(14)

where Emk,i = (emk,ie
H
mk,i)

T
. By letting

p̂ =

[
vec(P1)
vec(P2)

]
, p =

[
�{p̂}
�{p̂}

]
(15)

Âmk =
1
2
· diag (Emk,1 ⊗Ψh1

,Emk,2 ⊗Ψh2
) (16)

Amk =

[
�{Âmk} −�{Âmk}
�{Âmk} �{Âmk}

]
(17)

IA(s;yR) can be expressed alternatively as

IA(s;yR) = logN − 1
N

N∑
m=1

log

N∑
k=1∏

q

(
1 +

hq

σ2
R

· pTAmkp

)−1

. (18)

Here, Amk � 0 because pTAmkp is equal to ‖Ψ1/2
h Pemk‖

2
,

which is nonnegative.
Similarly, we define B̂mk and Bmk as

B̂mk =
1
2
· diag (Emk,1 ⊗Ψg1 ,Emk,2 ⊗Ψg2) (19)

Bmk =

[
�{B̂mk} −�{B̂mk}
�{B̂mk} �{B̂mk}

]
� 0 (20)

Ĉi and Ci as

Ĉi = diag (I⊗ (2 − i) · I, I⊗ (i − 1) · I) (21)

Ci =

[
�{Ĉi} −�{Ĉi}
�{Ĉi} �{Ĉi}

]
� 0 (22)

and D̂j and Dj as

D̂j = tr
(
Φfj

)
· diag

(
I⊗Ψf1,j , I⊗Ψf2,j

)
(23)

Dj =

[
�{D̂j} −�{D̂j}
�{D̂j} �{D̂j}

]
� 0. (24)

Then, (11) is converted into a vectorized form, i.e.,

maximize
p∈P

[f(p)− g(p)]+ (25)

where f(p) and g(p) are given as

f(p) =
1
N

N∑
m=1

log

N∑
k=1

∏
q

(
1 +

gq
σ2
E

· pTBmkp

)−1

(26)

g(p) =
1
N

N∑
m=1

log

N∑
k=1

∏
q

(
1 +

hq

σ2
R

· pTAmkp

)−1

(27)

and P is the feasible set, i.e.,

P = {p|pTCip ≤ βi, i = 1, 2,pTDjp ≤ γj ∀j}. (28)

The feasible set P is convex and compact because it can
be geometrically interpreted as the intersection of multiple
ellipsoids. The objective function [f(p)− g(p)]+ is continuous
over P because both f(p) and g(p) are continuous func-
tions. Therefore, the existence of a globally optimal solution
is guaranteed by the Weierstrass extreme value theorem [36].
In addition, the operator [·]+ has no effect on the optimal value
of problem (25) and, thus, can be removed from the objective
function because p = 0 always belongs to P . However, it is
extremely difficult to solve problem (25) due to the following
reasons: First, both f(p) and g(p) are neither convex nor
concave; thus, (25) is a purely nonconvex optimization prob-
lem. Second, problem (25) is an NP-hard problem because a
specialized problem with particular parameters Amk and Bmk

is NP-hard [37].
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Although f(p)− g(p) is nonconcave, it can be expressed as
a DC function by adding a convex term, i.e.,

σ(p) = k · pTp, k > 0. (29)

We can prove that both f(p) + σ(p) and g(p) + σ(p) are
convex functions if

k ≥ α ·max (tr(Φh) · λmax(Ψh), tr(Φg) · λmax(Ψg)) (30)

where α =
∑

m,k ‖emk‖2, and λmax(·) represents the maxi-
mum eigenvalue of a matrix. Then, [f(p) + σ(p)] − [g(p) +
σ(p)] is an explicit DC function, and problem (25) can be
solved by DC algorithms. However, this DC representation is
not efficient because k is too large [32]. Through extensive
simulations, we observe that even when each node in the
system is only equipped with two antennas, the DC algorithm
with this representation cannot converge within hundreds of
thousands of iterations. Therefore, a computationally efficient
DC representation of the approximated average secrecy sum
rate is crucial for designing our algorithm.

