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An Improved Square-Root Algorithm for V-BLAST Based on
Efficient Inverse Cholesky Factorization
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Abstract—A fast algorithm for inverse Cholesky factorization
is proposed, to compute a triangular square-root of the estimation
error covariance matrix for Vertical Bell Laboratories Layered
Space-Time architecture (V-BLAST). It is then applied to pro-
pose an improved square-root algorithm for V-BLAST, which
speedups several steps in the previous one, and can offer further
computational savings in MIMO Orthogonal Frequency Division
Multiplexing (OFDM) systems. Compared to the conventional
inverse Cholesky factorization, the proposed one avoids the back
substitution (of the Cholesky factor), and then requires only half
divisions. The proposed V-BLAST algorithm is faster than the
existing efficient V-BLAST algorithms. The expected speedups of
the proposed square-root V-BLAST algorithm over the previous
one and the fastest known recursive V-BLAST algorithm are
3.9 ∼ 5.2 and 1.05 ∼ 1.4, respectively.

Index Terms—MIMO, V-BLAST, square-root, fast algorithm,
inverse Cholesky factorization.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) wireless
communication systems can achieve huge channel ca-

pacities [1] in rich multi-path environments through exploiting
the extra spatial dimension. Bell Labs Layered Space-Time ar-
chitecture (BLAST) [2], including the relative simple vertical
BLAST (V-BLAST) [3], is such a system that maximizes the
data rate by transmitting independent data streams simultane-
ously from multiple antennas. V-BLAST often adopts the or-
dered successive interference cancellation (OSIC) detector [3],
which detects the data streams iteratively with the optimal
ordering. In each iteration, the data stream with the highest
signal-to-noise ratio (SNR) among all undetected data streams
is detected through a zero-forcing (ZF) or minimum mean-
square error (MMSE) filter. Then the effect of the detected
data stream is subtracted from the received signal vector.

Some fast algorithms have been proposed [4]–[11] to re-
duce the computational complexity of the OSIC V-BLAST
detector [3]. An efficient square-root algorithm was proposed
in [4] and then improved in [5], which also partially inspired
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the modified decorrelating decision-feedback algorithm [6]. In
additon, a fast recursive algorithm was proposed in [7] and
then improved in [8]–[11]. The improved recursive algorithm
in [8] requires less multiplications and more additions than
the original recursive algorithm [7]. In [9], the author gave
the “fastest known algorithm” by incorporating improvements
proposed in [10], [11] for different parts of the original recur-
sive algorithm [7], and then proposed a further improvement
for the “fastest known algorithm”.

On the other hand, most future cellular wireless standards
are based on MIMO Orthogonal Frequency Division Multi-
plexing (OFDM) systems, where the OSIC V-BLAST detec-
tors [3]–[11] require an excessive complexity to update the
detection ordering and the nulling vectors for each subcarrier.
Then simplified V-BLAST detectors with some performance
degradation are proposed in [12], [13], which update the
detection [12] or the detection ordering [13] per group of
subcarriers to reduce the required complexity.

In this letter, a fast algorithm for inverse Cholesky fac-
torization [14] is deduced to compute a triangular square-
root of the estimation error covariance matrix for V-BLAST.
Then it is employed to propose an improved square-root
V-BLAST algorithm, which speedups several steps in the
previous square-root V-BLAST algorithm [5], and can offer
further computational savings in MIMO OFDM systems.

This letter is organized as follows. Section II describes the
V-BLAST system model. Section III introduces the previous
square-root algorithm [5] for V-BLAST. In Section IV, we
deduce a fast algorithm for inverse Cholesky factorization.
Then in Section V, we employ it to propose an improved
square-root algorithm for V-BLAST. Section VI evaluates the
complexities of the presented V-BLAST algorithms. Finally,
we make conclusion in Section VII.

In the following sections, (∙)𝑇 , (∙)∗ and (∙)𝐻 denote
matrix transposition, matrix conjugate, and matrix conjugate
transposition, respectively. 0𝑀 is the 𝑀 × 1 zero column
vector, while I𝑀 is the identity matrix of size 𝑀 .

