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Abstract—This paper considers a wireless powered communi-
cation network (WPCN), where multiple users harvest energy
from a dedicated power station and then communicate with an
information receiving station. Our goal is to investigate the max-
imum achievable energy efficiency (EE) of the network via joint
time allocation and power control while taking into account the
initial battery energy of each user. We first study the EE maxi-
mization problem in the WPCN without any system throughput
requirement. We show that the EE maximization problem for
the WPCN can be cast into EE maximization problems for two
simplified networks via exploiting its special structure. For each
problem, we derive the optimal solution and provide the corre-
sponding physical interpretation, despite the nonconvexity of the
problems. Subsequently, we study the EE maximization problem
under a minimum system throughput constraint. Exploiting frac-
tional programming theory, we transform the resulting nonconvex
problem into a standard convex optimization problem. This allows
us to characterize the optimal solution structure of joint time
allocation and power control and to derive an efficient iterative
algorithm for obtaining the optimal solution. Simulation results
verify our theoretical findings and demonstrate the effectiveness
of the proposed joint time and power optimization.

Index Terms—Energy efficiency, wireless powered networks,
time allocation, power control.

I. INTRODUCTION

E NERGY harvesting allows devices to harvest energy from
ambient sources, and has attracted considerable atten-

tion in both academia and industry [1], [2]. Energy harvesting
from natural renewable sources, such as solar and wind, can
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provide a green and renewable energy supply for wireless com-
munication systems. However, due to the intermittent nature of
renewable energy sources, the energy collected at the receiver
is not controllable, and the communication devices may not
always be able to harvest sufficient energy. On the other hand, it
has been shown that wireless receivers can also harvest energy
from radio frequency (RF) signals, which is known as wireless
energy transfer (WET) [1], [2]. Since the RF signals are gen-
erated by dedicated devices, this type of energy source is more
stable than natural renewable sources.

Two different lines of research can be identified in WET.
The first line focuses on simultaneous wireless information
and power transfer (SWIPT), where the wireless devices are
able to split the received signal into two parts, one for infor-
mation decoding and the other one for energy harvesting
[3]–[7]. SWIPT has been studied for example for multiple-input
multiple-output (MIMO) [3], multiuser orthogonal frequency
division multiplexing access (OFDMA) [4], [5], multiuser
multiple-input single-output (MISO) [6], and cognitive radio
[7]. These works generally optimize the power splitting ratio
at the receiver side to study the fundamental tradeoff between
the achievable throughput and the harvested energy. The second
line of research in WET pursues wireless powered communi-
cation networks (WPCN), where the wireless devices are first
powered by WET and then use the harvested energy to transmit
data signals [8]–[11]. In [9], the downlink (DL) WET time and
the uplink (UL) wireless information transmission (WIT) time
are jointly optimized to maximize the system throughput. Then,
WPCNs with user cooperation and full-duplex, relay, multi-
antenna, massive MIMO, and cognitive techniques are further
studied in [10]–[16], respectively. Moreover, the authors in
[17] investigate how an energy harvesting relay can distribute
its harvested energy to support the communication of multi-
ple source-destination pairs. However, most existing works on
WET aim to improve the system throughput while neglecting
the energy utilization efficiency which is also a critical issue for
next generation communication systems, especially for energy
harvesting based systems [18]–[23].

Because of the rapidly rising energy costs and the tremen-
dous carbon footprints of existing systems [18], energy effi-
ciency (EE), measured in bits per joule, is gradually accepted as
an important design criterion for future communication systems
[19], [24], [25]. The authors in [4] study the resource allocation
for EE maximization in SWIPT for OFDMA systems requiring
minimum harvested energy guarantees for multiple receivers.
However, the conclusions and proposed methods in [4] are not
applicable to the WPCN scenario due to the fundamentally
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different system architecture. Energy-efficient power allocation
for large-scale MIMO systems is investigated in [20]. Yet, the
resource allocation is optimized only for the single-receiver sce-
nario and cannot be directly extended to the multiuser case
due to the coupling between time allocation and power control.
Moreover, the circuit power consumption of the user terminals
is ignored in [3]–[7], [9]–[11]. However, as pointed out in [26],
the circuit power consumption is non-negligible compared to
the power consumed for data transmission, especially for small
scale and short range applications. Furthermore, in the WPCN,
energy is not only consumed in the UL WIT stage but also
in the DL WET stage during which no data is transmitted. In
fact, a significant amount of energy may be consumed during
DL WET in order to combat the wireless channel attenuation.
Therefore, EE optimization is even more important in WPCN
than in traditional wireless communication networks.

In this paper, we consider the WPCN where multiple users
first harvest energy from a power station and then use the har-
vested energy to transmit signals to an information receiving
station. The considered system model is most closely related
to that in [9]. However, there are three important differences.
First, a hybrid station is employed in [9], i.e., the power station
for WET and the information receiving station for WIT are co-
located. Hence, a user near the hybrid station enjoys not only
higher WET channel gain in the DL but also higher WIT chan-
nel gain in the UL compared with users that are far from the
hybrid station. This phenomenon is referred to as “doubly near-
far” problem in [9]. To avoid this problem, in this paper, the
information receiving station is not restricted to be co-located
with the power station. Hence, a user far from the power station
can be near the information receiving station and visa versa.
Second, in contrast to [9], each user is equipped with a cer-
tain amount of initial energy and can store the harvested energy
from the current transmission block for future use. This gener-
alization provides users a higher degree of flexibility in utilizing
the harvested energy and improves thereby the EE of practical
communication systems. Third, unlike [9], we focus on maxi-
mizing the system EE while guaranteeing a minimum required
system throughput instead of maximizing the system through-
put. The main contributions and results of this paper can be
summarized as follows:

• We formulate the EE maximization problem for multiuser
WPCN with joint time allocation and power control.
Thereby, we explicitly take into account the circuit energy
consumption of the power station and the user termi-
nals. In the first step, we investigate the system EE of
WPCN providing best-effort communication, i.e., WPCN
that do not provide any system throughput guarantee.
Subsequently, to meet the QoS requirements of practical
systems, the EE maximization problem is studied for the
case with a minimum required system throughput.

• For the case of best-effort communication, we reveal that
the energy-efficient WPCN are equivalent to either the
network in which the users are only powered by the initial
energy, i.e., no WET is exploited, or the network in which
the users are only powered by WET, i.e., no initial energy
is used. We refer to the former type of network as “initial
energy limited communication network” (IELCN) and to

the latter type of networks as “purely wireless powered
communication network” (PWPCN). For the IELCN, we
show that the most energy-efficient transmission strategy
is to schedule only the user who has the highest user
EE. In contrast, for the PWPCN, we find that: 1) in the
WET stage, the power station always transmits with its
maximum power; 2) it is not necessary for all users to
transmit signals in the WIT stage, but all scheduled users
will deplete all of their energy; 3) the maximum system
EE can always be achieved by occupying all available
time. Based on these observations, we derive a closed-
form expression for the system EE based on the user
EEs, which transforms the original problem into a user
scheduling problem that can be solved efficiently.

• For the case of throughput-constrained WPCN, exploiting
fractional programming theory, we transform the origi-
nal problem into a standard convex optimization prob-
lem. Through the analysis of the Karush-Kuhn-Tucker
(KKT) conditions, we characterize the optimal structure
of time allocation and power control, and propose an effi-
cient iterative algorithm to obtain the optimal solution.
We show that for a sufficiently long transmission time,
the system EE is maximized by letting each user achieve
its own maximum user EE. For a short transmission time,
users can only meet the minimum system throughput
requirement at the cost of sacrificing system EE.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries regarding WPCN. In
Section III, we study best-effort communication in energy-
efficient WPCN. In Section IV, we investigate the EE max-
imization problem in the presence of a minimum system
throughput requirement. Section V provides extensive simula-
tion results to verify our analytical findings and the paper is
concluded in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a WPCN, which consists of one power station,
K wireless-powered users, denoted by Uk , for k = 1, . . . , K ,
and one information receiving station, that is not necessarily
co-located with the power station, as illustrated in Fig. 1. As
a special case, the information receiving station and the power
station may be integrated into one hybrid station as suggested in
[9], which leads to lower hardware complexity but gives rise to
the “doublely near-far” problem. The “harvest and then trans-
mit” protocol is employed for the WPCN. Namely, all users first
harvest energy from the RF signal broadcasted by the power
station in the DL, and then transmit the information signal to
the information receiving station in the UL [9]. For simplicity
of implementation, the power station, the information receiv-
ing station, and all users are equipped with a single antenna
and operate in the time division mode over the same frequency
band [4], [9]. To be more general, we assume that user k, for
k = 1, . . . , K , is equipped with a rechargeable built-in battery
with an initial energy of Qk (Joule). The initial energy may
be the energy harvested and stored in previous transmission
blocks. This energy can be used for WIT in the current block.
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Fig. 1. The system model of a multiuser wireless powered communication
network.