B. Outer Approximation of the Feasible Set

We first rewrite (25) with an additional hyperrectangle
Binit, i.e.,

maximize
p∈P∩Binit

f(p)− g(p) (31)

in which the hyperrectangle Binit is given by

Binit = {p|l(Binit) ≤ p ≤ u(Binit)} . (32)

To ensure that problems (31) and (25) are equivalent, the
hyperrectangle Binit should contain the feasible set P , i.e.,
P ⊆ Binit. Let ui and li denote the ith component of u(Binit)
and l(Binit), respectively. Binit can be obtained via solving the
following concave maximization problem:

ui = maximize
p∈P

pi (33)

where pi is the ith component of p. Due to the symmetry of
problem (33), li can be set as −ui.

By introducing a new variable Q = ppT , we define a set
function ϕ(F) as the optimal value of the following optimiza-
tion problem:

ϕ(F) � maximize
(Q,p)∈F

F (Q)−G(Q) (34)

where F (Q) and G(Q) are given as

F (Q) =
1
N

N∑
m=1

log

N∑
k=1

∏
q

(
1 +

gq
σ2
E

· tr(BmkQ)

)−1

(35)

G(Q) =
1
N

N∑
m=1

log

N∑
k=1

∏
q

(
1 +

hq

σ2
R

· tr(AmkQ)

)−1

.

(36)

Note that F (Q) and G(Q) are convex functions because
1) log

∑
k

∏
q f

−1
q,k can be written as log

∑
k exp(−

∑
q ln fq,k),

and 2) log
∑

k exp(gk) is convex whenever the gk values are

convex [38]. Therefore, F (Q)−G(Q) is a DC function. Fur-
thermore, when Finit, which is given by

Finit =

{
(Q,p)

∣∣∣∣Q = ppT , tr(DjQ) ≤ γj ∀j
p ∈ Binit, tr(CiQ) ≤ βi, i = 1,2

}
(37)

is equivalent to the feasible set P , ϕ(Finit) serves as the optimal
value of problem (31). However, it is very difficult to obtain
ϕ(Finit) directly because Finit is a nonconvex set. Although
we can use semidefinite relaxation (SDR) to relax Finit into a
convex set by relaxing the nonconvex part Q = ppT , the solu-
tion obtained by SDR is not optimal and cannot be iteratively
improved. Hence, we need tighter relaxations to overcome the
shortcomings of SDR.

The key idea of our proposed precoding algorithm is to
generate a sequence of asymptotically tight sets {Fk} to ap-
proach Finit, and then, ϕ(Finit) can be iteratively approached
from above by solving a sequence of optimization problems
{ϕ(Fk)}. The sequence {Fk} should satisfy the following
three properties:

F1 ⊇ F2 ⊇ · · · ⊇ Finit

lim
k→∞

ϕ(Fk) = ϕ(Finit)

Fk =

k⋃
i=1

C(Bi) ∀k (38)

where C(Bi) is a convex set to be defined in (40). The first
property implies that {ϕ(Fk)} is a monotonically decreasing
sequence bounded below by ϕ(Finit). The second property
guarantees that ϕ(Finit) can be readily obtained by the se-
quence {ϕ(Fk)}. The last property provides a tractable way to
compute {ϕ(Fk)}, i.e.,

ϕ(Fk) = max
1≤i≤k

ϕ (C(Bi)) . (39)

Based on (38), achieving ϕ(Finit) may need a sufficiently
large number of iterations, which is not practical when the
computational time is concerned. To address this issue, we also
generate a lower bound of ϕ(Finit) in each iteration. Denote the
optimal solution for ϕ(Fk) at the kth iteration by (Qopt

k ,popt
k ).

We extract a feasible solution of problem (31) from Qopt
k , and

the corresponding approximated average secrecy sum rate is
denoted by ϕL(Fk), which serves as a lower bound of ϕ(Finit).

In the remaining part of this section, we construct {Fk} ex-
plicitly as the union of convex sets {C(Bi)}. The approximated
average secrecy sum-rate maximization problem over C(Bi)
and an efficient method to generate the lower bound ϕL(Fk)
are investigated in the following section.