II. SYSTEM MODEL

The considered V-BLAST system consists of 𝑀 transmit
antennas and 𝑁(≥ 𝑀) receive antennas in a rich-scattering
and flat-fading wireless channel. The signal vector transmitted
from 𝑀 antennas is a = [𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑀 ]𝑇 with the covari-
ance 𝐸(aa𝐻) = 𝜎2

𝑎I𝑀 . Then the received signal vector

x = H ⋅ a+w, (1)

where w is the 𝑁 × 1 complex Gaussian noise vector with
the zero mean and the covariance 𝜎2

𝑤I𝑁 , and

H = [h1,h2, ⋅ ⋅ ⋅ ,h𝑀 ] = [h1,h2, ⋅ ⋅ ⋅ ,h𝑁 ]𝐻
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is the 𝑁 × 𝑀 complex channel matrix. h𝑚 and h𝐻
𝑛 are the

𝑚𝑡ℎ column and the 𝑛𝑡ℎ row of H, respectively.
Define 𝛼 = 𝜎2

𝑤/𝜎
2
𝑎. The linear MMSE estimate of a is

â =
(
H𝐻H+ 𝛼I𝑀

)−1
H𝐻x. (2)

As in [4], [5], [7]–[11], we focus on the MMSE OSIC detector,
which outperforms the ZF OSIC detector [7]. Let

R = H𝐻H+ 𝛼I𝑀 . (3)

Then the estimation error covariance matrix [4]

P = R−1 =
(
H𝐻H+ 𝛼I𝑀

)−1
. (4)

The OSIC detection detects 𝑀 entries of the transmit vector
a iteratively with the optimal ordering. In each iteration, the
entry with the highest SNR among all the undetected entries is
detected by a linear filter, and then its interference is cancelled
from the received signal vector [3]. Suppose that the entries
of a are permuted such that the detected entry is 𝑎𝑀 , the 𝑀 𝑡ℎ

entry. Then its interference is cancelled by

x(𝑀−1) = x(𝑀) − h𝑀𝑎𝑀 , (5)

where 𝑎𝑀 is treated as the correctly detected entry, and the
initial x(𝑀) = x. Then the reduced-order problem is

x(𝑀−1) = H𝑀−1a𝑀−1 +w, (6)

where the deflated channel matrix H𝑀−1 =
[h1,h2 ⋅ ⋅ ⋅ ,h𝑀−1], and the reduced transmit vector
a𝑀−1 = [𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑀−1]

𝑇 . Correspondingly we can
deduce the linear MMSE estimate of a𝑀−1 from (6). The
detection will proceed iteratively until all entries are detected.

III. THE SQUARE-ROOT V-BLAST ALGORITHMS

The square-root V-BLAST algorithms [4], [5] calculate the
MMSE nulling vectors from the matrix F that satisfies

FF𝐻 = P. (7)

Correspondingly F is a square-root matrix of P. Let

H𝑚 = [h1,h2, ⋅ ⋅ ⋅ ,h𝑚] (8)

denote the first 𝑚 columns of H. From H𝑚, we define the
corresponding R𝑚, P𝑚 and F𝑚 by (3), (4) and (7), respec-
tively. Then the previous square-root V-BLAST algorithm in
[5] can be summarized as follows.

The Previous Square-Root V-BLAST Algorithm

Initialization:

P1) Let 𝑚 = 𝑀 . Compute an initial F = F𝑀 : Set P1/2
0 =

(1/
√
𝛼)I𝑀 . Compute Π𝑖 =

[
1 h𝐻

𝑖 P
1/2
𝑖−1

0𝑀 P
1/2
𝑖−1

]
and

Π𝑖Θ𝑖 =

[ × 0𝑇
𝑀

× P
1/2
𝑖

]
iteratively for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 ,

where “×” denotes irrelevant entries at this time, and
Θ𝑖 is any unitary transformation that block lower-
triangularizes the pre-array Π𝑖. Finally F = P

1/2
𝑁 .

Iterative Detection:

P2) Find the minimum length row of F𝑚 and permute it to
the last row. Permute a𝑚 and H𝑚 accordingly.

P3) Block upper-triangularize F𝑚 by

F𝑚Σ =

[
F𝑚−1 u𝑚−1

0𝑇
𝑚−1 𝜆𝑚

]
, (9)

where Σ is a unitary transformation, u𝑚−1 is an (𝑚−
1)× 1 column vector, and 𝜆𝑚 is a scalar.