Assume that both the DL and the UL channels are quasi-
static block fading channels. The DL channel power gain
between the power station and user terminal k and the UL chan-
nel power gain between user terminal k and the information
receiving station are denoted as hk and gk , respectively. Note
that both hk and gk capture the joint effect of path loss, shad-
owing, and multipath fading. We also assume that the channel
state information (CSI) is perfectly known at the power station
as we are interested in obtaining an EE upper bound for practi-
cal WPCN [9]. Once calculated, the resource allocation policy
is then sent to the users to perform energy-efficient transmis-
sion. We assume that the energy consumed for estimating and
exchanging CSI can be drawn from a dedicated battery which
does not rely on the harvested energy [23]. We note that sig-
naling overhead and imperfect CSI will result in a performance
degradation but the study of their impact on the system EE is
beyond the scope of this paper. For a detailed treatment of CSI
acquisition in WPCN, we refer to [27], [28].

During the WET stage, the power station broadcasts an RF
signal for a time duration τ0 at a transmit power P0. The energy
harvested from channel noise and the received UL WIT signals
from other users is assumed to be negligible, since the noise
power is generally much smaller than the received signal power
and the transmit powers of the users are much smaller than the
transmit power of the power station in practice [9]–[11], [29].
Thus, the amount of energy harvested at Uk can be modeled as

Eh
k = ητ0 P0hk, k = 1, · · · , K , (1)

where η ∈ (0, 1] is the energy conversion efficiency which
depends on the type of receivers [9].

During the WIT stage, each user k transmits an independent
information signal to the receiving station in a time division
manner at a transmit power pk . Denote the information trans-
mission time of user k as τk . Then, the achievable throughput
of Uk can be expressed as

Bk = τk W log2

(
1 + pk gk

�σ 2

)
, (2)

where W is the bandwidth of the considered system, σ 2 denotes
the noise variance, and � characterizes the gap between the
achievable rate and the channel capacity due to the use of prac-
tical modulation and coding schemes. In the sequel, we use
γk = gk

�σ 2 to denote the equivalent channel to noise ratio for
WIT. Thus, the total throughput of the WPCN, denoted as Btot,
is given by

Btot =
K∑

k=1

Bk =
K∑

k=1

τk W log2(1 + pkγk). (3)

B. Power Consumption Model

The total energy consumption of the considered WPCN con-
sists of two parts: the energy consumed during WET and WIT,
respectively. For each part, we adopt the energy consumption
model in [4], [21]–[23], namely, the power consumption of a
transmitter includes not only the over-the-air transmit power but
also the circuit power consumed for hardware processing. On
the other hand, according to [26], [30], the energy consumption
when users do not transmit, i.e., when they are in the idle mode
as opposed to the active mode, is negligible.

During the WET stage, the system energy consumption,
denoted as EWET, is modeled as

EWET = P0

ξ
τ0 −

K∑
k=1

Eh
k + Pcτ0, (4)

where ξ ∈ (0, 1] is the power amplifier (PA) efficiency and Pc

is the constant circuit power consumption of the power station
accounting for antenna circuits, transmit filter, mixer, frequency
synthesizer, and digital-to-analog converter, etc. In (4), Pcτ0
represents the circuit energy consumed by the power station
during DL WET. Note that P0τ0 −∑K

k=1 Eh
k is the energy loss

due to wireless channel propagation, i.e., the amount of energy
that is emitted by the power station but not harvested by the

users. In practice, P0τ0 −∑K
k=1 Eh

k = P0τ0

(
1 −∑K

k=1 ηhk

)
is always positive due to the law of energy conservation and
0 < η ≤ 1 [4], [20].

During the WIT stage, each user independently transmits its
own signal with transmit power pk during time τk . Thus, the
energy consumed by Uk can be modeled as

Ek = pk

ς
τk + pcτk, (5)

where ς and pc are the PA efficiency and the circuit power con-
sumption of the user terminals, respectively, which are assumed
to be identical for all users without loss of generality. In prac-
tice, Ek has to satisfy Ek ≤ Eh

k + Qk , which is known as the
energy causality constraint in energy harvesting systems [4],
[20].

Therefore, the total energy consumption of the whole system,
denoted as Etot, is given by

Etot = EWET +
K∑

k=1

Ek . (6)

C. User Energy Efficiency

In our previous work [24], we introduced the concept of user
EE and it was shown to be directly connected to the system EE.
In this subsection, we review the definition of user EE in the
context of WPCN.

Definition 1 (User Energy Efficiency): The EE of user k, k =
1, · · · , K , is defined as the ratio of its achievable throughput
and its consumed energy in the WIT stage, i.e.,
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eek = Bk

Ek
= τk W log2 (1 + pkγk)

τk
pk
ς

+ τk pc
= W log2 (1 + pkγk)

pk
ς

+ pc
,

(7)

where the energy consumption includes the energy consumed
in both the PA and the electronic circuits. Hence, eek represents
the energy utilization efficiency of user k in WPCN.

It can be shown that eek is a strictly quasiconcave function
of pk and has a unique stationary point which is also the maxi-
mum point [31]. Therefore, by setting the derivative of eek with
respect to pk to zero, we obtain

deek

dpk
=

Wγk
(1+pkγk ) ln 2 (

pk
ς

+ pc) − W log2(1 + pkγk)
1
ς(

pk
ς

+ pc

)2
= 0.

(8)

After some straightforward manipulations, the optimal transmit
power can be expressed as

p	
k =

[
Wς

ee	
k ln 2

− 1

γk

]+
,∀ k, (9)

where [x]+ � max{x, 0} and ee	
k is the maximum EE of user

k in (7). Based on (7) and (9), the numerical values of ee	
k and

p	
k can be easily obtained using the bisection method [31]. As

shown in the sequel, the user EE plays an important role in
deriving an analytical expression for the maximum system EE
as well as for interpreting the obtained expression.

III. ENERGY-EFFICIENT RESOURCE ALLOCATION FOR

BEST-EFFORT WPCN

In this section, we study the resource allocation in best-effort
WPCN with the objective to maximize the system EE, which
is defined as the ratio of the achieved system throughput to the
consumed system energy, i.e., E E = Btot

Etot
. Specifically, our goal

is to jointly optimize the time allocation and power control in
the DL and the UL for maximizing the system EE. The system
EE maximization can be formulated as E E∗ �

max
τ0,{τk },
P0,{pk }

∑K
k=1 τk W log2 (1 + pkγk)

P0τ0(
1
ξ

−∑K
k=1 ηhk) + Pcτ0 +∑K

k=1(
pk
ς

τk + pcτk)

s.t. C1: P0 ≤ Pmax,

C2:
pk

ς
τk + pcτk ≤ ηP0τ0hk + Qk, ∀ k,

C3: τ0 +
K∑

k=1

τk ≤ Tmax,

C4: τ0 ≥ 0, τk ≥ 0,∀ k,

C5: P0 ≥ 0, pk ≥ 0,∀ k. (10)

where E E∗ is the maximum system EE of WPCN. In problem
(10), constraint C1 limits the DL transmit power of the power
station to Pmax. C2 ensures that the energy consumed for WIT
in the UL does not exceed the total available energy which is
comprised of both the harvested energy ηP0τ0hk and the initial

energy Qk . In C3, Tmax is the total available transmission time
for the considered time block. C4 and C5 are non-negativity
constraints on the time allocation and power control variables,
respectively. Note that problem (10) is neither convex nor quasi-
convex due to the fractional-form objective function and the
coupled optimization variables. In general, there is no stan-
dard method for solving non-convex optimization problems
efficiently. Nevertheless, in the following, we show that the
considered problem can be efficiently solved by exploiting the
fractional structure of the objective function in (10).

A. Equivalent Optimization Problems

First, we show that the EE maximization problem for WPCN
is equivalent to two optimization problems for two simplified
sub-systems. To facilitate the presentation, we define 
P and

I as the set of users whose initial energy levels are zero
and strictly positive, respectively, i.e., Qk = 0 for k ∈ 
P and
Qk > 0 for k ∈ 
I.

