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Abstract—The doubly selective (DS) channel estimation in the
large-scale multiple-input multiple-output (MIMO) systems is a
challenging problem due to the large number of the channel coeffi-
cients to be estimated, which requires unaffordable and prohibitive
pilot overhead. In this paper, first we conduct the analysis about the
common sparsity of the basis expansion model (BEM) coefficients
among all the BEM orders and all the transmit–receive antenna
pairs. Then, a novel pilot pattern is proposed, which inserts the
guard pilots to deal with the intercarrier interference under the
superimposed pilot pattern. Moreover, by exploiting the common
sparsity of the BEM coefficients among different BEM orders and
different antennas, we propose a block distributed compressive
sensing-based DS channel estimator for the large-scale MIMO
systems. Its structured sparsity leads to the reduction of the pilot
overhead under the premise of guaranteeing the accuracy of the es-
timation. Furthermore, taking consideration of the block structure,
a pilot design algorithm referred to as block discrete stochastic op-
timization is proposed. It optimizes the pilot positions by reducing
the coherence among different blocks of the measurement matrix.
Besides, a linear smoothing method is extended to large-scale
MIMO systems to improve the accuracy of the estimation. Simula-
tion results verify the performance gains of our proposed estimator
and the pilot design algorithm compared with the existing schemes.

Index Terms—Block distributed compressive sensing, channel
estimation, doubly selective, large-scale MIMO, pilot design.

I. INTRODUCTION

LARGE-SCALE multiple-input multiple-output (MIMO)
[1], [2] attracts much academic interest and is considered

as a promising technology in the incoming 5G cellular systems
[3]. It enhances the data throughput and improves the link reli-
ability of wireless communication systems by taking advantage
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of the high spatial multiplexing gains. In order to benefit from
large-scale MIMO, one must obtain accurate channel state in-
formation (CSI) which guarantees data recovery and contributes
to multi-antenna array gains.

Time and frequency selective channel, which is also referred
to as doubly-selective (DS) channel, is related to many wireless
access links, such as high-speed trains [4] and millimeter-wave
communications [5], [6]. Frequency selectivity is caused by
multipath propagation and time selectivity results from Doppler
shift. For the DS channel estimation, inter-carrier interference
(ICI) is a challenging problem, which incurs a large amount of
channel coefficients to be estimated and the high complexity
of the estimation schemes. In [7]–[9], basis expansion model
(BEM) was proposed to simplify the estimation process. The
work [7] presented the research about the optimal training for
DS channel estimation. The work [8] verified several channel
estimation schemes including the least squares (LS) estimator,
the linear minimum mean square error (LMMSE) estimator and
the best linear unbiased estimator (BLUE) combined with dif-
ferent BEM basis in single-input single-output (SISO) systems.
And then in [9] they were extended to MIMO systems with
2 transmit antennas. However, in large-scale MIMO systems
with more than a dozen or even dozens of antennas, the number
of channel coefficients to be estimated increases largely. The
conventional schemes are not feasible since it requires unaf-
fordable pilot overhead and prohibitive complexity to avoid the
inter-antenna interference (IAI) and process the ICI. To our best
knowledge, the DS channel estimation in large-scale MIMO
systems has been seldom considered in the existing works.

Compressive sensing (CS) is an important framework to de-
crease the pilot overhead and the complexity of channel esti-
mation by taking advantage of the channel sparsity [10]. The
channel sparsity in three domains are concerned in the existing
literature, including the delay-Doppler domain [11], the beam
domain [12], and the delay domain [13]. In delay-Doppler do-
main, a large Doppler shift incurs the leakage effects, which
increases the channel sparsity and deteriorates the performance.
Processing the leakage effects and enhancing the sparsity re-
quire high complexity of computation [14]. The sparsity in beam
domain relies on an open and wide propagation environment
with few scatters. It is usually increased in the environment
with rich reflection and the compressive sensing framework
is no longer applicable. The most commonly exploited spar-
sity presents in delay domain in the existing CS based channel
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estimation schemes. It is analyzed that the broadband channels
present sparsity in delay domain.

Various CS based channel estimation schemes appear re-
cently. In [15], the authors proposed compressive estimation
schemes for flat fading channels in large-scale MIMO systems.
It analyzed the channel sparsity among all the antennas and
jointly estimated the channels of all the receive antennas in
the base station. The works [16]–[20] proposed compressive
CSI estimation schemes under frequency selective channels. In
[16], the authors considered the channel model with the com-
mon support and the individual support. Then they proposed an
algorithm which adapted to this kind of specific structure for
large-scale MIMO systems. The work [17] proposed a scheme
for the uplink channels in large-scale MIMO systems, which was
relatively simple since it wasn’t concerned with IAI. In [18], an
approach with an unknown sparsity was proposed, which was
more realistic in the practical systems. The works [19], [20]
suggested different block-structured pursuit algorithms. In [4],
the authors presented the research about DS channel estimation
based on CS in SISO systems. It proposed a channel estimation
scheme based on the position information in high mobility sys-
tems and optimized the corresponding pilot design. The work
is extended to MIMO systems with 4 transmit antennas in [11],
which is referred to as a low coherence compressed (LCC) chan-
nel estimation scheme. However, on the one hand, this scheme
utilized the sparsity in delay-Doppler domain which is notably
increased by a large Doppler shift, and on the other hand, it could
not support much more antennas. The work [13] introduced dis-
tributed compressive sensing (DCS) to DS channel estimation in
SISO systems. It utilized the channel sparsity in delay domain
and formulated the estimation into a DCS framework, which
guaranteed a more accurate recovery.

Mutual coherence is an important factor concerned with the
accuracy of the recovery in CS framework [10]. In SISO sys-
tems, several algorithms were proposed to decrease the mutual
coherence of the measurement matrix. In [13], it proposed dis-
crete stochastic optimization (DSO) to select the suboptimal
pilot positions and [11] proposed an algorithm to jointly opti-
mize the pilot values and the pilot positions. In MIMO systems,
[21] and [22] employed the optimization algorithms based on the
stochastic search and the genetic algorithm. However, they were
designed for orthogonal pilots, which meant the requirement of
a large pilot overhead in large-scale MIMO systems. The works
[12] adopted the nonorthogonal pilots with equispaced pilot po-
sitions for the consideration of reducing the correlation among
different virtual channels.