P4) Form the linear MMSE estimate of 𝑎𝑚, i.e.,

𝑎̂𝑚 = 𝜆𝑚

[
u𝐻
𝑚−1 (𝜆𝑚)∗

]
H𝐻

𝑚x(𝑚). (10)

P5) Obtain 𝑎𝑚 from 𝑎̂𝑚 via slicing.
P6) Cancel the interference of 𝑎𝑚 in x(𝑚) by (5), to obtain

the reduced-order problem (6) with the corresponding
x(𝑚−1), a𝑚−1, H𝑚−1 and F𝑚−1.

P7) If 𝑚 > 1, let 𝑚 = 𝑚− 1 and go back to step P2.

IV. A FAST ALGORITHM FOR INVERSE CHOLESKY

FACTORIZATION

The previous square-root algorithm [5] requires extremely
high computational load to compute the initial F in step P1.
So we propose a fast algorithm to compute an initial F that
is upper triangular.

If F𝑚 satisfies (7), any F𝑚Σ also satisfies (7). Then there
must be a square-root of P𝑚 in the form of

F𝑚 =

[
F𝑚−1 u𝑚−1

0𝑇
𝑚−1 𝜆𝑚

]
, (11)

as can be seen from (9). We apply (11) to compute F𝑚 from
F𝑚−1, while the similar equation (9) is only employed to
compute F𝑚−1 from F𝑚 in [4] and [5].

From (11), we obtain

F−1
𝑚 =

[
F−1

𝑚−1 −F−1
𝑚−1u𝑚−1/𝜆𝑚

0𝑇
𝑚−1 1/𝜆𝑚

]
. (12)

On the other hand, it can be seen that R𝑚 defined from H𝑚

by (3) is the 𝑚 × 𝑚 leading principal submatrix of R [7].
Then we have

R𝑚 =

[
R𝑚−1 v𝑚−1

v𝐻
𝑚−1 𝛽𝑚

]
. (13)

Now let us substitute (13) and (12) into

F−𝐻
𝑚 F−1

𝑚 = R𝑚, (14)

which is deduced from (7) and (4). Then we obtain⎡
⎣× −F−𝐻

𝑚−1
F−1

𝑚−1
u𝑚−1

𝜆𝑚

× u𝐻
𝑚−1F

−𝐻
𝑚−1

F−1
𝑚−1

u𝑚−1+1

𝜆𝑚𝜆∗
𝑚

⎤
⎦ =

[
R𝑚−1 v𝑚−1

v𝐻
𝑚−1 𝛽𝑚

]
,

(15)
where “×” denotes irrelevant entries. From (15), we deduce{

−F−𝐻
𝑚−1F

−1
𝑚−1u𝑚−1/𝜆𝑚 = v𝑚−1, (16a)

(u𝐻
𝑚−1F

−𝐻
𝑚−1F

−1
𝑚−1u𝑚−1 + 1)/(𝜆𝑚𝜆∗

𝑚) = 𝛽𝑚. (16b)

From (16), finally we can derive⎧⎨
⎩ 𝜆𝑚 = 1/

√
𝛽𝑚 − v𝐻

𝑚−1F𝑚−1F𝐻
𝑚−1v𝑚−1, (17a)

u𝑚−1 = −𝜆𝑚F𝑚−1F
𝐻
𝑚−1v𝑚−1. (17b)
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We derive (17b) from (16a). Then (17b) is substituted into
(16b) to derive

𝜆𝑚𝜆∗
𝑚 =

(
𝛽𝑚 − v𝐻

𝑚−1F𝑚−1F
𝐻
𝑚−1v𝑚−1

)−1
, (18)

while a 𝜆𝑚 satisfying (18) can be computed by (17a).
We can use (17) and (11) to compute F𝑚 from F𝑚−1

iteratively till we get F𝑀 . The iterations start from F1

satisfying (14), which can be computed by

F1 =

√
R−1

1 . (19)

Correspondingly instead of step P1, we can propose step N1
to compute an initial upper-triangular F, which includes the
following sub-steps.

The Sub-steps of Step N1

N1-a) Assume the successive detection order to be
𝑡𝑀 , 𝑡𝑀−1, ⋅ ⋅ ⋅ , 𝑡1. Correspondingly permute H to
be H = H𝑀 = [h𝑡1 ,h𝑡2 , ⋅ ⋅ ⋅ ,h𝑡𝑀 ], and permute a to
be a = a𝑀 = [𝑎𝑡1 , 𝑎𝑡2 , ⋅ ⋅ ⋅ , 𝑎𝑡𝑀 ]𝑇 .