Theorem 1: Problem (10) is equivalent to one of the follow-
ing two problems:

1) The EE maximization in the pure WPCN (PWPCN) (i.e.,
the system where DL WET is used and only the users in

P are present for UL WIT): E E∗

PWPCN �

max
τ0,{τk },

P0,{pk },k∈
P ∑
k∈
P

τk W log2 (1+ pkγk)

P0τ0(
1
ξ
−∑K

k=1 ηhk)+Pcτ0+∑k∈
P
(

pk
ς

τk + pcτk)

s.t. C1: P0 ≤ Pmax,

C2:
pk

ς
τk + pcτk ≤ ηP0τ0hk, k ∈ 
P,

C3: τ0 +
∑

k∈
P

τk ≤ Tmax,

C4: τ0 ≥ 0, τk ≥ 0, k ∈ 
P,

C5: P0 ≥ 0, pk ≥ 0, k ∈ 
P, (11)

where E E∗
PWPCN is used to denote the maximum system

EE of the PWPCN.
2) The EE maximization in the initial energy limited com-

munication network (IELCN) (i.e., the system where DL
WET is not used and only the users in 
I are present for
UL WIT): E E∗

IELCN �

max{pk },{τk },k∈
I

∑
k∈
I

τk W log2 (1 + pkγk)∑
k∈
I

(
pk
ς

τk + pcτk)

s.t. C2:
pk

ς
τk + pcτk ≤ Qk, k ∈ 
I,

C3:
∑

k∈
I

τk ≤ Tmax,

C4: τk ≥ 0, k ∈ 
I,

C5: pk ≥ 0, k ∈ 
I, (12)

where E E∗
IELCN is used to denote the maximum system

EE of the IELCN.
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If E E∗
PWPCN ≥ E E∗

IELCN, then E E∗ = E E∗
PWPCN; oth-

erwise E E∗ = E E∗
IELCN, i.e., either problem (11) or

problem (12) provides the optimal solution for problem
(10).

Proof: Please refer to Appendix A. �
Theorem 1 reveals that the EE maximization problem in

WPCN with initial stored energy can be cast into the EE max-
imization in one of the two simplified systems, i.e., PWPCN
or IELCN. In the following, we study the EE and characterize
its properties for each of the systems independently. Note that
for the special case that E E∗

PWPCN = E E∗
IELCN, without loss of

generality, we assume that the system EE of problem (10) is
achieved by PWPCN in order to preserve the initial energy of
users belonging to 
I.

B. Properties of Energy-Efficient PWPCN

The following lemma characterizes the operation of the
power station for energy-efficient transmission.

Lemma 1: In energy-efficient PWPCN, the power sta-
tion always transmits with its maximum allowed power, i.e.,
P0 = Pmax, for DL WET.

Proof: Please refer to Appendix B. �
Remark 1: This lemma seems contradictory to intuition at

first. In conventional non-WPCN systems, since only the trans-
mit power is optimized, the EE is generally first increasing
and then decreasing with the transmit power when the cir-
cuit power is taken into account [4], [18]–[22], [24]. Yet, in
PWPCN, where the transmission time can also be optimized,
letting the power station transmit with the maximum allowed
power reduces the time needed for WET in the DL, and thereby
reduces the energy consumed by the circuits of the power sta-
tion. Moreover, it also gives the users more time to improve the
system throughput for WIT in the UL.

The following lemma characterizes the time utilization for
energy-efficient transmission.

Lemma 2: In energy-efficient PWPCN, the maximum sys-
tem EE can always be achieved by using up all the available
transmission time, i.e., τ0 +∑

k∈
P
τk = Tmax.

Proof: Please refer to Appendix C. �
Remark 2: Lemma 2 indicates that, in PWPCN, using up the

entire available transmission time is optimal. In fact, if the total
available time is not completely used up, increasing the time
for both DL WET and UL WIT by the same factor maintains
the system EE at least at the same level, while improving the
system throughput.

Next, we study how the wireless powered users are sched-
uled for utilizing their harvested energy for energy-efficient
transmission.

Lemma 3: In energy-efficient PWPCN, the following
scheduling strategy is optimal:

1) If E E∗
PWPCN < ee	

k , ∀ k ∈ 
P, then user k is scheduled,
i.e., τ ∗

k > 0, and it will use up all of its energy, i.e.,

τ ∗
k

(
p∗

k
ς

+ pc

)
= ηPmaxτ

∗
0 hk .

2) If E E∗
PWPCN = ee	

k , ∀ k ∈ 
P, scheduling user k or
not does not affect the maximum system EE, i.e.,

0 ≤ τ ∗
k

(
p∗

k
ς

+ pc

)
≤ ηPmaxτ

∗
0 hk .

3) If E E∗
PWPCN > ee	

k , ∀ k ∈ 
P, then user k is not sched-
uled, i.e., τ ∗

k = 0, and it preserves all of its energy for the
next transmission slot.

Proof: Please refer to Appendix D. �
Lemma 3 reveals an important property related to user

scheduling and the corresponding energy utilization: users that
are scheduled should have a better or at least the same EE as the
overall system, and for users with a strictly better EE, utilizing
all of their energy always benefits the system EE.

Remark 3: In [9], the authors focus on the throughput max-
imization problem for PWPCN. For that problem, the optimal
transmission time of each user increases linearly with the equiv-
alent channel gain. In other words, all users are scheduled
no matter how severely their channel conditions are degraded.
However, for EE oriented systems, it is not cost effective to
schedule all users, especially if their channels are weak, since
each user introduces additional circuit power consumption.

In Lemmas 1, 2, and 3, we have revealed several basic prop-
erties of EE optimal PWPCN. In the following, we derive an
expression for the maximum EE and also the optimal solution
based on the above properties.

Theorem 2: The optimal system EE of PWPCN can be
expressed as

E E∗
PWPCN =

∑
k∈S∗ ee	

khk

1
η

(
Pc

Pmax
+ 1

ξ
−∑K

k=1 ηhk

)
+∑

k∈S∗ hk

, (13)

where S∗ ⊆ 
P is the optimal scheduled user set. The optimal
power and time allocation can be expressed as

p∗
k =

[
Wς

ee	
k ln 2

− 1

γk

]+
, (14)

τ ∗
0 = Tmax

1 + ηPmax
∑

k∈S∗
hk ee	

k

W log2

(
Wςγk
ee	k ln 2

) , (15)

τ ∗
k = ηPmaxτ0

hkee	
k

W log2

(
Wςγk
ee	

k ln 2

) . (16)

Proof: Please refer to Appendix E. �
Theorem 2 provides a simple expression for the system EE in

terms of the user EE and other system parameters. In (13), since
Pmax and Pc are the maximum allowed transmit power and the
circuit power, respectively, their ratio Pc

Pmax
can be interpreted as

the inefficiency of the power station. The term 1
ξ

−∑K
k=1 ηhk

represents the energy loss per unit transmit energy due to the
wireless channels, non-ideal energy harvesting devices, and a
non-ideal PA at the power station.

Note that 1
η

(
Pc

Pmax
+ 1

ξ
−∑K

k=1 ηhk

)
involves only fixed

system parameters and is therefore a constant. This means that
once S∗ is determined, the optimal solution can be obtained
from (13). Therefore, the problem is simplified to finding
the optimal user set S∗. In [22], we have proposed a linear-
complexity algorithm for solving a scheduling problem with a
similar structure as (13). The details of this algorithm are omit-
ted here and we refer the readers to [22] for more information.

Another interesting observation for PWPCN is the relation-
ship between the number of scheduled users and the physical
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system parameters, which has been summarized in the follow-
ing corollary.

Corollary 1: 1) For energy-efficient PWPCN, the number of
scheduled user increases with the ratio Pc

Pmax
; 2) For energy-

efficient PWPCN, the number of scheduled user decreases with
the energy conversion efficiency η.

Proof: Due to space limitation, we only provide a sketch
of the proof here. From Lemma 3, we know that the condi-
tion for scheduling user k is E E∗

PWPCN ≤ ee	
k . Since a larger

Pc
Pmax

or a lower η leads to a lower system EE, E E∗
PWPCN, i.e.,

more users satisfy the scheduling condition, more users are
scheduled. �

Corollary 1 generally reveals the relationship between the
number of scheduled users and the physical system parameters
of the power station (Pc, Pmax) and/or user terminals (η) in the
energy efficient PWPCN.

In the next subsection, we investigate the EE of IELCN and
characterize its properties.

C. Properties of Energy-Efficient IELCN

Theorem 3: Problem (12) is equivalent to the following
optimization problem

max
k∈
I

max
pk ,τk

τk W log2 (1 + pkγk)
pk
ς

τk + pcτk

s.t.
pk

ς
τk + pcτk ≤ Qk, k ∈ 
I,

τk ≤ Tmax, k ∈ 
I,

C4, C5, (17)

and the corresponding optimal solution is given by

p∗
k =

⎧⎨⎩p	
k , if k = arg max

i∈
I

ee	
i ,

0, otherwise,∀i,
(18)

τ ∗
k

⎧⎪⎨⎪⎩∈
(

0, max

(
Qk

p∗
k
ς

+pc

, Tmax

)]
, if k = arg max

i∈
I

ee	
i ,

= 0, otherwise,∀i.
(19)

Proof: Please refer to Appendix F. �
Theorem 3 indicates that the optimal transmission strat-

egy for EE maximization in IELCN is to schedule only the
user with the highest user EE. Thus, based on Theorem 3,
E E∗

IELCN can be easily obtained with the user EE introduced in
Section II-C.