In this paper, we propose a block distributed compressive
sensing (BDCS) based DS channel estimation scheme for the
large-scale MIMO systems and a novel pilot design algorithm
corresponding to the unique structure. They reduce the pilot
overhead under the premise of guaranteeing the estimation ac-
curacy. In specific, firstly we analyze the common sparsity of
the BEM coefficients among all the BEM orders and all the
transmit-receive antenna pairs in delay domain. Different from
the sparsity analysis in the existing literature [18]–[20], we focus
on the sparsity of the BEM coefficients rather than the channel
coefficients. In addition to the analysis of the common sparsity

among different BEM orders for SISO systems in [13], the com-
mon sparsity among different transmit antennas is considered
here as well; Then, a novel pilot pattern is proposed for DS chan-
nels in large-scale MIMO systems. It combines the property of
the superimposed structure and the setting of the guard pilots.
The superimposed structure reflects the superimposed pilot po-
sitions of different transmit antennas, which reduces the pilot
overhead. The guard pilots are designed for the ICI of the DS
channels, which avoid the contamination from the data subcar-
riers; Moreover, we propose a BDCS based channel estimator
for DS channels in large-scale MIMO systems. The unknown
BEM coefficients present block and common sparsity simulta-
neously. The structure benefits the localization of the nonzero
elements, and then leads to the performance improvement and
the pilot overhead reduction; Furthermore, taking advantage of
the analyzed block sparsity, a novel pilot design algorithm, re-
ferred to as block discrete stochastic optimization (BDSO), is
proposed. It also contributes to the performance gain and the
spectral efficiency.

The remainder of this paper is organized as follows. Section II
introduces the system model and the fundamentals of CS. In
Section III, we present the proposed channel estimation scheme
and the proposed pilot design algorithm. In Section IV, we
conduct the analysis of the complexity. In Section V, simulation
results verify the validity of our work. Section VI concludes this
paper.

Notations: (·)T denotes matrix transpose, (·)H represents ma-
trix conjugate transpose. diag(·) means a diagonal matrix, | · |
denotes the absolute value, 〈·, ·〉 denotes the inner product, ‖ · ‖2

stands for the Euclidean norm, ‖ · ‖0 denotes the number of
nonzero values. ⊗ represents Kronecker product. S indicates a
set, A[m,n] represents the (m + 1, n + 1)-th element of matrix
A. [A]S represents the selected rows of A, whose indices cor-
respond to the set S. CN (0, σ2) represents the complex Gaus-
sian distribution with zero mean and σ2 variance. Ix means the
identity matrix of order x. vec(A) denotes the column-ordered
vectorization of matrix A.

II. SYSTEM MODEL AND FUNDAMENTALS

In this section, we introduce our system model, which in-
cludes the transmission model and the channel model of the
large-scale MIMO-orthogonal frequency division multiplexing
(OFDM) systems. Besides, the fundamental knowledge of CS
and structured compressive sensing (SCS) is briefly illustrated.

A. System Model

1) Transmission Model: We consider a large-scale MIMO-
OFDM system. The base station is equipped with a great many
antennas. It serves a number of terminals with a single antenna.
As shown in Fig. 1, the antenna array is arranged in a rectangle,
which consists of NB antennas. We adopt frequency division
duplex (FDD) mode in our system. In the OFDM system, for
any transmit-receive antenna pair, there exist N subcarriers in
a parallel transmission. A part of the subcarriers are selected
as pilot subcarriers to estimate the channel coefficients and the
remaining ones are responsible for data.
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Fig. 1. Transmission model.

2) Channel Model: We consider a DS channel model. The
multipath effect leads to the frequency selectivity and the
Doppler shift results in the time selectivity. For each transmit-
receive antenna pair between the user side and the base station,
the channel in time domain can be assumed to be a finite impulse
response (FIR) filter. Let h(nB ) [n, l] represent the channel coeffi-
cient of the (l + 1)-th tap at the (n + 1)-th instant of the channel
between the nB -th antenna in the base station and the terminal,
in which nB ∈ [1, NB ], l ∈ [0, L − 1], and n ∈ [0, N − 1]. As
L is the length of the channel, we have

h(nB ) [n, l] = 0, l < 0 or l ≥ L. (1)

Assume that H(nB )
t ∈ CN ×N describes channel matrix in time

domain, and its elements can be expressed as

H
(nB )
t [p, q] = h(nB ) [p, mod(p − q,N)], p, q ∈ [0, N − 1].

(2)
The channel matrix in frequency domain H(nB )

f can be derived
from

H(nB )
f = WH(nB )

t WH , (3)

in which W is the discrete fourier transform (DFT) matrix
and W [m,n] = N−1/2 exp(−j2πmn/N), m,n ∈ [0, N − 1],
j2 = −1.

It is found that for DS channels, we have to estimate the
channel coefficients of each channel tap at each time in-
stant. The total number of coefficients to be estimated for a
transmit-receive antenna pair is NL. N is the number of the
samplings in time domain, which is equal to the number of
the subcarriers, and L is the number of multipaths, i.e., the
length of the channel. BEM [9] is an important technique for
DS channel estimation, which is always introduced to reduce
the number of the coefficients to be estimated. Let h(nB )

l =
(h(nB ) [0, l], . . . , h(nB ) [N − 1, l])T ∈ CN ×1 denote the chan-
nel coefficients of the l-th channel tap and the nB -th transmit
antenna. Each h(nB )

l , l ∈ [0, L − 1], nB ∈ [1, NB ] can be ex-
pressed as

h(nB )
l = Vθ

(nB )
l + ε

(nB )
l , (4)

in which,

θ
(nB )
l = (θ(nB ) [0, l], θ(nB ) [1, l], . . ., θ(nB ) [D − 1, l])T ∈ CD×1

is the BEM coefficients, and

ε
(nB )
l = (ε(nB ) [0, l], ε(nB ) [1, l], . . . , ε(nB ) [N − 1, l])T ∈ CN ×1

is the BEM modeling error. Besides, V = (v0,v1, . . . ,vD−1),
in which, vd is the BEM basis function, d ∈ [0,D − 1], and
D (D � N) is the number of the BEM orders. Apparently
the number of channel coefficients to be estimated is reduced
from NL to DL for one transmit-receive antenna pair. The
vector of the channel taps for the nB -th transmit antenna can be
formulated as

h
(nB )

= (V ⊗ IL ) θ
(nB )

+ ε(nB ) , (5)

in which

h
(nB )

=
((

h̃
(nB )

0

)T
, . . . ,

(
h̃

(nB )

N −1

)T
)T

,

θ
(nB )

=
((

θ̃
(nB )

0

)T
, . . . ,

(
θ̃

(nB )

D−1

)T
)T

,

ε(nB ) =
((

ε̃
(nB )
0

)T
, . . . ,

(
ε̃

(nB )
N −1

)T
)T

, (6)

with

h̃(nB )
n =

(
h(nB ) [n, 0], . . . , h(nB ) [n,L − 1]

)T

∈ CL×1,

θ̃
(nB )
d =

(
θ(nB ) [d, 0], . . . , θ(nB ) [d, L − 1]

)T

∈ CL×1,

ε̃(nB )
n =

(
ε(nB ) [n, 0], . . . , ε(nB ) [n,L − 1]

)T

∈ CL×1,

for n ∈ [0, N − 1] and d ∈ [0,D − 1]. h̃(nB )
n represents the

channel coefficients at the (n + 1)-th time instant of the nB -

th antenna. θ̃
(nB )
d is the BEM coefficients of the d-th order and

the nB -th antenna. ε̃(nB )
n is the modeling error.