N1-b) Utilize the permuted H to compute R𝑀 , where we
can obtain all R𝑚−1s, v𝑚−1s and 𝛽𝑚s [7] (for 𝑚 =
𝑀,𝑀 − 1, ⋅ ⋅ ⋅ , 2), as shown in (13).

N1-c) Compute F1 by (19). Then use (17) and (11) to compute
F𝑚 from F𝑚−1 iteratively for 𝑚 = 2, 3, ⋅ ⋅ ⋅ ,𝑀 , to
obtain the initial F = F𝑀 .

The obtained upper triangular F𝑀 is equivalent to a
Cholesky factor [14] of P𝑀 = R−1

𝑀 , since F𝑀 and P𝑀 can
be permuted to the lower triangular F𝑀 and the corresponding
P𝑀 , which still satisfy (7). Notice that the F𝑀 with columns
exchanged still satisfies (7), while if two rows in F𝑀 are
exchanged, the corresponding two rows and columns in P𝑀

need to be exchanged.
Now from (13), (7) and (4), it can be seen that (9) (proposed

in [4]) and (11) actually reveal the relation between the 𝑚𝑡ℎ

and the (𝑚− 1)𝑡ℎ order inverse Cholesky factor of the matrix
R. This relation is also utilized to implement adaptive filters
in [15], [16], where the 𝑚𝑡ℎ order inverse Cholesky factor is
obtained from the 𝑚𝑡ℎ order Cholesky factor [15, equation
(12)], [16, equation (16)]. Thus the algorithms in [15], [16]
are still similar to the conventional matrix inversion algorithm
[17] using Cholesky factorization, where the inverse Cholesky
factor is computed from the Cholesky factor by the back-
substitution (for triangular matrix inversion), an inherent serial
process unsuitable for the parallel implementation [18]. Con-
trarily, the proposed algorithm computes the inverse Cholesky
factor of R𝑚 from R𝑚 directly by (17) and (11). Then it
avoids the conventional back substitution of the Cholesky
factor.

In a word, although the relation between the 𝑚𝑡ℎ and
the (𝑚 − 1)𝑡ℎ order inverse Cholesky factor (i.e. (9) and
(11)) has been mentioned [4], [15], [16], our contributions
in this letter include substituting this relation into (14) to
find (18) and (17). Specifically, to compute the 𝑚𝑡ℎ order
inverse Cholesky factor, the conventional matrix inversion
algorithm using Cholesky factorization [17] usually requires
2𝑚 divisions (i.e. 𝑚 divisions for Cholesky factorization and

the other 𝑚 divisions for the back-substitution), while the
proposed algorithm only requires 𝑚 divisions to compute (19)
and (17a).

V. THE PROPOSED SQUARE-ROOT V-BLAST ALGORITHM

Now R𝑀 has been computed in sub-step N1-b. Thus as the
recursive V-BLAST algorithm in [11], we can also cancel the
interference of the detected signal 𝑎𝑚 in

z𝑚 = H𝐻
𝑚x(𝑚) (20)

by
z𝑚−1 = z[−1]

𝑚 − 𝑎𝑚 ⋅ v𝑚−1, (21)

where z
[−1]
𝑚 is the permuted z𝑚 with the last entry removed,

and v𝑚−1 is in the permuted R𝑚 [9], [11], as shown in
(13). Then to avoid computing H𝐻

𝑚x(𝑚) in (10), we form the
estimate of 𝑎𝑚 by

𝑎̂𝑚 = 𝜆𝑚 ⋅
[
(u𝑚−1)

𝐻 (𝜆𝑚)∗
]
⋅ z𝑚. (22)

It is required to compute the initial z𝑀 . So step N1 should
include the following sub-step N1-d.

N1-d) Compute z𝑀 = H𝐻
𝑀x(𝑀) = H𝐻

𝑀x.

The proposed square-root V-BLAST algorithm is summa-
rized as follows.

The Proposed Square-root V-BLAST Algorithm

Initialization:

N1) Set 𝑚 = 𝑀 . Compute R𝑀 , z𝑀 and the initial upper
triangular F = F𝑀 . This step includes the above-
described sub-steps N1-a, N1-b, N1-c and N1-d.