In summary, we have obtained the optimal solutions of
problems (11) and (12) in Section III-B and Section III-C,
respectively. Thus, as shown in Theorem 1, the optimal solu-
tion of problem (10) is achieved by the one which results in
larger system EE.

IV. ENERGY-EFFICIENT RESOURCE ALLOCATION FOR

WPCN WITH A QOS CONSTRAINT

Since practical systems may have to fulfill certain QoS
requirements, in this section, we investigate energy-efficient
time allocation and power control for WPCN guaranteeing a

minimum system throughput. In this case, the EE maximization
problem can be formulated as

max
τ0,{τk },
P0,{pk }

∑K
k=1 τk W log2 (1 + pkγk)

P0τ0

(
1
ξ

−∑K
k=1 ηhk

)
+ Pcτ0 +∑K

k=1

(
pk
ς

τk + pcτk

)
s.t. C1, C2, C3, C4, C5,

C6:
K∑

k=1

τk W log2 (1 + pkγk) ≥ Rmin, (20)

where Rmin denotes the minimum required system throughput
and all other parameters and constraints are identical to those
in (10). We note that different priorities and fairness among
the users could be realized by adopting the weighted sum rate
instead of the system throughput. However, since the weights
are constants and do not affect the algorithm design, without
loss of generality, we assume all users are equally weighted in
this paper [4].

A. Feasibility of Problem (20)

Before proceeding to solve problem (20), we first investigate
the feasibility condition for a given QoS requirement, Rmin.
The following theorem provides the necessary and sufficient
condition for the feasibility of problem (20).

Theorem 4: Problem (20) is feasible if R∗ ≥ Rmin, where
R∗ is the maximum objective value of the following concave
optimization problem

max
τ0,{τk }

K∑
k=1

τk W log2

(
1 + τ0 Pmaxηhk + Qk

τk
ςγk − pcςγk

)

s.t. τ0 +
K∑

k=1

τk = Tmax,

τ0 ≥ 0, τk ≥ 0, ∀ k. (21)

Proof: Due to the space limitation, we only provide a
sketch of the proof. It can be shown that the maximum through-
put of problem (20) is achieved when C1-C3 are all satisfied
with equality, which leads to problem (21). If the energy of
some user is not used up, the system throughput can always
be improved by increasing its transmit power while keeping its
transmission time unchanged, thus C2 holds with strict equal-
ity. Similar considerations can also be made for C1 and C3,
respectively. The objective function in (21) is concave and all
constraints are affine, thus problem (21) is a standard concave
optimization problem. �

In fact, problem (21) falls into the category of throughput
maximization problems in WPCN and can be solved by stan-
dard optimization techniques, such as the interior point method
[31]. The feasibility of problem (20) can thereby be verified
based on Theorem 4. If it is infeasible, Rmin can be decreased
and/or Tmax (Pmax) can be increased until the problem becomes
feasible. In the following, we assume that problem (20) is
feasible.

B. Transformation of the Objective Function

It is intuitive that when Rmin is sufficiently large, both power
transfer and the initial energy are needed to meet the system
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throughput requirement. Thus, problem (20) cannot be simply
cast into PWPCN or IELCN. Moreover, problem (20) is neither
convex nor quasi-convex due to the fractional form of the objec-
tive function and the non-convexity of inequality constraints C2
and C6. Next, we study the transmit power of the power station.

Theorem 5: For problem (20), the maximum system EE can
always be achieved for P∗

0 = Pmax.

Proof: As the power transfer may not be activated due to
the initial energy of the users, we discuss the following two
cases. First, if the power transfer is activated for the optimal
solution, i.e., τ ∗

0 > 0, then we can show that P∗
0 = Pmax fol-

lowing a similar proof as for Lemma 1. Second, if τ ∗
0 = 0 holds,

then the value of the power station’s transmit power P∗
0 does not

affect the maximum system EE, and thus P0 = Pmax is also an
optimal solution. �

It is worth noting that Lemma 1 is in fact a special case of
Theorem 5. Considering Theorem 5, we only have to optimize
τ0, {pk}, and {τk}, ∀ k, for solving problem (20). According to
nonlinear fractional programming theory [32], for a problem of
the form,

q∗ = max
τ0,{pk },{τk }∈F

Btot(pk, τk)

Etot(τ0, pk, τk)
, (22)

where F is the feasible set, there exists an equivalent problem
in subtractive form, which satisfies

T (q∗) = max
τ0,{pk },{τk }∈F

{Btot(pk, τk) − q∗Etot(τ0, pk, τk)} = 0.

(23)

The equivalence of (22) and (23) can be easily verified at the
optimal point (τ ∗

0 , p∗
k , τ ∗

k ) with the corresponding maximum
value q∗ which is the optimal system EE to be determined.
Dinkelbach provides an iterative method in [32] to obtain q∗. In
each iteration, a subtractive-form maximization problem (23) is
solved for a given q. The value of q is updated and problem
(23) is solved again in the next iteration until convergence is
achieved. By applying this transformation to (22), we obtain
the following problem for a given q in each iteration

max
τ0,{τk },
{pk }

K∑
k=1

τk W log2 (1 + pkγk) − q

(
K∑

k=1

(
pk

ς
τk + pcτk

)

+Pmaxτ0

(
1

ξ
−

K∑
k=1

ηhk

)
+ Pcτ0

)
s.t. C2, C3, C4, C5, C6. (24)

Although problem (24) is more tractable than the original
problem (20), it is still a non-convex optimization problem
since it involves products of optimization variables. Hence, we
further introduce a set of auxiliary variables, i.e., Ek = pkτk ,
for ∀ k, which can be interpreted as the actual energy consumed
by user k. Replacing pk with Ek

τk
, problem (24) can be written

as

max
τ0,{τk },
{Ek }

K∑
k=1

τk W log2

(
1 + Ek

τk
γk

)
− q

(
K∑

k=1

(
Ek

ς
+ pcτk

)

+Pmaxτ0

(
1

ξ
−

K∑
k=1

ηhk

)
+ Pcτ0

)

s.t. C3, C4, C5: Ek ≥ 0,∀ k,

C2:
Ek

ς
+ pcτk ≤ ηPmaxτ0hk + Qk, ∀ k,

C6:
K∑

k=1

τk W log2

(
1 + Ek

τk
γk

)
≥ Rmin. (25)

After this substitution, it is easy to show that problem (25) is
a standard convex optimization problem, which can be solved
by standard convex optimization techniques, e.g., the interior-
point method [31]. However, this method neither exploits the
particular structure of the problem itself nor does it provide
any useful insights into the solution. Hence, in the following,
we employ the KKT conditions to analyze problem (25), which
results in an optimal and efficient solution.

C. Iterative Algorithm for Energy Efficiency Maximization

The partial Lagrangian function of problem (25) can be
written as

L(τ0, Ek, τk,μ, δ, ϑ)

= (1+ϑ)

K∑
k=1

τk W log2

(
1+ Ek

τk
γk

)
−q

(
K∑

k=1

(
Ek

ς
+ pcτk

)

+ Pmaxτ0

(
1

ξ
−

K∑
k=1

ηhk

)
+Pcτ0

)
+δ

(
Tmax−τ0−

K∑
k=1

τk

)

+
K∑

k=1

μk

(
Qk +ηPmaxτ0hk − Ek

ς
− pcτk

)
−ϑ Rmin, (26)

where μ, δ, and ϑ are the non-negative Lagrange multipliers
associated with constraints C2, C3, and C6, respectively. The
boundary constraints C4 and C5 are absorbed into the opti-
mal solution in the following. Then, the optimal solution can
be obtained from the following theorem.

Theorem 6: Given μ, δ, and ϑ , the maximizer of L(τ0,

Ek, τk,μ, δ, ϑ) is given by

τ ∗
0

{
∈ [ 0, Tmax), if f0(μ) = 0,

= 0, if f0(μ) < 0,
(27)

E∗
k = τ ∗

k pk,∀ k, (28)

τ ∗
k

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= ηPmaxτ
∗
0 hk+Qk

p∗
k
ς

+pc

, if γk > x∗,

∈
[

0,
ηPmaxτ

∗
0 hk+Qk

p∗
k
ς

+pc

]
, if γk = x∗,

= 0, if γk < x∗,

(29)

where pk and f0(μ) are given by

p∗
k =

[
W (1 + ϑ)ς

(q + μk) ln 2
− 1

γk

]+
,∀ k, (30)

f0(μ) = Pmax

(
K∑

k=1

μkhk − q

(
1 −

K∑
k=1

ηhk

))
− q Pc − δ.