Now we briefly derive the expression of the BEM in fre-
quency domain. From (2) and (4), by simple arrangement and
observation, we have

H(nB )
t =

D−1∑
d=0

diag(vd)Θ̃
(nB )
d + E(nB ) , (7)

where Θ̃(nB )
d is a circulant matrix with θ̃

(nB )
d = [θ(nB )

[d, 0], . . . , θ(nB ) [d, L − 1]]T as its first column [9]. Due to its
circularity, Θ̃(nB )

d can be diagonalized as

Θ̃(nB )
d = WH diag

(
WL θ̃

(nB )
d

)
W, (8)

where WL denotes the submatrix that extracts the first L
columns of W. Accordingly, substitute (8) into (7) and the
time domain channel matrix can be denoted as

H(nB )
t =

D−1∑
d=0

diag(vd)WH diag
(
WL θ̃

(nB )
d

)
W + E(nB ) .

(9)
Substituting (9) into (3), it is not hard to find that the channel
matrix in frequency domain can be expressed as

H(nB )
f =

D−1∑
d=0

VdΘ
(nB )
d + Δ(nB ) , (10)
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in which,

Vd = Wdiag (vd)WH ,

Θ(nB )
d = diag

(√
NW

(
θ̃

(nB )
d

T
,01×(N −L)

)T )
,

and Δ(nB ) is the modeling error [8].

B. CS and SCS

In this part, the basic knowledge of CS and SCS are in-
troduced. The SCS means that the sparsity presents a certain
structure, including DCS, block compressive sensing (BCS),
and BDCS here.

1) CS: CS is an attractive framework, which recovers a high-
dimensional sparse signal from a low dimensional observed
vector. It solves the underdetermined problem

r = Ax + e, (11)

in which x ∈ CZ×1 is an unknown high-dimensional vector,
A ∈ CM ×Z (M � Z) is the measurement matrix, r ∈ CM ×1

represents the observed low-dimensional vector, and e denotes
the noise term. The theory of CS is based on two important
premises:

1) The first one is the sparsity of the high-dimensional vector,
which means that x is a sparse vector with sparsity K, i.e.,
‖x‖0 = K,K � Z.

2) The second one is that the measurement matrix A satisfies
restricted isometry property (RIP) condition [10].

If these two conditions are satisfied, a high probability of the
exact recovery of x can be guaranteed. But it should be noted that
it is difficult to verify RIP condition due to the prohibitive com-
plexity and the tremendous computation. In practical schemes,
mutual coherence property (MCP) [23] is an important reference
value of the measurement matrix, which reflects the coherence
between columns.

Definition 1: The MCP of a matrix A is

μ(A) = max
1≤i �=j≤Z

| 〈ai ,aj 〉 |
‖ai‖2‖aj‖2

, (12)

where ai and aj denote the i-th and the j-th columns of A.
Lemma 1 ([24]): Suppose that A has MCP μ and that the

sparsity of x is K with K < (1/μ + 1)/4. Furthermore, suppose
that we obtain measurements of the form r = Ax + e. Then
when the set of solutions B(r) = {z : ‖Az − r‖2 ≤ ζ}, ζ is a
constant value, the solution x̂ obeys

‖x − x̂‖2 ≤ ‖e‖2 + ζ√
1 − μ(4K − 1)

. (13)

Lemma 1 verifies that a smaller value of the MCP will lead
to a more accurate recovery of x. Basis pursuit (BP) [25] and
orthogonal matching pursuit (OMP) [26] are the widely adopted
recovery algorithms of CS.

2) SCS: Several models of SCS are elaborated as follows.
We summarize the properties of the problems and the corre-
sponding recovery algorithms.

1) DCS: Many applications are concerned with a problem
that several high-dimensional sparse vectors with the same

positions of nonzero elements are compressed by a com-
mon measurement matrix,

Rj = AXj + wj , j ∈ [0, J − 1]. (14)

It is inefficient to recover each sparse vector separately.
DCS framework is applied to jointly compress and recover
the multiple correlated sparse signals. The basic form of
DCS is

R = AX + w, (15)

in which,

R = [R0, . . . ,RJ−1] ∈ CM ×J ,

X = [X0, . . . ,XJ−1] ∈ CZ×J ,

and

w = [w0, . . . ,wJ−1] ∈ CM ×J

is the noise matrix. All the columns of X share the same
nonzero positions. The recovery accuracy also relies on
the common sparsity of X and the property of the mea-
surement matrix A as CS above. As proved in [27], DCS
provides higher accuracy of the recovery with fewer ob-
served values than CS by utilizing the common sparsity.
The reason is that multiple vectors contribute to the lo-
calization of the nonzero elements. Simultaneous-OMP
(SOMP) [27] is an important algorithm for the recovery
of DCS.

2) BCS: The BCS means that the sparsity of the unknown
high-dimensional vector presents block sparsity. The basic
form of the problem is

r′ = Ax′ + e′, (16)

in which, for better illustration of the block sparsity of x′,
it is decomposed as

x′ =
[
xT

1 ,xT
2 , . . . ,xT

T

]T
, xt ∈ Cd×1, t ∈ [1, T ],

(17)
and accordingly the measurement matrix A can be de-
composed as

A = [A1,A2, . . . ,AT ] , At ∈ CM ×d . (18)

We can see that the unknown high-dimensional vector x′

is decomposed into T parts. The K sparsity indicates that
K of them are nonzero blocks while the remaining T − K
parts are zero blocks, K � T . The nonzero block means
that all the elements of the block are nonzero, and the
zero block is constituted by d zero elements. We set an
example for further clarification about the block sparsity
with assumption of T = 6 and K = 2 as

x′ =

[
xT

1︸︷︷︸
0

xT
2︸︷︷︸

xT
2

xT
3︸︷︷︸
0

xT
4︸︷︷︸
0

xT
5︸︷︷︸

xT
5

xT
6︸︷︷︸
0

]T

, (19)

in which, x2, x5 are the nonzero blocks while x1, x3, x4,
x6 are the zero blocks. The recovery algorithm, block or-
thogonal matching pursuit (BOMP), is proposed in [22] to
solve the problem of BCS. The block sparsity is utilized to
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improve the accuracy of the nonzero elements localization
and contributes to the performance gain.

3) BDCS: The BDCS combines the property of the DCS and
the BCS. The structure includes both the block sparsity
of each unknown high-dimensional vector and the com-
mon sparsity among different unknown high-dimensional
vectors. The form of the BDCS is described as

R′ = AX′. (20)

Similar to BCS, the measurement matrixA is decomposed
as

A = [A1,A2, . . . ,AT ] , At ∈ CM ×d , (21)

and the unknown matrix X′ can be decomposed into T ×
J parts as

X′ =

⎡
⎢⎢⎢⎣

x11 . . . x1J

x21 . . . x2J

...
. . .