Iterative Detection:

N2) Find the minimum length row in F𝑚 and permute it to
be the last 𝑚𝑡ℎ row. Correspondingly permute a𝑚, z𝑚,
and rows and columns in R𝑚 [9].

N3) Block upper-triangularize F𝑚 by (9).
N4) Form the least-mean-square estimate 𝑎̂𝑚 by (22).
N5) Obtain 𝑎𝑚 from 𝑎̂𝑚 via slicing.
N6) Cancel the effect of 𝑎𝑚 in z𝑚 by (21), to obtain

the reduced-order problem (6) with the corresponding
z𝑚−1, a𝑚−1, R𝑚−1 and F𝑚−1.

N7) If 𝑚 > 1, let 𝑚 = 𝑚− 1 and go back to step N2.

Since F𝑀 obtained in step N1 is upper triangular, step N3
requires less computational load than the corresponding step
P3 (described in Section III), which is analyzed as follows.

Suppose that the minimum length row of F𝑀

found in step N2 is the 𝑖𝑡ℎ row, which must be[
0 ⋅ ⋅ ⋅ 0 𝑓𝑖𝑖 ⋅ ⋅ ⋅ 𝑓𝑖𝑀

]
with the first 𝑖 − 1 entries

to be zeros. Thus in step N3 the transformation Σ can be
performed by only (𝑀 − 𝑖) Givens rotations [14], i.e.,

Σ𝑔
𝑀 = Ω𝑖

𝑖,𝑖+1Ω
𝑖
𝑖+1,𝑖+2 ⋅ ⋅ ⋅Ω𝑖

𝑀−1,𝑀 =

𝑀−1∏
𝑗=𝑖

Ω𝑖
𝑗,𝑗+1, (23)

where the Givens rotation Ω𝑖
𝑘,𝑛 rotates the 𝑘𝑡ℎ and 𝑛𝑡ℎ entries

in each row of F𝑀 , and zeroes the 𝑘𝑡ℎ entry in the 𝑖𝑡ℎ row.
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TABLE I
COMPARISON OF EXPECTED COMPLEXITIES BETWEEN THE PROPOSED

SQUARE-ROOT V-BLAST ALGORITHM AND THE PREVIOUS
SQUARE-ROOT V-BLAST ALGORITHM IN [5]

Step The Algorithm in [5] The Proposed Algorithm

1-b (3𝑀2𝑁 ) [5] for step P1 (𝑀
2𝑁
2

) [7]

1-c (𝑀
3

3
)

3 (𝑀3, 𝑀3

3
) or ( 2

3
𝑀3) [5] From (𝑀

3

3
, 𝑀3

9
) to (0)

4 (𝑀
2𝑁
2

) [5]
(
0(𝑀3)

)
Sum (𝑀3 + 7

2
𝑀2𝑁, From ( 2

3
𝑀3 + 𝑀2𝑁

2
,

𝑀3

3
+ 7

2
𝑀2𝑁 ) 4

9
𝑀3 + 𝑀2𝑁

2
)

or ( 2
3
𝑀3 + 7

2
𝑀2𝑁 ) to (𝑀

3

3
+ 𝑀2𝑁

2
)

In step N2, we can delete the 𝑖𝑡ℎ row in F𝑀 firstly to
get F̄𝑀 , and then add the deleted 𝑖𝑡ℎ row to F̄𝑀 as the last
row to obtain the permuted F𝑀 . Now it is easy to verify
that the F𝑀−1 obtained from F𝑀Σ𝑔

𝑀 by (9) is still upper
triangular. For the subsequent 𝑚 = 𝑀 − 1,𝑀 − 2, ⋅ ⋅ ⋅ , 2, we
also obtain F𝑚−1 from F𝑚Σ𝑔

𝑚 by (9), where Σ𝑔
𝑚 is defined

by (23) with 𝑀 = 𝑚. Correspondingly we can deduce that
F𝑚−1 is also triangular. Thus F𝑚 is always triangular, for
𝑚 = 𝑀,𝑀 − 1, ⋅ ⋅ ⋅ , 1.