(31)
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Algorithm 1. Energy-Efficient Transmission Algorithm for
WPCN

1: Initialize q = 0 and the maximum tolerance ε;
2: Repeat
3: Initialize ϑ̂ and δ̂;
4: Set Lagrange multipliers ϑmax = ϑ̂ , ϑmin = 0, δmax =

δ̂, and δmin = 0;
5: While ϑmax − ϑmin ≥ ε

6: ϑ = 1
2 (ϑmax + ϑmin);

7: While δmax − δmin ≥ ε

8: δ = 1
2 (δmax + δmin);

9: Compute x∗ from (32) for given q, ϑ , and δ;
10: Compute μk from (48) and (49) with γk > x∗;

otherwise, μk = 0;
11: Obtain pk for each user from (30);
12: Obtain τ0 and τk from (27) and (29),

respectively;
13: If there exist τ0 and τk,∀ k, satisfying (33),

then, break;
14: elseif τ0 +∑K

k=1 τk > Tmax
15: δmin = δ; else δmax = δ;
16: end
17: end while
18: If there exist pk, ∀ k, satisfying (34), then, break;
19: elseif

∑K
k=1 τk W log2 (1 + pk gk) < Rmin

20: ϑmin = ϑ ; else ϑmax = ϑ ;
21: end
22: end while
23: Update q = Btot(pk ,τk )

Etot(τ0,pk ,τk )
;

24 until T (q∗) < ε

In (29), x∗ denotes the solution of

aq(ln 2) log2(ax)
1

ς
+ q

x
− q(a + pc) − δ = 0, (32)

where a � W (1+ϑ)ς
q ln 2 . Moreover, τ ∗

0 and τ ∗
k , for k = 1, . . . , K ,

satisfy

τ ∗
0 +

K∑
k=1

τ ∗
k

{= Tmax, δ > 0
≤ Tmax, δ = 0.

(33)

K∑
k=1

τ ∗
k W log2(1 + pk gk)

{= Rmax, ϑ > 0
≤ Rmax, ϑ = 0

(34)

Proof: Please refer to Appendix G. �
By exploiting Theorem 6, the optimal solution of (25) can

be obtained with Algorithm 1 given on the next page. In
Algorithm 1, we first initialize the Lagrange multipliers ϑ and
δ. Line 9 calculates x∗ from (32), where x∗ is the threshold
to determine whether a user is scheduled or not. It is interest-
ing to note that since the parameters a, q, ς , pc, and δ in (32)
are independent of the user index k, the threshold x∗ is thereby
identical for all users. Then, based on (29), we determine the
users that should be scheduled by comparing x∗ with γk . Thus,
for an unscheduled user k, its corresponding μk is zero since

constraint C2 is met with strict inequality. In contrast, for a
scheduled user k with γk , line 10 calculates its corresponding
μk by setting f (μk, γk) = 0 in (49), where f (μk, γk) is given
by (48). With given ϑ , δ, and μk , the power allocation variable
pk can be immediately computed from (30) in line 11. Then,
from (27) and (29), the region with respect to τ0 and τk is eas-
ily obtained as in line 12. Since it has been shown in (41) and
(48) that the Lagrangian function L is a linear function with
respect to τ0 and τk , the optimal solution that maximizes L

can always be found at the vertices of the region created by
τ0 and τk . Then, if (33) and (34) are both satisfied for the above
obtained τ0, τk , and pk , the optimal solution for given q has
been found. It is worth noting that in the case that all users
have sufficient energy, it follows that μk = 0 due to the comple-
mentary slackness condition (44). Then, from (31), this leads to
f0(μ) < 0 which implies that activating the power transfer is
not beneficial for achieving the highest system EE. Otherwise,
ϑ and δ are updated iteratively until they converge. Since the
outer-layer Dinkelbach method and the inner-layer bisection
method are both convergent (31), [32], the proposed algorithm
is guaranteed to converge to the optimal solution.

The computational complexity of Algorithm 1 can be ana-
lyzed as follows. The complexity of lines 8–11 in Algorithm 1
is linear in the number of users, K . Furthermore, the complexity
of the Dinkelbach method [33] for updating q and the bisec-
tion method [31] for updating ϑ and δ are both independent of
K . Therefore, the total complexity of the proposed algorithm is
O(K ).

In the following, we reveal some properties of energy-
efficient WPCN with a throughput constraint.

Corollary 2: If the total available transmission time is not
used up, i.e., τ0 +∑K

k=1 τk < Tmax, then each scheduled user k
transmits with the power that achieves the maximum user EE,
i.e., pk = p	

k in (7). In contrast, if the total available transmis-
sion time is used up, then the optimal transmit power of each
scheduled user k satisfies pk ≥ p	

k .

Proof: Please refer to Appendix H. �
Corollary 2 reveals that as long as the total available trans-

mission time is sufficiently long, letting each user indepen-
dently maximize its own maximum EE is the most energy-
efficient power control strategy for the whole system, which
also coincides with the conclusion in Theorem 2 for best-
effort PWPCN. On the other hand, if the available transmission
time is not sufficient, users can only meet the required system
throughput by increasing their transmit power at the expense of
sacrificing user EE and also system EE. Furthermore, users that
are not scheduled in the problem without Rmin, i.e., problem
(10), may have to be scheduled in order to meet Rmin, although
scheduling them is detrimental to the system EE. Thus, it is
likely that some of these users only consume just enough of
their energy to satisfy Rmin. The following corollary sheds
some light on how an energy-efficient WPCN meets the QoS
requirement.

Corollary 3: If WET is used, i.e., τ0 > 0, and a scheduled
user m does not use up all of its available energy, then the trans-
mit powers of all scheduled users remain constant until user m’s
energy is used up. Moreover, as the required system throughput
increases, the energy transfer time τ0 and the transmission time
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τk of any scheduled user k �= m decrease, respectively, while
the transmission time τm of user m increases.

Proof: Please refer to Appendix I. �
Corollary 3 suggests that if some scheduled user has a large

amount of initial energy available, it is preferable to utilize this
energy instead of prolonging the DL WET time if the required
throughput is high. This is because DL WET not only causes
circuit energy consumption but also reduces the time for UL
WIT.

V. NUMERICAL RESULTS

In this section, we present simulation results to validate
our theoretical findings, and to demonstrate the system EE of
WPCN. Five users are randomly and uniformly distributed on
the right hand side of the power station with a reference dis-
tance of 2 meters and a maximum service distance of 15 meters.
The information receiving station is located 300 meters away
from the power station. The system bandwidth is set as 20 kHz
and the SNR gap is � = 0 dB. The path loss exponent is 2.8
and the thermal noise power is –110 dBm. The small scale
fading for WET and WIT is Rician fading with Rician fac-
tor 7 dB and Rayleigh fading, respectively. The circuit power
consumptions at the power station and the user terminals are
set to 500 mW and 5 mW, respectively. The PA efficiencies of
the power station and the user terminals, i.e., ξ and ς , are set
to unity, without loss of generality. Unless specified otherwise,
the remaining system parameters are set to η = 0.9, Tmax = 1s,
and Pmax = 43 dBm. In Figs. 3-6, best-effort communication
WPCN are considered, whereas in Figs. 2 and 7, a minimum
system throughput requirement is imposed.

A. Convergence of Proposed Algorithm

Fig. 2 depicts the achieved system EE of the proposed
Algorithm 1 versus the number of outer-layer iterations using
the Dinkelbach method for different configurations. As can be
observed, on average at most six iterations are needed to reach
the optimal solution in the outer-layer optimization. Since the
time allocation and power control by the bisection method also
results in a fast convergence in the inner-layer optimization
[31], the proposed algorithm is guaranteed to converge quickly.

B. System EE of WPCN: PWPCN Versus IELCN

We provide a concrete example to illustrate Theorem 1
for best-effort communication. Specifically, we set Q � [Q1,

Q2, Q3, Q4, Q5] = [0, 0, 1, 1, 1] (Joule), h � [h1, h2, h3, h4,

h5] = [0.1, 0.1, 0.1, 0.1, 0.1], and γ � [γ1, γ2, γ3, γ4, γ5] =
[8, 6, γ3, 0.3, 0.2], respectively. Note that only the last three
users have initial energy available. Therefore, from Theorem 3
for IELCN, we know that only the third user is scheduled if
γ3 > 0.3, and its EE is independent of Pmax and increasing with
γ3. However, from Theorem 2, we know that the EE of PWPCN
is increasing in Pmax. Therefore, we can vary γ3 and Pmax to
observe the system switching from IELCN to PWPCN in terms
of system EE, which is shown in Fig. 3. In the low transmit

Fig. 2. System EE versus the number of outer-layer iterations of the proposed
algorithm for different minimum system requirements, Rmin.

Fig. 3. Illustration of the system switching from IELCN to PWPCN as Pmax
increases. The green curve corresponds to PWPCN and the horizontal portion
of curves corresponds to IELCN.

power regime, the system is in the IELCN mode, but as Pmax
increases, when the EE of PWPCN surpasses that of IELCN,
the system switches to the PWPCN mode.