...
xT 1 . . . xTJ

⎤
⎥⎥⎥⎦ , (22)

in which, xtj ∈ Cd×1, t ∈ [1, T ], j ∈ [1, J ]. The block
sparsity is reflected on the j-th column of X′, j ∈ [1, J ]. K
out of the T parts are nonzero blocks while the remaining
ones are zero blocks. The common sparsity means that
the position of the K nonzero blocks are the same among
all the J columns of X′. We further explain the block and
common sparsity with an example under the assumption
of K = 2, T = 6, J = 3.

X′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
11︸︷︷︸
0

xT
21︸︷︷︸

xT
21

xT
31︸︷︷︸
0

xT
41︸︷︷︸
0

xT
51︸︷︷︸

xT
51

xT
61︸︷︷︸
0

xT
12︸︷︷︸
0

xT
22︸︷︷︸

xT
22

xT
32︸︷︷︸
0

xT
42︸︷︷︸
0

xT
52︸︷︷︸

xT
52

xT
62︸︷︷︸
0

xT
13︸︷︷︸
0

xT
23︸︷︷︸

xT
23

xT
33︸︷︷︸
0

xT
43︸︷︷︸
0

xT
53︸︷︷︸

xT
53

xT
63︸︷︷︸
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(23)
The recovery algorithms, structured subspace pursuit
(SSP) [28] and block simultaneous orthogonal matching
pursuit (BSOMP) [29], exploit both the common sparsity
and the block sparsity to get the more accurate recovery
performance.

III. THE PROPOSED ESTIMATOR

In this section, a novel DS channel estimator is proposed for
large-scale MIMO systems by extending the DS channel estima-
tion scheme in SISO systems [13]. In the process of extension,
firstly we propose a novel pilot pattern which additionally con-
siders the superimposed pilot structure of all the antennas. Then
the estimator is formulated as a BDCS based problem which
is different from the DCS based problem for SISO systems.
Furthermore exploiting the block sparsity, the pilot design al-
gorithm optimizes the coherence among different blocks of the
measurement matrix in comparison to the different columns in
SISO systems.

A. The Common Sparsity of BEM Coefficients

In this part, we analyze the common sparsity of the BEM co-
efficients for large-scale MIMO systems. In addition to the com-
mon sparsity among different BEM orders, which is discussed
in [13] for SISO systems, we consider the common sparsity
among different antennas here as well.

Theorem 1: The elements of the BEM coefficients set
{θ̃(nB )

d }, nB ∈ [1, NB ], d ∈ [0,D − 1], in a large-scale MIMO
system share common sparsity among different BEM orders
and different transmit antennas under the condition of sm a x

C ≤
1

10BW , in which smax denotes the maximum distance between
any two transmit antennas, C is the speed of light and BW is
the signal bandwidth.

Proof: The proof is conducted by three steps. Firstly we
analyze the common sparsity of the channel coefficients in delay
domain among all the sampling instants. Then the common
sparsity of the channel coefficients among different antennas
is illustrated. Finally, exploiting the relationship between the
channel coefficients and the BEM coefficients, we prove the
common sparsity of the BEM coefficients among different BEM
orders and different antennas.

Lemma 2 ([13]): The channel coefficients of the nB -th
nB ∈ [1, NB ] transmit-receive antenna pair {h̃(nB )

n } ∈ CL×1

have common sparsity among all the sampling instants n ∈
[0, N − 1], i.e., their nonzero positions are the same.

Assume that there are L channel taps for a transmit-
receive antenna pair and the index set of them is denoted as
[0, L − 1]. Conventionally, there exist K (K � L) nonzero
taps, {l1, . . . , lK } ⊂ [0, L − 1], which means that

h(nB )
l = (h(nB ) [0, l], . . . , h(nB ) [N − 1, l])T = 0, (24)

for any l /∈ {l1, . . . , lK }. It is not hard to find that {h̃(nB )
n }

n ∈ [0, N − 1] are all K-sparse vectors

h̃(nB )
n =

(
h(nB ) [n, 0], . . . , h(nB ) [n, L − 1]

)T

=
(
0, . . . , h(nB ) [n, l1], . . . , 0, . . . , h(nB ) [n, lK ], . . . , 0

)T

(25)

and their common nonzero positions in delay domain are
{l1, . . . , lK }.

Lemma 3 ([15]): In large-scale MIMO systems, all the
transmit-receive antenna pairs share common sparsity in delay
domain if sm a x

C ≤ 1
10BW , in which smax denotes the maximum

distance between any two transmit antennas, C is the speed of
light and BW is the signal bandwidth.

As referred in [15], if sm a x
C ≤ 1

10BW , the links of all the
transmit-receive antenna pairs scatter invariantly in space. Thus
the indices of their strong channel taps are the same, i.e.,
{l1, . . . , lK } ⊂ [0, L − 1]. In another word, they share common
sparsity in delay domain. It is safe to assume that all the transmit-
receive antenna pairs have the same nonzero positions of the
channel taps in a large-scale MIMO system, which means that
the elements of {h̃(nB )

n }, nB ∈ [1, NB ] have common sparsity
among different antennas. As to the condition of sm a x

C ≤ 1
10BW ,

in the long term evolution (LTE) systems [5] with parameters of
BW = 20 MHz and the center frequency of 2.6 GHz, we have
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Fig. 2. The diagram of CE-BEM.

that the 10 × 10 transmit antenna array has common channel
support [15].

Combined Lemma 2 and Lemma 3 together, we conclude that
the elements of {h̃(nB )

n }, nB ∈ [1, NB ], n ∈ [0, N − 1] have
common sparsity among all the sampling instants and all the
antennas. Now we will discuss the relationship of the BEM
coefficients and the channel coefficients. For the convenience of
elaboration, we ignore the modeling error and get

h(nB )
l ≈ Vθ

(nB )
l . (26)

The linear relationship reflects that θ
(nB )
l = 0, l /∈{l1, . . . , lK },

since h(nB )
l = 0, l /∈ {l1, . . . , lK }. Apparently, the elements of

{θ̃(nB )
d }, nB ∈ [1, NB ], d ∈ [0,D − 1] have common sparsity

among different BEM orders and different antennas.

B. The Proposed Pilot Pattern

In this part, a novel pilot pattern is proposed for DS channels
in large-scale MIMO systems, which combines the guard pilot
design and the superimposed structure among different antennas
to combat the ICI and reduce the pilot overhead.