To sum up, our contributions in this letter include steps N1,
N3, N4 and N6 that improve steps P1, P3, P4 and P6 (of the
previous square-root V-BLAST algorithm [5]), respectively.
Steps N4 and N6 come from the extension of the improvement
in [11] (for the recursive V-BLAST algorithm) to the square-
root V-BLAST algorithm. However, it is infeasible to extend
the improvement in [11] to the existing square-root V-BLAST
algorithms in [4], [5], since they do not provide R𝑀 that is
required to get v𝑚−1 for (21).

VI. COMPLEXITY EVALUATION

In this section, (𝑗, 𝑘) denotes the computational complexity
of 𝑗 complex multiplications and 𝑘 complex additions, which
is simplified to (𝑗) if 𝑗 = 𝑘. Similarly, ⟨𝜒1, 𝜒2, 𝜒3⟩ denotes
that the speedups in the number of multiplications, additions
and floating-point operations (flops) are 𝜒1, 𝜒2 and 𝜒3,
respectively, which is simplified to ⟨𝜒1⟩ if 𝜒1 = 𝜒2 = 𝜒3.
Table I compares the expected complexity of the proposed
square-root V-BLAST algorithm and that of the previous one
in [5]. The detailed complexity derivation is as follows.

In sub-step N1-c, the dominant computations come from
(17). It needs a complexity of

(
(𝑚−1)𝑚

2

)
to compute y𝑚−1 =

F𝐻
𝑚−1v𝑚−1 firstly, where F𝑚−1 is triangular. Then to obtain

the 𝑚𝑡ℎ column of F, we compute (17) by{
𝜆𝑚 =

√
1/
(
𝛽𝑚 − y𝐻

𝑚−1y𝑚−1

)
, (24a)

u𝑚−1 = −𝜆𝑚F𝑚−1y𝑚−1. (24b)

In (24), the complexity to compute F𝑚−1y𝑚−1 is(
(𝑚−1)𝑚

2

)
, and that to compute the other parts is

(𝑂(𝑚)). So sub-step N1-c totally requires a complexity of(
𝑀∑

𝑚=2

(𝑚−1)𝑚
2 × 2 +𝑂(𝑚)

)
=
(

𝑀3

3 +𝑂(𝑀2)
)

to compute

(17) for 𝑀 − 1 iterations, while sub-step N1-b requires a
complexity of (𝑀

2𝑁
2 ) [7] to compute the Hermitian R𝑀 .

As a comparison, in each of the 𝑁(> 𝑀 − 1) iterations,
step P1 computes h𝐻

𝑖 P
1/2
𝑖−1 to form the (𝑀 + 1) × (𝑀 + 1)

pre-array Π𝑖, and then block lower-triangularizes Π𝑖 by the
(𝑀 + 1)× (𝑀 + 1) Householder transformation [5]. Thus it
can be seen that step P1 requires much more complexity than
the proposed step N1.

In steps N3 and P3, we can apply the efficient complex

Givens rotation [19] Φ = 1
𝑞

[
𝑐 𝑠

−𝑠∗ 𝑐

]
to rotate

[
𝑑 𝑒

]
into

[
0 (𝑒/ ∣𝑒∣) 𝑞 ], where 𝑐 = ∣𝑒∣ and 𝑞 =

√
∣𝑒∣2 + ∣𝑑∣2

are real, and 𝑠 = (𝑒/ ∣𝑒∣) 𝑑∗ is complex. The efficient Givens
rotation equivalently requires [7] 3 complex multiplications
and 1 complex additions to rotate a row. Correspondingly
the complexity of step P3 is (𝑀3, 1

3𝑀
3). Moreover, step P3

can also adopt a Householder reflection, and then requires
a complexity of (23𝑀

3) [5]. On the other hand, the Givens
rotation Ω𝑖

𝑗,𝑗+1 in (23) only rotates non-zero entries in the
first 𝑗 + 1 rows of the upper-triangular F𝑀 . Then (23) re-

quires a complexity of

(
𝑚−1∑
𝑗=𝑖

3(𝑗 + 1) ≈ 3(𝑚2−𝑖2)
2 , (𝑚2−𝑖2)

2

)
.