For ease of exposition, we first define a convex set C(B) as

C(B) �
{
(Q,p)

∣∣∣∣Q � ppT , tr(CiQ) ≤ βi, i = 1, 2
(Q,p) ∈ S(B), tr(DjQ) ≤ γj ∀j

}
(40)

where S(B) is another convex set given by

S(B) �

⎧⎪⎪⎨
⎪⎪⎩(Q,p)

∣∣∣∣∣∣∣∣
Q− Lp − LT

p + l(B) · l(B)T ≥ 0
Q −Up −UT

p + u(B) · u(B)T ≥ 0
Q − Lp −UT

p + l(B) · u(B)T ≥ 0
l(B) ≤ p ≤ u(B)

⎫⎪⎪⎬
⎪⎪⎭
(41)

with Lp = l(B) · pT and Up = u(B) · pT . The following two
propositions are the foundation for constructing {Fk}.
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Proposition 1: If we split the initial hyperrectangleBinit into
K smaller hyperrectangles such that Binit = B1 ∪ · · · ∪ BK ,
then Finit ⊆ C(B1) ∪ · · · ∪ C(BK).

Proof: See Appendix A. �
Proposition 2: If we split a hyperrectangleB into two smaller

hyperrectangles B1 and B2 such that B = B1 ∪ B2 and B1 ∩
B2 = ∅, then C(B1) ∪ C(B2) ⊆ C(B).

Proof: See Appendix A. �
With the help of Proposition 1, the first relaxed set F1 is

obtained as

F1 = C(Binit). (42)

Similarly, in the second iteration, we generate F2 by parti-
tioning the initial hyperrectangle Binit into two nonintersection
hyperrectangles B1 and B2, i.e.,

F2 = C(B1) ∪ C(B2) ⊆ F1. (43)

We continue this process to generate a sequence of relaxed
sets {Fk} satisfying (38). At the kth iteration, Binit is split into
k nonintersection hyperrectangles B1,B2, . . . ,Bk such that

Fk = C(B1) ∪ · · · ∪ C(Bk). (44)

The outer-approximation algorithm is summarized in
Algorithm 1.

Algorithm 1 The outer-approximation algorithm

1) Initialization: Set the maximum number of iterations
Kmax, k = 1, B = {Binit}, F1 = C(Binit), U1 = ϕ(F1),
and L1 = ϕL(F1).

2) Stopping criterion: If k ≤ Kmax, go to the next step;
otherwise, STOP.

3) Partition criterion:
a) select Bg = argmaxB∈B{ϕ(C(B))}.
b) split Bg along any of its longest edge into two small

hyperrectangles, BI and BII , with equal volume.
c) remove Bg from B, and add BI and BII into B.
d) compute the upper and lower bounds of ϕ(Finit)

Fk+1 =
⋃
B∈B

C(B)

Uk+1 = ϕ(Fk+1) = max
B∈B

{ϕ (C(B))}

Lk+1 = ϕL(Fk+1).

4) Set k := k + 1 and go to step 2).

The convergence of Algorithm 1 is presented by the follow-
ing proposition.

Proposition 3: The sequence {ϕ(Fk)} converges to
ϕ(Finit), i.e., ∀ε > 0, ∃K > 0, such that k > K implies
ϕ(Finit) < ϕ(Fk) < ϕ(Finit) + ε.

Proof: See Appendix B. �
It is worth remarking that each relaxed set Fk is tighter

than the set relaxed by SDR. We denote Fsdr = {Q|Q �
0, tr(CiQ) ≤ βi, i = 1, 2, tr(DjQ) ≤ γj , ∀j}. Since ppT �
0, we have {Q|(Q,p) ∈ Fk} ⊆ Fsdr for any k. Thus, the
solution obtained by Algorithm 1 is better than that obtained
by the SDR method.

C. DC Optimization Over the Convex Set

Here, we maximize the approximated average sum rate
over the convex set C(B) by employing the convex–concave
procedure [31]. The convex–concave procedure is a general
polynomial-time algorithm for solving DC problems, and it
works quite well in practice [39]–[41]. We first rewrite the
optimization problem as follows:

ϕ (C(B)) = maximize
(Q,p)∈C(B)

F (Q)−G(Q). (45)

The objective function of problem (45) is a DC function, and
the convex part F (Q) can be lower bounded by its tangent at
any point Qc � 0, i.e.,

F (Q) ≥ F (Qc) + tr
{
∇F (Qc)

T (Q −Qc)
}

(46)

where ∇F (Qc) is the gradient of F (Q) at Qc, i.e.,

∇F (Qc) = − 1
N

∑
m,k

wmk

∑
q

gq ·BT
mk

σ2
E + gq · tr(BmkQc)

(47)

with

wmk =
1

ln(2)
·

exp
{
σ2
E + gq · tr(BmkQc)