Complex exponential basis expansion model (CE-BEM)
is adopted due to its simple form. We have that the ba-
sis function of the CE-BEM vd = (1, . . . , ej 2π

N n(d−D −1
2 ) ,

. . . , ej 2π
N (N −1)(d−D −1

2 ))T , d ∈ [0,
D − 1], j2 = −1. In Fig. 2, we present the geometric expression
of the CE-BEM for better illustration. A square, consisting of
N rows and N columns, denotes the wireless channel between
a transmit-receive antenna pair. The N rows represent the N
transmitted subcarriers and the N columns correspond to the
N received subcarriers. The intersection of the i-th row and the
i-th column means the channel coefficient of the i-th subcarrier,
i ∈ [1, N ] while the intersection of the i-th row and the j-th col-
umn means the interference to the j-th subcarrier from the i-th
subcarrier, j ∈ [1, N ], j �= i. Under the function of the CE-BEM
with order D, the square is reduced to D diagonals as shown by
the red lines in Fig. 2. To combat the ICI, which is represented
by the D − 1 subdiagonals, the nonzero pilots are always

Fig. 3. Comparison of different pilot patterns. (a) A pilot pattern for DS
channels in SISO systems. (b) A superimposed pilot pattern for frequency
selective channels in large-scale MIMO systems. (c) Our proposed pilot pattern
for DS channels in large-scale MIMO systems. (d) An orthogonal pilot pattern
for DS channels in MIMO systems.

accompanied by several zero guard pilots on both sides. It is
derived in [7] that the optimal number of guard pilots on one
side is D − 1. Besides, in [8], we can see that only the central
D pilots including the nonzero one are not contaminated by the
data subcarriers.

To clearly elaborate the motivation of our designed pilot
pattern, we introduce two existing pilot patterns as shown in
Fig. 3(a) and (b).

1) In Fig. 3(a), we present a pilot pattern proposed for DS
channels in SISO system [13]. Assume that the pilots are
arranged in G groups. For each group, a nonzero pilot
is equipped with D − 1 zero guard pilots on each side.
It selects the D central pilots of each group for channel
estimation and obtains an ICI-free structure.

2) Fig. 3(b) depicts a superimposed pilot pattern, which is
proposed for frequency selective channels in large-scale
MIMO systems [28]. The nonzero pilots occupy the same
positions for each antenna to reduce the large pilot over-
head brought by the increased number of antennas. The
sequence of the nonzero pilots for each antenna consists
of random ±1 and different antennas are distinguished
by different sequences. In another word, it utilizes the
differentiation of different antennas in code domain.

Considering that our pilot pattern is designed for DS chan-
nels in large-scale MIMO systems, we combines the above two
properties together. As shown in Fig. 3(c), the guard pilots are
inserted in the superimposed structure. It gives the considera-
tion to both the ICI avoidance and the reduction of the pilot
overhead. To our best knowledge, little is concerned about the
pilot pattern for DS channels in large-scale MIMO systems. In



GONG et al.: BLOCK DISTRIBUTED COMPRESSIVE SENSING-BASED DOUBLY SELECTIVE CHANNEL ESTIMATION AND PILOT DESIGN 9155

the existing literature [9], the orthogonal pattern with guard pi-
lots, as shown in Fig. 3(d), is prepared for DS channels in MIMO
systems. It cannot support more antennas since the requirement
of pilot subcarriers is too large.

C. The Proposed Estimator

In this part, we propose a BDCS based estimator for DS
channels in large-scale MIMO systems by properly extending
the DCS based channel estimation scheme in SISO systems.

1) Review of the DCS Based Estimator in [13]: The work
[13] proposed a DCS based estimator for DS channels in SISO
systems. Its pilot pattern is depicted as Fig. 3(a). The pilots are
divided into G groups and for each group, the central D pilots
are selected for channel estimation to guarantee the ICI-free
structure. Let Sd , d ∈ [0,D − 1], represent the index set of the
(d + 1)-th selected pilot subcarriers of all the groups. The index
set of the nonzero pilots SD −1

2
is also denoted as Scen . Thus we

have

S0 = Scen − D − 1
2

,

...

SD −1
2

= Scen ,

...

SD−1 = Scen +
D + 1

2
. (27)

Let PSISO ∈ CG×1 denote the values of the nonzero pilots.
The channel estimator, which describes the relationship between
the received pilots and the CE-BEM coefficients, is derived as
Lemma 4.

Lemma 4: The CE-BEM coefficients θ̃
SISO
d , d ∈ [0,D − 1]

can be obtained by solving
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
YSISO

]
S0

= P̃SISO [WL ]SD −1
2

θ̃
SISO
0 + ηSISO

0

...[
YSISO

]
SD −1

2

= P̃SISO [WL ]SD −1
2

θ̃
SISO
D −1

2
+ ηSISO

D −1
2

...[
YSISO

]
SD −1

= P̃SISO [WL ]SD −1
2

θ̃
SISO
D−1 + ηSISO

D−1

(28)

Here, YSISO represents the received signal and [YSISO ]Sd

means the received pilot subcarriers, d ∈ [0,D − 1]. P̃SISO =
diag(PSISO). θ̃

SISO
d is the BEM coefficients with order d,

d ∈ [0,D − 1]. ηSISO
d is the noise term, d ∈ [0,D − 1].

Proof: The proof is summarized briefly as follows. The re-
ceived signal in frequency domain is

YSISO = HSISO
f SSISO + ΥSISO , (29)

in which, SSISO is the transmitted signal and ΥSISO is the
noise term. Combining with the formula (10), the CE-BEM
decomposition of the received signal is derived as

YSISO =

(
D−1∑
d=0

VdΘSISO
d

)
SSISO + ΥSISO

=

(
D−1∑
d=0

I<d−D −1
2 >

N S̃SISOWL θ̃
SISO
d

)
+ ΥSISO ,

(30)

in which, S̃SISO = diag(SSISO) and I<d−D −1
2 >

N means that the
identity matrix with order N shifts down circularly for d − D−1

2
rows.

Assume that Ψd ′ = [IN ]S
d
′ , d

′ ∈ [0,D − 1], the received
pilots can be expressed as

[YSISO ]S
d
′ = Ψd ′

(
D−1∑
d=0

I
<d−D −1

2 >
N S̃SISOWL θ̃

SISO
d

)
+ ηSISO

d ′

(31)
in which,

Ψd ′ I<d−D −1
2 >

N S̃SISO =

{
P̃SISO [IN ]Sc e n

0

d = d
′
= D−1

2

else
.

(32)
Substituting (32) into (31), it is not hard to obtain (28). �

Thus, it is found that
[
[YSISO ]S0

. . . [YSISO ]SD −1
2

. . . [YSISO ]SD −1

]

= P̃SISO [WL ]SD −1
2

[
θ̃

SISO
0 . . . θ̃

SISO
D −1

2
. . . θ̃

SISO
D−1

]

+
[
ηSISO

0 . . . ηSISO
D −1

2
. . . ηSISO

D−1

]
. (33)

As analyzed above, the elements of {θ̃SISO
d }, d ∈ [0,D − 1]

have common sparsity among different BEM orders. Thus (33)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Y]S0
=

[
P̃(1) [WL ]SD −1

2

. . . P̃(NB ) [WL ]SD −1
2

] [
θ̃

(1)
0

T
. . . θ̃

(NB )
0

T
]T

+ η0

...