When the detection order assumed in sub-step N1-a is sta-
tistically independent of the optimal detection order, the
probabilities for 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚 are equal. Correspond-
ingly the expected (or average) complexity of step N3

is

(
𝑀∑

𝑚=1

1
𝑚

𝑚∑
𝑖=1

3(𝑚2−𝑖2)
2 ≈ 𝑀3

3 , 𝑀3

9

)
. Moreover, when the

probability for 𝑖 = 1 is 100%, step N3 needs the worst-

case complexity, which is

(
𝑀∑

𝑚=1

3(𝑚2−12)
2 ≈ 𝑀3

2 , 𝑀3

6

)
. Cor-

respondingly we can deduce that the worst-case complexity
of the proposed V-BLAST algorithm is (23𝑀

3 + 𝑀2𝑁
2 , 𝑀3

3 +
7
2𝑀

2𝑁)−(𝑀
3

3 , 𝑀3

9 )+(𝑀
3

2 , 𝑀3

6 ) = (56𝑀
3+ 1

2𝑀
2𝑁, 1

2𝑀
3+

1
2𝑀

2𝑁). It can be seen that the ratio between the worst-case
and expected flops of the proposed square-root algorithm is
only 1.125.

In MIMO OFDM systems, the complexity of step N3 can
be further reduced, and can even be zero. In sub-step N1-a,
we assume the detection order to be the optimal order of the
adjacent subcarrier, which is quite similar or even identical
to the actual optimal detection order [13]. Correspondingly
the required Givens rotations are less or even zero. So the
expected complexity of step N3 ranges from (13𝑀

3, 1
9𝑀

3)
to zero, while the exact mean value depends on the statistical
correlation between the assumed detection order and the actual
optimal detection order.

The complexities of the ZF-OSIC V-BLAST algorithm
in [6] and the MMSE-OSIC V-BLAST algorithms in [4],
[7]–[9] are (12𝑀

3 + 2𝑀2𝑁), (23𝑀
3 + 4𝑀2𝑁 + 𝑀𝑁2)

[5], (23𝑀
3 + 3𝑀2𝑁, 1

2𝑀
3 + 5

2𝑀
2𝑁), (23𝑀

3 + 5
2𝑀

2𝑁)
and (23𝑀

3 + 1
2𝑀

2𝑁), respectively. Let 𝑀 = 𝑁 . Also
assume the transformation Σ in [5] to be a sequence of
efficient Givens rotations [19] that are hardware-friendly
[4]. When the expected complexities are compared, the
speedups of the proposed square-root algorithm over
the previous one [5] and the fastest known recursive
algorithm [9] range from

〈
9
2/

7
6 = 3.86, 236 / 17

18 = 4.06, 3.9
〉

to
〈
9
2/

5
6 = 5.4, 236 / 5

6 = 4.6, 5.2
〉

and from〈
7
6/

7
6 = 1, 76/

17
18 = 1.24, 1.05

〉
to
〈
7
6/

5
6 = 1.4

〉
, respectively.
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Recently there is a trend to study the expected, rather
than worst-case, complexities of various algorithms [20].
Even when the worst-case complexities are compared, the
proposed square-root algorithm is still faster than the efficient
V-BLAST algorithms in [4]–[8], [10], [11]. However, the
worst-case flops of the proposed square-root algorithm are
a little more than those of the fastest known recursive
algorithm [9], while the ratio of the former to the latter is
[(5/6+1/2)×6+(1/2+1/2)×2]/[(2/3+1/2)×8] = 1.07.

For more fair comparison, we modify the fastest known
recursive algorithm [9] to further reduce the expected com-
plexity. We spend extra memories to store each intermediate
P𝑚 (𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 − 1) computed in the initialization
phase, which may be equal to the P𝑚 required in the recursion
phase [9]. Assume the successive detection order and permute
H accordingly, as in sub-step N1-a. When the assumed order
is identical to the actual optimal detection order, each P𝑚

required in the recursion phase is equal to the stored P𝑚.
Thus we can achieve the maximum complexity savings, i.e. the
complexity of

(
1
6𝑀

3 +𝑂(𝑀2)
)

[9, equations (23) and (24)]
to deflate P𝑚s. On the other hand, when the assumed order
is statistically independent of the actual optimal detection
order, there is an equal probability for the 𝑚 undetected
antennas to be any of the 𝐶𝑀