}∑
k exp {σ2

E + gq · tr(BmkQc)}
. (48)

Therefore, by replacing F (Q)−G(Q) with a concave lower
bound, i.e.,

F̂ (Q;Qc) = F (Qc) + tr
{
∇F (Qc)

T (Q−Qc)
}
−G(Q)

(49)

we obtain the following concave maximization problem:

maximize
(Q,p)∈C(B)

F̂ (Q;Qc). (50)

The convex–concave procedure obtains a locally optimal
solution of problem (45) by solving a sequence of concave
maximization problems (50) with different Qc values. Once
the optimal solution of (50) in the first iteration is found at
initial Qc, which is denoted as Q∗

1, the algorithm replaces
Qc with Q∗

1 and then solve (50) again. At the nth iteration,
the optimal solution of (50) is obtained by replacing Qc with
Q∗

n−1, which is the optimal solution at the (n− 1)th iteration.
The convex–concave procedure for solving problem (45) is
summarized in Algorithm 2.

Algorithm 2 The convex–concave procedure

1) Initialization: Given tolerance ε > 0, choose a random
initial point Q0 � 0, set N = 1, s0 = F (Q0)−G(Q0),
s1 = F (Q∗

1)−G(Q∗
1). Let Q∗

n represent the optimal so-
lution of (50) at the nth iteration.

2) Stopping criterion: If |sn − sn−1| > ε, go to the next step;
otherwise, STOP.

3) Convex approximation:
a) set Qc = Q∗

n and solve problem (50) to obtain Q∗
n+1.

b) set sn+1 = F (Q∗
n+1)−G(Q∗

n+1) and Qopt = Q∗
n+1.

4) Set n := n+ 1 and go to step 2).
5) Output: Qopt and sn.
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The stopping criterion in Algorithm 2 is guaranteed to be
satisfied due to the following proposition.

Proposition 4: The sequence {sn} generated by Algorithm 2
is monotonically increasing, i.e., sn+1 ≥ sn.

Proof: Since the feasible set of (50) does not change in
each iteration, the optimal solution in the nth iteration Q∗

n is a
feasible point in the (n+ 1)th iteration. Thus, we have

F̂
(
Q∗

n+1;Q
∗
n

)
≥ F̂ (Q∗

n;Q
∗
n) = sn. (51)

According to (46), it follows that

sn+1 = F̂
(
Q∗

n+1;Q
∗
n+1

)
≥ F̂

(
Q∗

n+1;Q
∗
n

)
. (52)

Therefore, {sn} is monotonically increasing. �
Since problem (45) is nonconvex, Algorithm 2 is not guar-

anteed to converge to the globally optimal value ϕ(C(B)).
Therefore, by embedding Algorithm 2 into Algorithm 1, we
obtain a near-optimal solution Qopt

k and the corresponding
approximated upper bound of ϕ(Finit) at the kth iteration of
Algorithm 1. Simulation results show that the gap between
the approximated upper bound and the actual upper bound is
usually very small because Algorithm 2 is insensitive to the
initial point Q0.

After obtaining Qopt
k at the kth iteration, we need to get a

feasible precoder pair (P1,P2) and the corresponding lower
bound ϕL(Fk). The feasible precoders can be obtained by ex-
tracting a feasible solution of (31) from Qopt

k . There are several
rank-1 approximation methods to do this, and we adopt the
Gaussian randomization procedure [42], which is summarized
in Algorithm 3.

Algorithm 3 Gaussian randomization procedure

1) Given a number of randomizations L, and set l = 1.
2) If l ≤ L, go to the next step; otherwise, STOP.
3) Generate ξl∼N(0,Qopt

k ), and construct a feasible point p̃l

p̃l =
ξl√

max

{{
ξT
l Ciξl

βi

}
i=1,2

,
{

ξT
l Djξl

γj

}
∀j

} .

4) Set l := l + 1 and go to step 2).
5) Choose p̃ = argmax1≤l≤L f(p̃l)− g(p̃l).
6) Set ϕL(Fk) = f(p̃)− g(p̃).
7) Recover (P1,P2) from p̃.