[Y]SD −1
2

=
[
P̃(1) [WL ]SD −1

2

. . . P̃(NB ) [WL ]SD −1
2

] [
θ̃

(1)
D −1

2

T
. . . θ̃

(NB )
D −1

2

T
]T

+ η D −1
2

...

[Y]SD −1
=

[
P̃(1) [WL ]SD −1

2

. . . P̃(NB ) [WL ]SD −1
2

] [
θ̃

(1)
D−1

T
. . . θ̃

(NB )
D−1

T
]T

+ ηD−1

(34)
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is a typical DCS problem and can be solved by the SOMP
algorithm.

2) The Proposed BDCS Based Estimator: Firstly we intro-
duce a key finding that the CE-BEM coefficients present both
the common sparsity and the block sparsity. Then exploiting the
structured sparsity, we propose a BDCS based estimator for DS
channel estimation in large-scale MIMO systems.

The pilot pattern of the large-scale MIMO system is described
in Fig. 3(c). For each transmit antenna, the positions of the pilot
subcarriers are arranged as the same way as the SISO systems.
Besides, among different antennas, we adopt the superimposed
structure, in which, the pilot subcarriers of all the antennas have
the same indexes.

Let P(nB ) ∈ CG×1 represent the pilot values of the nB -th
antenna, nB ∈ [1, NB ]. Considering that the received signal is
the addition of the signals transmitted by all the antennas on
the base station, we derive the relationship between the received
pilots and the CE-BEM coefficients of all the transmit-receive
antenna pairs as Theorem 2.

Theorem 2: The estimation of the CE-BEM coefficients of
all the transmit-receive antenna pairs {θ̃(nB )

d }, d ∈ [0,D − 1],
nB ∈ [1, NB ], is conducted by (34) as shown at the bottom of
the previous page, in which, P̃(nB ) = diag(P(nB )).

Proof: Considering that the transmitted signals of different
antennas overlap with each other in the air, we have that the
received signal is

Y =
NB∑

nB =1

H(nB )
f S(nB ) + Υ

=
NB∑

nB =1

(
D−1∑
d=0

VdΘ
(nB )
d

)
S(nB ) + Υ

=
NB∑

nB =1

(
D−1∑
d=0

I<d−D −1
2 >

N S̃(nB )WL θ̃
(nB )
d

)
+ Υ, (35)

in which, S(nB ) is the transmitted signal of the nB -th antenna,
S̃(nB ) = diag(S(nB )), nB ∈ [1, NB ], and Υ is the noise term.

Then the pilot subcarriers are selected as

[Y]S
d
′ = Ψd ′

NB∑
nB =1

(
D−1∑
d=0

I<d−D −1
2 >

N S̃(nB )WL θ̃
(nB )
d

)
+ ηd ′

=
NB∑

nB =1

Ψd ′

(
D−1∑
d=0

I<d−D −1
2 >

N S̃(nB )WL θ̃
(nB )
d

)
+ ηd ′

=
NB∑

nB =1

P̃(nB ) [WL ]S D −1
2

θ̃
(nB )
d ′ + ηd ′ , (36)

in which d
′ ∈ [0,D − 1]. Thus (34) is obtained as the complete

expression.

Fig. 4. The diagram of the common and block sparsity with L = 5 and K = 2.

For convenience of observation, we reshape (34) in a compact
form as [

[Y]S0
. . . [Y]SD −1

2

. . . [Y]SD −1

]
= ZΛ

+
[
[η]S0

. . . [η]SD −1
2

. . . [η]SD −1

]
, (37)

in which,

Z =
[
P̃(1) [WL ]SD −1

2

. . . P̃(NB ) [WL ]SD −1
2

]
, (38)

and

Λ =

⎡
⎢⎢⎣

θ̃
(1)
0 . . . θ̃

(1)
D−1

...
. . .

...

θ̃
(NB )
0 . . . θ̃

(NB )
D−1

⎤
⎥⎥⎦ . (39)

For better illustration, Fig. 4 depicts an example of the CE-
BEM coefficient matrix Λ with the channel length L = 5 and
the sparsity K = 2. It is obvious that Λ has common sparsity
among its columns. Besides, when we adjust the rows of Λ
in the order of the channel tap, it presents the nonzero blocks
and the zero blocks, referred to as the block sparsity. It can
be concluded that the CE-BEM coefficient matrix Λ have both
common and block sparsity since the elements of {θ̃(nB )

d }, d ∈
[0,D − 1], nB ∈ [1, NB ] have common sparsity not only among
different CE-BEM orders, but also among different antennas.
Now we can see that the proposed estimator (34) attributes to
a BDCS problem, which can be solved by SSP or BSOMP
algorithms.

The work [30] proposed an estimator for DS channels in large-
scale MIMO systems as well, which can only be performed
in time frequency training (TFT)-OFDM systems. It utilizes
the correlation of the Pseudo-random sequence for the nonzero
elements localization and is not suitable for the conventional
cyclic prefix (CP)-OFDM.

D. The Proposed Pilot Design Algorithm

In this part, we propose a novel pilot design algorithm to op-
timize the pilot positions Scen for better performance of estima-
tion. Considering the block structure, it decreases the coherence
among different blocks of the measurement matrix, which is



GONG et al.: BLOCK DISTRIBUTED COMPRESSIVE SENSING-BASED DOUBLY SELECTIVE CHANNEL ESTIMATION AND PILOT DESIGN 9157

Algorithm 1: The proposed pilot design algorithm: BDSO.
Initialization:

1: Generate random ±1 sequences for P(nB ) ∈ ZG×1,
nB ∈ [1, NB ].

2: Generate equidistant indexes
S̃(0)

cen = {s̃(0)
1 , s̃

(0)
2 , . . . , s̃

(0)
G }, which satisfies

s̃
(0)
u ∈ [1, N ],

∣∣∣s̃(0)
u − s̃

(0)
v

∣∣∣≥2D − 1, u, v ∈ [1, G].

3: ρ0 = 0, ρ0,0 = 1, i = j = 0, and S(0)
cen = S̃(0)

cen .
for m = 1, . . . , Iter
1) Reformulation

Obtain S̄(m−1)
cen by changing an element of S̃(m−1)

cen ,∣∣∣s̄(m−1)
u − s̄

(m−1)
v

∣∣∣ ≥ 2D − 1 and then reformulate the

measurement matrix Z̄(m−1) and Z̃(m−1) according to
S̄(m−1)

cen and S̃(m−1)
cen as (38).