𝑚 possible antenna combinations.
Correspondingly 1/𝐶𝑀

𝑚 = (𝑀−𝑚)!𝑚!
𝑀 ! is the probability for the

stored P𝑚 to be equal to the P𝑚 required in the recursion
phase. Thus we can obtain the minimum expected complexity
savings, i.e. [9, equations (23) and (24)],(

𝑀∑
𝑚=2

1

𝐶𝑀
𝑚

(𝑚− 1)(𝑚+ 2)

2
,

𝑀∑
𝑚=2

1

𝐶𝑀
𝑚

(𝑚− 1)𝑚

2

)
. (25)

The ratio of the minimum expected complexity savings to
the maximum complexity savings is 22% when 𝑀 = 4,
and is only 1.2% when 𝑀 = 16. It can be seen that the
minimum expected complexity savings are negligible when 𝑀
is large. The minimum complexity of the recursive V-BLAST
algorithm [9] with the above-described modification, which is
(23𝑀

3+ 1
2𝑀

2𝑁− 1
6𝑀

3) = (12𝑀
3+ 1

2𝑀
2𝑁), is still more than

that of the proposed square-root V-BLAST algorithm. When
𝑀 = 𝑁 , the ratio of the former to the latter is 1/ 5

6 = 1.2.
Assume 𝑀 = 𝑁 . For different number of transmit/receive

antennas, we carried out some numerical experiments to count
the average flops of the OSIC V-BLAST algorithms in [4]–
[9], the proposed square-root V-BLAST algorithm, and the
recursive V-BLAST algorithm [9] with the above-described
modification. The results are shown in Fig. 1. It can be seen
that they are consistent with the theoretical flops calculation.

VII. CONCLUSION

We propose a fast algorithm for inverse Cholesky factor-
ization, to compute a triangular square-root of the estimation
error covariance matrix for V-BLAST. Then it is employed
to propose an improved square-root algorithm for V-BLAST,
which speedups several steps in the previous one [5], and can
offer further computational savings in MIMO OFDM systems.
Compared to the conventional inverse Cholesky factorization,
the proposed one avoids the back substitution (of the Cholesky
factor), an inherent serial process unsuitable for the parallel

2 4 6 8 10 12 14 16
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2

2.5
x 10

5

Number of Transmit/Receive Antennas

F
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S

sqrt Alg in [4] with Householder
sqrt Alg in [5] with Givens
sqrt Alg in [5] with Householder
recursive Alg in [7]
recursive Alg in [8]
ZF−OSIC Alg in [6]
proposed sqrt Alg (worst−case peak value)
recursive Alg in [9]
modified recur Alg (maximum mean value)
proposed sqrt Alg (maximum mean value)
modified recur Alg (minimum mean value)
proposed sqrt Alg (minimum mean value)

Fig. 1. Comparison of computational complexities among the MMSE-OSIC
algorithms in [4], [5], [7]–[9] and this letter, and the ZF-OSIC algorithm in
[6]. “sqrt” and “Alg” means square-root and algorithm, respectively. “⋅ ⋅ ⋅ with
Householder” and “⋅ ⋅ ⋅ with Givens” adopt a Householder reflection and a
sequence of Givens rotations, respectively. Moreover, “modified recur Alg”
is the recursive algorithm [9] with the modification described in this letter.

implementation [18], and then requires only half divisions.
Usually the expected, rather than worst-case, complexities
of various algorithms are studied [20]. Then the proposed
V-BLAST algorithm is faster than the existing efficient V-
BLAST algorithms in [4]–[11]. Assume 𝑀 transmitters and
the equal number of receivers. In MIMO OFDM systems, the
expected speedups (in the number of flops) of the proposed
square-root V-BLAST algorithm over the previous one [5]
and the fastest known recursive V-BLAST algorithm [9] are
3.9 ∼ 5.2 and 1.05 ∼ 1.4, respectively. The recursive
algorithm [9] can be modified to further reduce the complexity
at the price of extra memory consumption, while the minimum
expected complexity savings are negligible when 𝑀 is large.
The speedups of the proposed square-root algorithm over
the fastest known recursive algorithm [9] with the above-
mentioned modification are 1.2, when both algorithms are
assumed to achieve the maximum complexity savings. Further-
more, as shown in [21], the proposed square-root algorithm
can also be applied in the extended V-BLAST with selective
per-antenna rate control (S-PARC), to reduce the complexity
even by a factor of 𝑀 .
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