D. Complexity Analysis

The computational complexity of Algorithm 1 is analyzed as
follows. In each iteration, Algorithm 1 invokes Algorithms 2
and 3 twice to calculate the approximated upper bound and the
lower bound. Since the complexity of Algorithm 3 is negligible,
the complexity order for Algorithm 1 is given by

2Kmax · C (53)

where Kmax is the maximum number of iterations, and C is
the complexity order for Algorithm 2. Algorithm 2 obtains
the local maxima of problem (45) by solving a sequence of

Fig. 2. Empirical cumulative distribution of the output sn of Algorithm 2 from
3000 random initial points.

concave maximization problems (50). Each concave maximiza-
tion problem (50) can be solved by the interior-point method,
and the complexity order is about O(N3) [38], where N =

4(N2
T1

+N2
T2
)
2
+ 2(N2

T1
+N2

T2
) is the total number of opti-

mization variables in problem (50). Assuming that Algorithm 2
solves problems (50) by T times, the complexity order for
Algorithm 2 is given by O(T ·N3). Based on (53), the overall
complexity order for Algorithm 1 is then O(2KmaxT ·N3).

IV. NUMERICAL RESULTS

Here, we provide numerical results to demonstrate the ef-
ficacy of our proposed algorithm for the fading CMAC-WT
under finite-alphabet inputs. For illustration purposes, we adopt
the exponential correlation model, i.e.,

[C(ρ)]i,j = ρ|i−j| ∀(i, j) (54)

where the scalar ρ ∈ [0, 1) depicts the interference coupling
between different antennas.

A. Convergence and Complexity Analysis

The convergence behavior of the proposed algorithm is
demonstrated by considering a two-user fading CMAC-WT
with two STs, one SR, one ED, and one PR. Each node in the
system has two antennas. The correlation matrices are given by

Φh = C(0.3),Ψh1
= C(0.95),Ψh2

= C(0.85)

Φg = C(0.6),Ψg1 = C(0.4),Ψg2 = C(0.95)

Φf = C(0.5),Ψf1 = C(0.3),Ψf2 = C(0.5). (55)

The maximum transmit power is constrained by β1=β2 = 2.
The interference threshold is given as γ = 0.2. The input data
vectors s1 and s2 are drawn independently from binary phase-
shift keying (BPSK) constellation, and the noise power is set as
σ2
R = σ2

E = 0.1.
The empirical cumulative distribution of the output sn of

Algorithm 2 from 3000 random initial points is shown in Fig. 2.
The tolerance ε in Algorithm 2 is set as 0.002. l(B) and
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Fig. 3. Evolution of the objective function in (31) with BPSK inputs.

u(B) are given as l(B) = −
√

2 · 1 and u(B) =
√

2 · 1. The
empirical cumulative distribution illustrates that Algorithm 2
is insensitive to the initial point. Therefore, although problem
(45) is nonconvex, the approximated upper bound obtained by
Algorithm 2 is accurate.

Fig. 3 shows the evolution of the approximated upper bound
and the lower bound of ϕ(Finit). To guarantee that the ap-
proximated upper bound is accurate enough, the tolerance ε in
Algorithm 2 is set as 0.001. In each iteration of Algorithm 1,
we invoke Algorithm 2 to generate the approximated upper
bound, which can be seen as the actual upper bound of ϕ(Finit)
according to the result in Fig. 2. We also invoke Algorithm 3
to generate feasible precoding matrices and the corresponding
lower bound ϕL(Finit). Note that when all hyperrectangles in
B shrink down to a point, we can ensure that the approximated
upper bound serves exactly as the actual upper bound. In the
figure, we can see that after ten iterations, the gap between
the approximated upper bound and the lower bound is less
than 0.005. Moreover, near-optimal precoders within 0.002
tolerance are obtained through Algorithm 1 after 30 iterations.

B. Comparison With Other Possible Methods

Here, we consider a secure cognitive radio system that has
two STs, one SR, one ED, and one PR. Each node in the system
has two antennas. The correlation matrices are given by

Φh = C(0.25),Ψh1
= C(0.95),Ψh2

= C(0.9)

Φg = C(0.75),Ψg1 = C(0.5),Ψg2 = C(0.3)

Φf = C(0.5),Ψf1 = C(0.8),Ψf2 = C(0.5). (56)

The transmit power constraint is set as β1 = β2 = β = 2. The
interference thresholds γ1 = 0.2 and γ1 = 0.02 are considered.
The modulation is quaternary phase-shift keying (QPSK), and
the noise variance σ2

R = σ2
E = σ2. Then, the SNR can be

defined as SNR = β/σ2.
Figs. 4 and 5 show the comparison results between the

Gaussian precoding method and the no-precoding case. The

Fig. 4. Interference threshold at the PR is 10 dB less than the transmit power
(γ1 = 0.2).