2) Conversion
Convert Z̄(m−1) and Z̃(m−1) to Z̄(m−1)

s and Z̃(m−1)
s as

(40) and (41).
3) Calculation

if μ(Z̄(m−1)
s ) < μ(Z̃(m−1)

s ),
set S̃(m )

cen = S̄(m−1)
cen , i = m + 1;

else
set S̃(m )

cen = S̃(m−1)
cen .

end
4) Probability

ρm = ρm−1 + 1
m (Ti − ρm−1), in which Ti is a zero

vector except that the i-th element is 1.
5) Update

if ρm,i > ρm,j ,

S(m )
cen = S̃(m )

cen , j = i;
else
S(m )

cen = S(m−1)
cen .

end
end

different from the MCP of the pilot design algorithm for SISO
systems.

As analyzed above, the CE-BEM coefficient matrix Λ
presents block sparsity when its rows are arranged in the order
of the channel tap. For more accurate localization, the columns
of the measurement matrix Z are also arranged in the order of
the channel tap accordingly. Assume that Al = {l + 1, l + 1 +
L, l + 1 + 2L, . . . , l + 1 + (NB − 1)L}, l ∈ [0, L − 1], and
we have

Za =
[
[ZT ]A0

T
, [ZT ]A1

T
, . . . , [ZT ]AL −1

T
]
. (40)

Apparently, Za consists of L blocks and the coherence among
them affects the localization of the nonzero blocks. Assume that

Zs =
[
vec([ZT ]A0

T
), vec([ZT ]A1

T
), . . . , vec([ZT ]AL −1

T
)
]
,

(41)
and μ(Zs) takes on the reference value of the coherence among
difference blocks. In our proposed Algorithm 1, referred to as
BDSO, we search for a proper nonzero pilot positions SD −1

2
in

(38) with a small μ(Zs) by the iteration process. The detailed
steps are summarized as follows.

We initialize the values of the nonzero pilots P(nB ) ∈
ZG×1, nB ∈ [1, NB ] with random sequences consisting of
±1, and then generate S̃cen = {s̃1, s̃2, . . . , s̃G} randomly,
which satisfies |s̃u − s̃v | ≥ 2D − 1, s̃u , s̃v ∈ [0, N − 1], u, v ∈
[1, G]. The condition guarantees the groups of pilots do not over-
lap with each other. In the reformulation stage, S̄cen is obtained
by changing an element of S̃cen and Z̄ and Z̃ are reformulated
accordingly as (38). Then we convert the form of the matrix Z̄
and Z̃ to Z̄s and Z̃s as (40) and (41) for the convenience of
calculating the coherence. Thus the S̃cen is updated according
to the comparison between μ(Z̄s) and μ(Z̃s). Finally, in the
state transition stage, the probability of each state is calculated.
Comparing the current and the last states, the Scen which cor-
responds to the larger probability is selected. As the iteration
process converges, we obtain the optimized Scen with a steady
solution.

In contrast to the pilot design algorithm [13] proposed for
the SISO systems, referred to as DSO, we pay attention to the
coherence among different blocks of the measurement matrix
instead of the columns, which avoids a large amount of un-
necessary search. The works [21] and [22] proposed the pilot
design algorithms for MIMO systems as well, which utilized
the genetic and the iterative search to optimize the pilot po-
sitions. However, they were designed for the orthogonal pi-
lot patterns and assigned different pilot positions to different
antennas. Thus, a large number of pilot subcarriers were re-
quired and the estimator could only support a maximum of
4 antennas.

E. Linear Smoothing

In order to relieve the performance deterioration brought by
the modeling error of the CE-BEM, our previous work [29] pro-
posed a linear smoothing method for SISO systems. In specific,
we approximate the channel coefficients corresponding to the
N time instants with a straight line. Here we extend it to large-
scale MIMO systems by repeating the smoothing process for
each transmit-receive antenna pair.

1) Select the indices of the nonzero taps {l1, . . . , lK } in
[0, L − 1] by comparison of the channel coefficients
h(nB )

l , l ∈ [0, L − 1], nB ∈ [1, NB ].
2) Obtain the estimated channel coefficients corresponding

to the two central instants of each lk , k ∈ [1,K].

ĥ(nB )
[
N

4
− 1, lk

]
≈ 2

N

⎛
⎝

N/2−1∑
n=0

h(nB ) [n, lk ]

⎞
⎠ ,

ĥ(nB )
[

3N

4
− 1, lk

]
≈ 2

N

⎛
⎝

N −1∑
n=N/2

h(nB ) [n, lk ]

⎞
⎠ ,

lk ∈ {l1, . . . , lK } , nB ∈ [1, NB ].
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3) Calculate the slope of the approximate line determined by
the two central points of each h(nB )

lk
:

β
(nB )
lk

=
ĥ(nB ) [N

4 − 1, lk ] − ĥ(nB ) [ 3N
4 − 1, lk ]

N/2
,

lk ∈ {l1, . . . , lK } , nB ∈ [1, NB ].

4) The processed channel can be expressed as

ĥ(nB ) [n, lk ] =
(

n + 1 − N

4

)
β

(nB )
lk

+ ĥ(nB )
[

N

4
− 1, lk

]
,

lk ∈ {l1, . . . , lK } , nB ∈ [1, NB ], n ∈ [0, N − 1].

Remark: As described above, we mainly focus on the
discussion about the downlink DS channel estimation in the
large-scale systems, which is a challenging problem involving
the IAI. For the integrity of the work, the uplink DS channel es-
timation in the large-scale MIMO systems is briefly introduced,
although it is relatively simple and not concerned with the IAI.
The estimator can be expressed as (42) as shown at the bottom

of this page, in which, Y
′ (nB )

represents the signal received
by the nB -th antenna on the base station, P̃

′
= diag(P

′
),

P
′ ∈ ZG×1 denotes the pilot sequence, θ̃

′ (nB )
d is the CE-BEM

coefficients and η̃
′ (nB )
d is the noise term, d ∈ [0,D − 1],

nB ∈ [1, NB ]. It is found that the CE-BEM coefficients
presents common sparsity while without block sparsity, which
is different from the downlink channel estimator. The uplink
channel estimator (42) attributes to a DCS problem, while the
downlink channel estimator (34) is a BDCS problem. Thus the
recovery algorithm SOMP is suitable for the problem, instead
of SSP.

IV. COMPLEXITY

In this section, we conduct the analysis of the complexity
of our proposed DS channel estimation scheme for the large-
scale MIMO systems. The computation complexity overhead
consists of three parts, the recovery algorithm of the BDCS-
based problem, the BDSO pilot design algorithm and the linear
smoothing method. The complexity for the BSOMP algorithm
is O(G2), which has been analyzed in [29]. Then as to the
proposed BDSO pilot design algorithm, the total times of mul-
tiplication for calculation of μ is GL2NB and the complexity
is O(IterGL2NB ). Moreover, the complexity for the linear
smoothing method is O(NKNB ). Finally, it is obtained that
the complexity for our proposed channel estimation scheme is
O(G2 + IterGL2NB + NKNB ).

Fig. 5. The decrease of μ with different pilot design algorithms.