C. System EE versus Transmit Power of Power Station and Path
Loss Exponent of WET Channel

We compare the EE of the following schemes: 1) EE
Optimal: proposed approach; 2) Throughput Optimal: based
on conventional throughput maximization [9]; 3) Fixed
Proportion: let each user consume a fixed proportion of its har-
vested energy, denoted as ρ, which can be adjusted to balance
the energy consumed and stored. In Fig. 4, as Pmax increases,
we observe that the performance of the EE Optimal scheme
first sharply increases and then experience a moderate increase
while the EE of the Throughput Optimal scheme first increases
and then strictly decreases, which is due to its greedy use
of power. Moreover, for the Fixed Proportion schemes, as ρ

increases, the system EE also increases. However, even for
ρ = 1, the EE Optimal scheme still outperforms the Fixed
Proportion scheme. The proposed scheme has a superior per-
formance as it only schedules users which are beneficial for
the system EE while the Fixed Proportion scheme imprudently
schedules all users without any selection.
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Fig. 4. System EE versus the maximum transmit power.

Fig. 5. System EE versus the path loss exponent.

In Fig. 5, the system EE of all schemes decreases with
increasing path loss exponent α. Moreover, the performance
gap between the different schemes decreases as α increases.
A larger path loss exponent leads to more energy loss in sig-
nal propagation, which forces the energy-efficient designs to
schedule more users and to utilize more energy to increase the
system throughput so as to improve the system EE. Hence, the
proposed algorithm behaves similar to the Throughput Optimal
scheme for very high path loss exponents.

D. Number of Scheduled Users Versus Energy Harvesting
Efficiency

In Fig. 6, we show the number of scheduled users versus
the energy harvesting efficiency of the user terminal, η. An
interesting observation is that the number of scheduled users is
non-decreasing with increasing η. This is because as the energy
harvesting efficiency increases, the energy loss decreases which
leads to a higher system EE. This further forces the system to be
more conservative in scheduling users so as to maintain higher
EE. Moreover, for a larger Pc, more users are scheduled.

E. System EE Versus Minimum Throughput Requirement

Fig. 7 shows the system EE versus the minimum required
system throughput, Rmin, for different numbers of user termi-
nals. We observe that as Rmin increases, the system EE first

Fig. 6. Number of scheduled users versus the efficiency η.

Fig. 7. System EE versus the minimum required throughput.

remains constant and then gradually decreases, which is due to
the fundamental trade-off between EE and spectral efficiency
(SE). As expected, the EE increases with the number of users
K . The reasons for this are twofold. First, for DL WET, if more
users participate in energy harvesting, the energy loss due to
signal propagation decreases. Second, for UL WIT, a larger
number of users results in a higher multiuser diversity gain,
which in turn leads to a higher system throughput.

Another interesting observation is that for larger K , the
system EE decreases more rapidly than for smaller K . This is
mainly because for larger K , more energy is harvested and thus
the energy loss in DL WET is relatively less dominant in the
total energy consumption compared to the energy consumed
for UL WIT. Therefore, for high throughput requirements,
the energy consumption is more sensitive to changes in the
throughput requirements for larger K , which leads to a faster
decrease in the system EE.

VI. CONCLUSIONS

In this paper, we have investigated the joint time allocation
and power control of DL WET and UL WIT to maximize the
system EE of the WPCN. For the WPCN with best-effort com-
munication, we have shown that the EE maximization problem
is equivalent to the EE maximization in two different simplified
systems, i.e., PWPCN and IELCN. For the PWPCN, we have
reduced the EE maximization problem to a multiuser schedul-
ing problem where the number of scheduled users increases
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with the circuit power but decreases with the energy conver-
sion efficiency at the user side. On the other hand, for the
IELCN, only the user with the highest user EE is scheduled.
Furthermore, we have studied the EE maximization problem
under a minimum required system throughput constraint and
proposed an efficient algorithm for obtaining the optimal solu-
tion. In addition, we have shown that when the available
transmission time is sufficiently long, the most energy-efficient
strategy for the system is to let each user achieve its own
maximum user EE. In contrast, if the transmission time is too
short, the system EE has to be sacrificed to achieve the system
throughput requirement.

There are several interesting research directions that could be
pursued based on the results in this paper: 1) While the through-
put in UL WIT improves with the quality of the CSI, this comes
at the expense of energy and time needed for CSI estimation
which reduces the system EE. Therefore, the design of the opti-
mal CSI acquisition strategy for maximizing the system EE is
an interesting topic. 2) Beyond the system EE, maximizing the
user EE may be desirable in practice, for example, to extend
the lifetime of some specific battery. Thus, the user EE trade-
off is worth studying so that different transmission strategies
can be employed to strike the balance among EEs of different
users. 3) Finally, maximizing the system EE while guarantee-
ing minimum individual user throughputs is also an interesting
problem.

APPENDIX A: PROOF OF THEOREM 1

We first introduce a lemma to facilitate our proof.
Lemma 4: Assume that a, b, c, and d are arbitrary positive

numbers. Then, we have a+c
b+d ≤ max { a

b , c
d } where “=” holds if

and only if a
b = c

d .

Proof: The proof is straightforward and thus omitted due
to the space limitation. �

Let S = {P0, τ0, {pk}, {τk}} denote an arbitrary solution of
problem (10) and its corresponding system EE is denoted as
E E . Let Ŝ = {P̂0, τ̂0, { p̂k}, {τ̂k}} and Š = {P̌0, 0, { p̌k}, {τ̌k}}
denote the optimal solutions of problem (11) or problem (12),
respectively. The energy consumptions corresponding to S, Ŝ,
and Š during DL WET are EWET, ÊWET, and 0, respectively.
The feasible sets of problems (10), (11), and (12) are denoted as
D, DP, and DI, respectively, and rk(pk) � W log2(1 + pkγk).
Note that if τk = 0 holds for ∀ k ∈ 
P and ∀ k ∈ 
I, the sys-
tem EE of WPCN is zero which is obviously not the maximum
value of problem (10). Therefore, the maximum EE of problem
(10), E E∗, can only be achieved for one of the following three
cases:

1) {τ0 > 0; ∃ k ∈ 
P, τk > 0; ∀ k ∈ 
I, τk = 0}: In this
case, as τ0 > 0 while ∀ k ∈ 
I, τk = 0, the maximum EE
of WPCN is achieved by PWPCN, i.e., problem (10) sim-
plifies to problem (11) and E E∗ = max {E E∗

PWPCN, 0} =
E E∗

PWPCN.

2) {τ0 = 0; ∀ k ∈ 
P, τk = 0; ∃ k ∈ 
I, τk > 0}: In this
case, as τ0 = 0 and ∀ k ∈ 
P, τk = 0, the maxi-
mum EE of WPCN is achieved by IELCN, i.e.,

problem (10) simplifies to problem (12) and E E∗ =
max {0, E E∗

IELCN} = E E∗
IELCN.

3) {τ0 > 0; ∃ k ∈ 
P, τk > 0; ∃ k ∈ 
I, τk > 0}: In this
case, by exploiting the fractional structures of (10)–(12),
we have the following inequalities

E E =
∑K

k=1 τkrk(pk)

EWET +∑K
k=1 τk

(
pk
ς

+ pc

)
=

∑
k∈
P

τkrk(pk)+∑k∈
I
τkrk(pk)

EWET+∑k∈
P
τk

(
pk
ς

+ pc

)
+∑k∈
I

τk

(
pk
ς

+ pc

)
a≤ max

⎧⎨⎩
∑

k∈
P
τkrk(pk)

EWET +∑
k∈
P

τk

(
pk
ς

+ pc

) ,

∑
k∈
I

τkrk(pk)∑
k∈
I

τk

(
pk
ς

+ pc

)
⎫⎬⎭

b≤ max

⎧⎨⎩
∑

k∈
P
τ̂krk( p̂k)

ÊWET +∑
k∈
P

τ̂k

(
p̂k
ς

+ pc

) ,

∑
k∈
I

τ̌krk( p̌k)∑
k∈
I

τ̌k

(
p̌k
ς

+ pc

)
⎫⎬⎭

= max
{

E E∗
PWPCN, E E∗

IELCN

}
, (35)

where inequality “a” holds due to Lemma 4 and the
strict equality “=” represents the special case when the
system EE of PWPCN is the same as that of IELCN.
Inequality “b” holds since Ŝ and Š are the optimal solu-
tions corresponding to E E∗

PWPCN and E E∗
IELCN, respec-

tively. Therefore, in (37), if and only if the maximum
system EE of PWPCN is the same as the maximum
system EE of IELCN, the strict equality in “a” can
hold together with the strict equality in “b”. In this
case, there exists a solution that satisfies {τ0 > 0; ∃ k ∈