Fig. 5. Interference threshold at the PR is 20 dB less than the transmit power
(γ1 = 0.02).

Gaussian precoding method is to design transmit covariance
matrices that maximize the average secrecy sum rate under
Gaussian signaling, i.e.,

maximize
Q1,Q2

EH1,H2
(R1)− EG1,G2

(R2)

subject to tr(Qi) ≤ βi, i = 1, 2

tr
(
Φfj

)
· tr

(
Q1Ψf1,j +Q2Ψf2,j

)
≤ γj ∀j

(57)

where Qi is the transmit covariance matrix of the ith ST, i =
1, 2; R1 and R2 are given by

R1 = log det

(
I+

1
σ2
R

H1Q1H
H
1 +

1
σ2
R

H2Q2H
H
2

)
(58)

R2 = log det

(
I+

1
σ2
E

G1Q1G
H
1 +

1
σ2
E

G2Q2G
H
2

)
. (59)

Problem (57) is a DC optimization problem; thus, it can be
efficiently solved by DC algorithms proposed in [41]. After
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obtaining the optimal transmit covariance matrices (Q̄1, Q̄2),
we can evaluate the finite-alphabet-based average secrecy sum
rate under the corresponding optimal precoders (Q̄1/2

1 , Q̄
1/2
2 ).

In the no-precoding case, we set precoding matrices as Pi =
(βi/NTi

)I, i = 1, 2, and then scale them down to meet interfer-
ence threshold constraints, i.e.,

P̄i =

[
max
1≤j≤J

{
tr
(
Φfj

)
γj

·
2∑

i=1

tr
(
PH

i Ψfi,jPi

)}]− 1
2

·Pi. (60)

Based on the results in Figs. 4 and 5, we have the following
remarks.

1) In the low-SNR regime, our proposed precoding algo-
rithm and the Gaussian precoding method have the same
performance. According to [17], the low-SNR expan-
sion of the mutual information is irrelevant to the input
distribution; thus, the optimal precoders designed under
Gaussian inputs are also optimal for the finite-alphabet
input case.

2) In the medium- and high-SNR regimes, our proposed
precoding algorithm offers a much higher average secrecy
sum rate than the Gaussian precoding method. In Fig. 4,
the normalized optimal precoders designed by our pro-
posed precoding algorithm in the high-SNR regime are
given by

1
σ
Popt

1 =

[
0.663 + 0.008i −1.188+ 0.277i
0.663 + 0.008i −1.188+ 0.277i

]
(61)

1
σ
Popt

2 =

[
−0.578 + 0.399i 1.209 − 0.459i
−0.578 + 0.399i 1.209 − 0.459i

]
.

(62)

Equations (61) and (62) imply that when the noise power
σ2 is decreased, we should reduce the optimal transmit

power tr((Popt
1 )

H
Popt

1 ) and tr((Popt
2 )

H
Popt

2 ) such that
the average secrecy sum rate is kept at the maximum
value of 1.0265 b/s/Hz in the high-SNR regime. Fur-
thermore, the performance of the Gaussian precoding
method severely degrades with the increasing SNR in
the high-SNR regime because both EHI(s;yR) and
EGI(s; zE) in (7) and (8) will saturate at logN in
the high-SNR regime. Therefore, if we do not carefully
control the transmit power, the average secrecy sum rate
with finite-alphabet inputs EHI(s;yR)− EGI(s; zE)
will approach zero in the high-SNR regime. Since the
Gaussian precoding method ignores the saturation prop-
erty of finite-alphabet input systems, the correspond-
ing average secrecy sum rate with finite-alphabet inputs
severely degrades in the high-SNR regime.

3) Since the average secrecy sum rate for the Gaussian pre-
coding method decreases with the increasing SNR in the
high-SNR regime, we can use a portion of the available
transmit power to make sure that the SNR is maintained at
a certain level. The average secrecy sum rate is then kept
at its maximum value. This simple power control method
has been used in [11] and [12] to improve the secrecy
sum-rate performance in the high-SNR regime.