V. SIMULATION

In this section, we conduct simulations by MATLAB to ver-
ify the performance gain of our proposed BDCS based channel
estimator and the proposed pilot design algorithm BDSO. The
proposed channel estimator is compared with the channel es-
timation schemes, least squares (LS) and LCC [11]. The LS
algorithm performs pseudo-inverse directly, which ignores the
sparsity of the CE-BEM coefficients and the LCC scheme is CS-
based, which utilizes the sparsity in the delay-doppler domain.
The recovery algorithms includes SOMP, SSP and BSOMP. As
to the proposed pilot design algorithm BDSO, the equidistant pi-
lot pattern [12] and the genetic algorithm (GA) [22] are selected
as the comparison schemes. The equidistant pilot pattern means
that the nonzero pilots are distributed uniformly, which have a
equal distant with each other and the GA algorithm exploits the
genetic search to obtain the optimized pilot positions. The linear
smoothing method is represented by “li” in the figures.

The parameters of our simulated system are given here.
We consider an OFDM system with the channel model ITU-
Vehicular B [31], which is also adopted in the work [30] for
simulation. The number of the subcarriers N = 4096 and the
number of the nonzero ones G = 192. We can see that the pi-
lot overhead is G(2D − 1)/N = 23.4%. The channel length is
L = 200 with K = 6 nonzero paths. The central frequency is
2.35 GHz and the bandwidth is 20 MHz. QPSK is selected as
the modulation technique.

A. The Verification of BDSO

In Figs. 5 and 6, we verify the effectiveness of our proposed
pilot design algorithm BDSO under the number of the antennas
NB = 12 and the vehicular speed v = 300 km/h. Fig. 5 depicts
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Fig. 6. The NMSE performance of the channel estimator with different pilot
design algorithms for 100 repetitions.

the variation process of μ with the increasing of the iterations
in Algorithm 1. We can see that the μ of the equidistant pilot
pattern is approximately equal to 1, which is the upper bound
of μ. The curve corresponding to GA declines slightly in the
iteration process with 1000 times. The convergence speed is too
low and the final value of μ is approximately equal to 0.6. As
to our proposed BDSO, in the former 500 iterations, it presents
obvious trend of declining and in the latter 500 iterations, it
reaches the steady state. The final value of μ is less than 0.1.

It is known that two reference values can be utilized to mea-
sure the performance of the CS recovery algorithms. The one
is the accuracy of the recovery and the other is the probability
of the accurate recovery. Fig. 6 depicts the normalized mean
square error (NMSE) performance of 100 repetitions for each
pilot design algorithm with the recovery algorithm SSP. We can
see that for the equidistant pilot pattern, the percentage of the
NMSE skip points reaches almost 30% and the amplitude of
the NMSE skip point reaches 5 dB. Besides, the NMSE of the
recovered points is just −10 dB, which cannot satisfy the re-
quired accuracy of the estimation. The NMSE of the recovered
points for the GA algorithm is −22 dB, which is acceptable for
the channel estimation. But the percentage of the NMSE skip
points is 15% and their amplitude reaches −15 dB. As to the
proposed algorithm BDSO, the NMSE performance is −25 dB
without any skip points. The results of the simulation are in
accordance with the conclusion that a smaller μ leads to a better
recovery performance.

B. NMSE Versus SNR

In Fig. 7, we conduct the simulation to compare the perfor-
mance of LS, LCC and our proposed BDCS based estimator
under the number of the antennas NB = 12 and the vehicular
speed v = 300 km/h with the BDSO optimized pilot positions.
It is found that the curves of the LS and the LCC schemes are
close to 0 dB and they hardly vary with the increasing of SNR.
They are ineffective under the above conditions since the pi-
lot overhead cannot support so many antennas. We adopt three

Fig. 7. The NMSE performance versus the SNR with the number of the
antennas NB = 12 and the vehicular speed v = 300 km/h.

Fig. 8. The NMSE performance of our proposed BDCS based estimator ver-
sus the SNR with different number of antennas and the vehicular speed v =
300 km/h.

recovery algorithms to solve our proposed BDCS based esti-
mator, including SOMP, SSP and BSOMP. The SSP and the
BSOMP present similar accuracy of recovery and their corre-
sponding curves almost coincide with each other. In contrast to
SOMP, the SSP and BSOMP have performance gain since they
utilize both the block and the common sparsity instead of the
common sparsity only. Besides, we perform the linear smooth-
ing method combined with the three recovery algorithms and
obtain the obvious performance gain. BSOMP-li presents the
best performance of the estimation. In Fig. 8, we verify the effec-
tiveness of our proposed BDCS based estimator with BSOMP
under NB = 16, NB = 20, and NB = 24. It is found that the
performance deteriorates as the number of antennas increases
since their pilot overhead is the same.

C. NMSE Versus Normalized Doppler Shift

In Fig. 9, we present the variation of the NMSE as the nor-
malized Doppler shift increases under SNR = 30 dB with the
BSOMP algorithm. It is found that the curve of the LS and
LCC schemes are close to 0 dB since they are ineffective under
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Fig. 9. The NMSE performance versus the normalized Doppler shift with
SNR = 30 dB and the number of antennas NB = 12.

Fig. 10. The NMSE performance of our proposed BDCS based estimator
versus the SNR with different number of antennas and SNR = 30 dB.

the pilot overhead of 23.4%. The recovery performance dete-
riorates with the normalized Doppler shift increasing since the
increased ICI leads to the increased modeling error. The algo-
rithm BSOMP has performance gain compared with the SOMP
and the gap is more obvious with linear smoothing method.
The algorithm SSP presents the worst performance since it is
sensitive to the interference.

In Fig. 10, we verify the effectiveness of our proposed BDCS
based estimator with more antennas NB = 16, NB = 20, NB =
24 utilizing the algorithm BSOMP under SNR = 30 dB. It
is found that the performance gets worse as the number of
antennas increases. All curves present the same rising tendency
as the normalized Doppler shift increases. Besides, the linear
smoothing method contributes to the performance gain.

D. NMSE Versus the Sparsity K

Fig. 11 depicts the variation of NMSE as the channel sparsity
K increases for our proposed BDCS based estimator under
SNR = 25 dB exploiting the algorithm BSOMP and the linear
smoothing method. We present the simulation for NB = 12,

Fig. 11. The NMSE performance of our proposed BDCS based estimator
versus the sparsity K with SNR = 25 dB and the vehicular speed v = 300 km/h.

NB = 16, NB = 20 and NB = 24. Since the pilot overhead
is fixed, the performance deteriorates as the sparsity increases
under the same number of antennas and the performance gets
worse as the number of the antennas increases under the same
channel sparsity.

VI. CONCLUSION

We propose a BDCS based DS channel estimator and the cor-
responding pilot design algorithm BDSO in large-scale MIMO
systems. It supports more antennas and guarantees the perfor-
mance of the estimation with the affordable pilot overhead. In
the future, we may take account of the sparsity in beam domain
and improve the performance of the estimation further.
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