P, τk > 0; ∃ k ∈ 
I, τk > 0} and achieves the maxi-
mum system EE of WPCN. It thus follows that E E∗ =
E E∗

PWPCN = E E∗
IELCN and without loss of generality,

we assume that the maximum system EE for this case
is achieved by PWPCN in order to preserve the ini-
tial energy of users belonging to 
I. Otherwise, the
strict equality in “a” can not hold together with the
strict equality in “b”. This means that the system EE
achieved by any solution that satisfies {τ0 > 0; ∃ k ∈

P, τk > 0; ∃ k ∈ 
I, τk > 0} will be strictly smaller
than the maximum EE of either PWPCN or IELCN, i.e.,
E E∗ = max {E E∗

PWPCN, E E∗
IELCN}, which suggests that

either PWPCN or IELCN is optimal. Next, we investigate
under what conditions “b” holds with strict equality, i.e.,
E E∗

PWPCN and E E∗
IELCN are achieved without violating

the feasible domain of the original problem (10). This
leads to the following two cases:
• For k ∈ 
P, it is easy to verify the equivalence

between {P0, τ0, {pk}, {τk}} ∈ D and {P0, τ0, {pk},
{τk}} ∈ DP. As {P̂0, τ̂0, { p̂k}, {τ̂k}} maximizes
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E EPWPCN, “b” holds true for the first term inside the
bracket.

• For k ∈ 
I, the optimal solution, denoted as

{p∗
k , τ ∗

k } ∈ D, implies that τ ∗
k (

p∗
k

ς
+ pc) ≤ ηP∗

0

τ ∗
0 hk + Qk and τ ∗

0 +∑K
k=1 τ ∗

k ≤ Tmax. Then, we
can construct another solution {P̃0, 0, { p̃k}, {̃τk}}
with P̃0 = P∗

0 , p̃k = p∗
k , and τ̃k = ατ ∗

k , where α =
min
k∈
I

Qk
Qk+ηP∗

0 τ∗
0 hk

≤ 1 such that τ̃k(
p̃k
ς

+ pc) ≤ Qk

for ∀ k. It can be verified that {P̃0, 0, { p̃k}, {̃τk}} is a
feasible point in DI, and can achieve the same EE

as{P∗
0 , τ ∗

0 , {p∗
k }, {τ ∗

k }} ∈ D, i.e.,
∑

k∈
I
τ̃krk ( p̃k )∑

k∈
I
τ̃k (

p̃k
ς

+pc)
=∑

k∈
I
ατ∗

k rk (p∗
k )∑

k∈
I
ατ∗

k (
p∗
k
ς

+pc)

=
∑

k∈
I
τ∗

k rk (p∗
k )∑

k∈
I
τ∗

k (
p∗
k
ς

+pc)

. On the other

hand, since {P̌0, 0, { p̌k}, {τ̌k}} ∈ DI maximizes
E EIELCN, “b” holds true for the second term inside the
bracket.

The above analysis proves Theorem 1.

APPENDIX B: PROOF OF LEMMA 1

We prove Lemma 1 by contradiction. Suppose that
{P∗

0 , {p∗
k }, τ ∗

0 , {τ ∗
k }} is the optimal solution to problem (11)

where P∗
0 < Pmax holds for any P∗

0 , and the optimal system
EE is denoted as E E∗. Let E∗

0 � P∗
0 τ ∗

0 where E∗
0 can be inter-

preted as the actual energy transmitted by the power station.
Then, we can construct another solution {P̃0, { p̃k}, τ̃0, {̃τk}} sat-
isfying P̃0 = Pmax, P̃0τ̃0 = E∗

0 , p̃k = p∗
k , and τ̃k = τ ∗

k , respec-
tively. The corresponding system EE is denoted as Ẽ E . It is
easy to check that {P̃0, { p̃k}, τ̃0, {̃τk}} is a feasible solution
given {P∗

0 , {p∗
k }, τ ∗

0 , {τ ∗
k }}. Moreover, since P̃0 = Pmax > P∗

0 ,
it follows that τ̃0 < τ ∗

0 and hence Pc τ̃0 < Pcτ
∗
0 always holds

true. Therefore, we always have P̃0τ̃0

(
1
ξ

−∑K
k=1 ηhk

)
+

Pc τ̃0 < P∗
0 τ ∗

0

(
1
ξ

−∑K
k=1 ηhk

)
+ Pcτ

∗
0 . Since neither {p∗

k } nor

{τ ∗
k } are changed in the constructed solution, based on problem

(11), it follows that Ẽ E > E E∗, which contradicts the assump-
tion that {P∗

0 , {p∗
k }, τ ∗

0 , {τ ∗
k }} is the optimal solution. Lemma 1

is thus proved.

APPENDIX C: PROOF OF LEMMA 2

Suppose that {P∗
0 , {p∗

k }, τ ∗
0 , {τ ∗

k }} yields the maximum sys-
tem EE, E E∗, and satisfies 0 ≤ τ ∗

0 +∑
k∈
P

τ ∗
k < Tmax. Then,

we can construct another solution {P̃0, { p̃k}, τ̃0, {̃τk}} with
P̃0 = P∗

0 , p̃k = p∗
k , τ̃0 = ατ ∗

0 , τ̃k = ατ ∗
k , respectively, where

α = Tmax
τ∗

0 +∑k∈
P
τ∗

k
> 1 such that τ̃0 +∑

k∈
P
τ̃k = Tmax. The

corresponding system EE is denoted as Ẽ E . First, it is easy
to check that {P̃0, { p̃k}, τ̃0, {̃τk}} still satisfies constraints C1-
C5. Then, substituting {P̃0, { p̃k}, τ̃0, {̃τk}} into problem (11)
yields Ẽ E = E E∗, which means that the optimal system EE
can always be achieved by using up all the available time, i.e.,
Tmax. Lemma 2 is thus proved.

APPENDIX D: PROOF OF LEMMA 3

First, if E E∗
PWPCN < ee	

m , we proved that user m will be
scheduled in our previous work [Theorem 1] [24]. Second,
we prove that the scheduled user will use up all of its energy
by contradiction. Suppose that {P∗

0 , {p∗
k }, τ ∗

0 , {τ ∗
k }} is the opti-

mal solution to problem (11) and there exists a Um , ∀ m ∈

P, such that E E∗

PWPCN < ee∗
m , but its harvested energy

is not used up, i.e., (
p∗

m
ς

+ pc)τ
∗
m < ηPmaxτ

∗
0 hm and (

p∗
k

ς
+

pc)τ
∗
k ≤ ηPmaxτ

∗
0 hk for k �= m. The corresponding system EE,

E E∗
PWPCN, is given by

E E∗
PWPCN

=
∑

k �=m τ ∗
k W log2

(
1+ p∗

k γk
)+τ ∗

m W log2
(
1+ p∗

mγm
)

E∗
WET+Pcτ

∗
0 +∑k �=m τ ∗

k (
p∗

k
ς

+ pc)+τ ∗
m(

p∗
m
ς

+ pc)
. (36)

Then, we can construct another solution {P̃0, { p̃k}, τ̃0, {̃τk}}
with P̃0 = P∗

0 , p̃k = p∗
k for ∀ k, τ̃0 = βτ ∗

0 , τ̃k = βτ ∗
k for

k �= m, and τ̃m = ατ ∗
m , respectively, where 0 < β < 1 and

α > 1. Note that as β → 0, it follows that ηPmaxτ̃0hm =
βηPmaxτ

∗
0 hm → 0, and as α increases, it follows that (

p̃m
ς

+
pc )̃τm = α(

p∗
m
ς

+ pc)τ
∗
m increases. Therefore, there always

exist α and β such that α(
p∗

m
ς

+ pc)τ
∗
m = βηPmaxτ

∗
0 hm holds.

It is also easy to check that for k �= m, β(
p∗

k
ς

+ pc)τ
∗
k ≤

βηPmaxτ
∗
0 hk still holds. Consequently, the corresponding sys-

tem EE, denoted as Ẽ EPWPCN, is given by

Ẽ EPWPCN

=
∑

k �=m τ̃k W log2 (1 + p̃kγk) + τ̃m W log2 (1 + p̃mγm)

ẼWET + Pc τ̃0 +∑
k �=m τ̃k

(
p̃k
ς

+ pc

)
+ τ̃m

(
p̃m
ς

+ pc

)
= β

∑
k �=m τ ∗

k W log2
(
1+ p∗

k γk
)+ατ ∗

m W log2
(
1+ p∗

mγm
)

β
(

E∗
WET+Pcτ

∗
0 +∑k �=m τ ∗

k

(
p∗

k
ς

+ pc

))
+ατ ∗

m

(
p∗

m
ς

+ pc

) .