4) The interference threshold constraints have a huge impact
on the system performance. For example, when the SNR
is 20 dB, the average secrecy sum rate is 0.90 and
0.31 b/s/Hz for γ1 = 0.2 and γ1 = 0.02, respectively.
More specifically, given the set of all feasible precoding
matrices, i.e.,

P=

⎧⎨
⎩(P1,P2)

∣∣∣∣∣∣
tr
(
PH

i Pi

)
≤βi, i=1, 2

tr
(
Φfj

)
·

2∑
i=1

tr
(
PH

i Ψfi,jPi

)
≤γj ∀j

⎫⎬
⎭

(63)

we define the following parameters:

β̄i = min

{
min
1≤j≤J

{
γj

tr
(
Φfj

)
· λmin

(
Ψfi,j

)
}
, βi

}
(64)

where λmin(A) represents the smallest eigenvalue of A.
Then, for all (P1,P2) ∈ P , we can easily prove that

tr
(
PH

i Pi

)
≤ β̄i, i = 1, 2. (65)

Equation (65) implies that when β̄i < βi, i = 1, 2, the
power constraints in P are inactive, i.e., only a portion
of the available transmit power can be used to meet all in-
terference threshold constraints. In the case of Figs. 4 and
5, (β̄1, β̄2) is calculated as

(β̄1, β̄2) =

{
(0.5, 0.2), γ1 = 0.2

(0.05, 0.02), γ1 = 0.02.
(66)

Since (β1, β2) = (2, 2), the sum-rate performance in
Figs. 4 and 5 is only constrained by interference threshold
constraints.

5) The performance of the no-precoding case is very poor
because we do not exploit any statistical CSI from STs to
the SR and the ED.

C. Comparison of Different Modulations

Finally, we investigate the average secrecy sum rate with
different modulations. We consider a secure cognitive radio
system with two STs, one SR, one ED, and two PRs. Each
node is equipped with two antennas. The correlation matrices
are given by

Φh = C(0.3),Ψh1
= C(0.9),Ψh2

= C(0.95)

Φg = C(0.6),Ψg1 = C(0.7),Ψg2 = C(0.2)

Φf1 = C(0.4),Ψf1,1 = C(0.6),Ψf2,1 = C(0.4)

Φf2 = C(0.5),Ψf1,2 = C(0.3),Ψf2,2 = C(0.5). (67)

The maximum transmission power at the ith ST is given as
β1 = β2 = 2. The interference threshold at the jth PR is set
as γ1 = γ2 = 0.2. The noise variance is σ2

R = σ2
E = σ2.

Fig. 6 shows the average secrecy sum rate with BPSK,
QPSK, and 8-PSK modulations. The results in Fig. 6 show
that the average secrecy sum rate is an increasing function with
respect to the order of modulation. They also indicate that our
proposed precoding design can achieve robust performances for
a large range of SNRs with different modulations.
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Fig. 6. Average secrecy sum rate for the fading CMAC-WT with different
modulations.

V. CONCLUSION

In this paper, we have considered the precoding design for
the fading CMAC-WT with finite-alphabet inputs. We have
presented a two-layer precoding algorithm, which exploits sta-
tistical CSI of fading channels, to maximize the approximated
average secrecy sum rate. The key idea of our algorithm is
to find a computationally efficient DC representation of the
approximated average secrecy sum rate. By introducing a new
matrix variable, we have reformulated the approximated aver-
age secrecy sum rate as a DC function and then generated a
sequence of relaxed sets to approach the nonconvex feasible set.
Each relaxed set can be expressed as the union of convex sets.
Finally, near-optimal precoding matrices have been obtained
iteratively by maximizing the approximated average secrecy
sum rate over a sequence of relaxed sets.

Several numerical results have been provided to demonstrate
the efficacy of our proposed precoding algorithm. They have
also shown that the proposed precoding algorithm is superior
to the conventional Gaussian precoding method and the no-
precoding case in the medium- and high-SNR regimes.

APPENDIX A
PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1: We rewrite Finit as the union of K
subsets, i.e.,

Finit =

K⋃
i=1

F̄i (68)

where F̄i is given by

F̄i = {(Q,p)|(Q,p) ∈ Finit,p ∈ Bi} . (69)

For any (Q,p) ∈ F̄i, the following inequalities hold:

(p− l(Bi)) · (p− l(Bi))
T ≥ 0 (70)

(p− u(Bi)) · (p− u(Bi))
T ≥ 0 (71)

(p− l(Bi)) · (p− u(Bi))
T ≤ 0 (72)

Q = ppT , l(Bi) ≤ p ≤ u(Bi). (73)

Thus, F̄i can be rewritten as

F̄i = {(Q,p)|(Q,p) ∈ Finit,p ∈ Bi} ∩ S(Bi). (74)

By relaxing Q = ppT in F̄i into Q � ppT , one can easily
obtain the following:

F̄i ⊆ C(Bi) ∀i. (75)

Therefore, Finit ⊆ C(B1) ∪ · · · ∪ C(BK). This completes the
proof. �

Proof of Proposition 2: We divide S(B) into two sub-
sets, i.e.,

S(B) = S1(B) ∪ S2(B) (76)

where S1(B) and S2(B) are given by

S1(B) = {(Q,p)|(Q,p) ∈ S(B),p ∈ B1}
S2(B) = {(Q,p)|(Q,p) ∈ S(B),p ∈ B2} . (77)

It is obvious that if we can prove

S(B1) ⊆ S1(B)
S(B2) ⊆ S2(B) (78)

then C(B1) ∪ C(B2) ⊆ C(B). We will restrict our attention to
show S(B1) ⊆ S1(B), and S(B2) ⊆ S2(B) can be proved in
the same way.

Since B1 ⊆ B, we have

l(B) ≤ l(B1) ≤ u(B1) ≤ u(B). (79)

Therefore, the following inequalities hold for any l(B1) ≤ p ≤
u(B1):

[l(B1)−l(B)][p−l(B1)]
T +[p− l(B)] [l(B1)−l(B)]T ≥0

[u(B1)−u(B)][p−u(B1)]
T +[p−u(B)][u(B1)−u(B)]T ≥0

[l(B1)−l(B)][p− u(B)]T +[p−l(B1)][u(B1)−u(B)]T ≤0.

The given inequalities can be rewritten, respectively, as

Q− Lp(B)− Lp(B)T + l(B) · l(B)T

≥ Q− Lp(B1)− Lp(B1)
T + l(B1) · l(B1)

T

Q−Up(B)−Up(B)T + u(B) · u(B)T

≥ Q−Up(B1)−Up(B1)
T + u(B1) · u(B1)

T

Q− Lp(B)−Up(B)T + l(B) · u(B)T

≤ Q− Lp(B1)−Up(B1)
T + l(B1) · u(B1)

T (80)

where Lp(B) = l(B) · pT , and Up(B) = u(B) · pT . Inequal-
ities (80) provide a sufficient condition for S(B1) ⊆ S1(B).
Therefore, C(B1)∪C(B2)⊆C(B). This completes the proof. �
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APPENDIX B
PROOF OF PROPOSITION 3

Since {ϕ(Fk)} is a monotonically decreasing sequence
lower bounded by ϕ(Finit), the limit of {ϕ(Fk)} exists [36].
Suppose that

lim
k→∞

ϕ(Fk) = v > ϕ(Finit) (81)

then for any ε > 0, there exists K > 0 such that for any k > K ,
we have

v < ϕ (C(Bg)) < v + ε. (82)

Let r(B) denote the length of the longest edge of a hyperrec-
tangle B satisfying B ⊆ Binit. In each iteration of Algorithm 1,
we divide Bg along r(Bg) into two hyperrectangles. Therefore,
r(Bg) should satisfy the following condition:

lim
k→∞

r(Bg) = 0. (83)

We further denote the center of Bg by pg , i.e., pg = (l(Bg) +
u(Bg))/2. When r(Bg) → 0, we have

S(Bg) →
{
(Q,p)

∣∣Q = pgp
T
g ,p = pg

}
. (84)

Therefore, C(Bg) converges to a point when pg belongs to the
feasible set P ; otherwise, C(Bg) is an empty set. Thus, we have

lim
r(Bg)→0

ϕ (C(Bg)) = f(pg)− g(pg), pg ∈ P . (85)

Combining (83) and (85), we conclude that

lim
k→∞

ϕ (C(Bg)) = f(pg)− g(pg) < v (86)

which is contradictory to (82). Therefore, {ϕ(Fk)} converges
to ϕ(Finit). This completes the proof. �
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