(37)

In order to compare E E∗
PWPCN and Ẽ EPWPCN, we introduce

Lemma 5.
Lemma 5: Assume that a, b, c, and d are arbitrary positive

numbers which satisfy a+c
b+d < c

d . Then, for any 0 < β < α, we

always have a+c
b+d <

βa+αc
βb+αd .

Proof: The proof is straightforward and thus omitted due
to the space limitation. �

Let a = ∑
k �=m τ ∗

k W log2
(
1 + p∗

k γk
)
, b = P∗

0 τ ∗
0 ( 1

ξ
−∑K

k=1

ηhk) + Pcτ
∗
0 +∑

k �=m τ ∗
k (

p∗
k

ς
+ pc), c = τ ∗

m W log2
(
1 + p∗

m

γm), and d = τ ∗
m(

p∗
m
ς

+ pc), respectively. Since user m is

scheduled, we have E E∗
PWPCN < ee∗

m , i.e., a+c
b+d < c

d , other-
wise, E E∗

PWPCN can be further increased by letting τ ∗
m = 0.

Based on Lemma 5, we obtain E E∗
PWPCN < Ẽ EPWPCN, which

contradicts the assumption, and 1) in Lemma 3 is thus proved.
The proofs of 2) and 3) can be obtained easily following a
similar procedure as above, and thus are omitted here for
brevity.
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APPENDIX E: PROOF OF THEOREM 2

Denote S∗ ⊆ 
P as the set of users which are scheduled.
Substituting P0 = Pmax and τk = ηPmaxhkτ0

pk
ς

+pc
into the objective

function of problem (11), we have

E E =
∑

k∈S∗ ηPmaxhkτ0
pk
ς

+pc
W (1 + pkγk)

EWET + Pcτ0 +∑
k∈S∗ ηPmaxhkτ0

pk
ς

+pc

(
pk
ς

+ pc

)
= ηPmax

∑
k∈S∗ hkeek

Pmax

(
1
ξ

−∑K
k=1 ηhk

)
+ Pc + ηPmax

∑
k∈S∗ hk

,

(38)

where eek is the user EE defined in (7). Given S∗, in order
to maximize E E , we only have to maximize each eek , which
is solely determined by pk , and the maximum value ee	

k can
be computed from (7) and (9). After some manipulations, we
obtain

E E∗ =
∑

k∈S∗ hkee	
k

1
ηξ

(
Pc

Pmax
ξ + 1 −∑K

k=1 ξηhk

)
+∑

k∈S∗ hk

. (39)

Since the transmit power of each scheduled user k is p	
k given

by (39), τ ∗
0 and τ ∗

k can be easily obtained from Lemma 2 and
Lemma 3. Theorem 2 is thus proved.

APPENDIX F: PROOF OF THEOREM 3

From (12), we have

E E∗
IELCN =

∑
k∈
I

τ ∗
k W log2

(
1 + p∗

k γk
)

∑
k∈
I

τ ∗
k

(
p∗

k
ς

+ pc

)
c≤ max

k∈
I

τ ∗
k W log2

(
1 + p∗

k γk
)

τ ∗
k

(
p∗

k
ς

+ pc

)
d≤ max

k∈
I

W log2
(
1 + p	

kγk
)

p	
k

ς
+ pc

= ee	
k (40)

where inequality “c” holds due to the same argument as
inequality “a” in (35), and “d” follows from the optimality of
p	

k for ee	
k . From (40), we observe that the maximum system EE

is always achieved by scheduling a single user. Then, apply-
ing the optimal power p	 in the time and energy harvesting
constraints, we obtain (18) and (19).

APPENDIX G: PROOF OF THEOREM 6

By taking the partial derivative of L with respect to τ0, Ek ,
and τk , respectively, we obtain

∂L

∂τ0
= Pmax

(
K∑

k=1

μkhk − q

(
1

ξ
−

K∑
k=1

hk

))
− q Pc − δ,

(41)

∂L

∂ Ek
= (1 + ϑ)τkγk

(τk + Ekγk) ln 2
− q + μk

ς
, (42)

∂L

∂τk
= W (1 + ϑ) log2

(
1 + Ek

τk
γk

)
− W (1 + ϑ)Ekγk

(τk + Ekγk) ln 2

− (q + μk)Pc − δ, (43)

and the complementary slackness conditions are given by

μk

(
Qk + ηPmaxτ0hk − Ek

ς
− pcτk

)
= 0, (44)

δ

(
Tmax − τ0 −

K∑
k=1

τk

)
= 0, (45)

ϑ

(
K∑

k=1

τk W log2

(
1 + Ek

τk
γk

)
− Rmin

)
= 0. (46)

Let f0(μ) � ∂L
∂τ0

and f (γk, μk) � ∂L
∂τk

. From (41), we know
that L is a linear function of τ0. Since τ0 ≥ 0, to make sure
that the Lagrangian function L is bounded above [31], we
have f0(μ) ≤ 0. Specifically, when f0(μ) < 0, it follows that
τ0 = 0, otherwise if f0(μ) = 0, τ0 ≥ 0, which results in (27).
From ∂L

∂ Ek
= 0, we can obtain the relationship between Ek and

τk as

pk = Ek

τk
=
[

W (1 + ϑ)ς

(q + μk) ln 2
− 1

γk

]+
,∀ k. (47)

Substituting (47) into (43) and after some manipulations,
f (γk, μk) can be expressed as

f (γk, μk) = (1 + ϑ)W log2

(
1 + γk

[
W (1 + ϑ)ς

(q + μk) ln 2
− 1

γk

]+)

− (q + μk)

([
W (1 + ϑ)ς

(q + μk) ln 2
− 1

γk

]+
+ pc

)
− δ.

(48)

Since τk ≥ 0, using a similar analysis as for τ0, the optimal
solution of τk must satisfy

∂L

∂τk
= f (γk, μk)

{
< 0, τk = 0,

= 0, τk ≥ 0, ∀k.
(49)

To facilitate our derivation, we next introduce a lemma related
to f (γk, μk).

Lemma 6: f (γk, μk) is an increasing function of γk

and a decreasing function of μk under the condition that
W (1+ϑ)ς
(q+μk ) ln 2 > 1

γk
.

Proof: Lemma 6 can be easily proved by taking the
derivative of f (γk, μk) with respect to γk and μk , respectively.
The proof is thus omitted due to the space limitation. �

Based on Lemma 6, we know that the maximum value
of f (γk, μk) in terms of μk is achieved at μk = 0, i.e.,
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f (γk, 0). Moreover, when γk = q ln 2
W (1+ϑ)ς

, f (γk, 0) = −qpc −
δ < 0 holds, and when γk → +∞, f (γk, 0) → +∞ holds.
From (48), since f (γk, 0) is an increasing function of γk , there
always exists a x∗ such that f (x∗, 0) = 0, i.e.,

f (x∗, 0) = (1 + ϑ)W log2

(
W (1 + ϑ)x∗

q ln 2

)
+ q

x
− W (1 + ϑ)ς

ln 2
− qpc − δ = 0, (50)

which results in (32). Note that since the parameters ϑ , W , q,
ς , pc, and δ in (50) do not depend on the user index k, the
threshold x∗ is thereby identical for all users. Now, we analyze
the following three cases:

• For γk < x∗, it follows that f (γk, μk) ≤ f (γk, 0) < 0.
According to (31), we know that a user with UL channel
gain γk less than xk is allocated zero transmission time,
i.e., τk = 0.

• For γk > x∗, there always exists a μk > 0 such that
f (γk, μk) = 0 < f (γk, 0) since f (γk, μk) is a decreas-
ing function with respect to μk . However, there
may exist μk > 0 such that f (γk, μk) < 0. Then,
according to (29), it follows that τk = 0 and Ek

ς
+

pcτk = 0 < ηPmaxτ
∗
0 hk + Qk , which contradicts (44),

i.e., μk(ηPmaxτ
∗
0 hk + Qk − Ek

ς
− pcτk) = 0, and this is

thereby not the optimal solution. Nevertheless, for users
with γk larger than x∗, μk > 0 implies that they uti-
lize all of their energy. Thus, from (44), we have τk =
ηPmaxτ

∗
0 hk+Qk

pk
ς

+pc
. Correspondingly, as τk > 0, the value of

μk can be calculated from the second case in (49), where
f (γk, μk) is given by (48), i.e., f (γk, μk) = 0.

• For γk = x∗, if μk > 0, then f (γk, μk) = 0 <

f (γk, 0) = 0 and τ0 = 0, which contradicts (44).
Therefore, μk = 0 follows from (44), this means
that user k can utilize any portion of its energy, i.e.,

τk ∈
[

0,
ηPmaxτ

∗
0 hk+Qk

pk
ς

+pc

]
.

Based on the above three cases, we obtain the region of time
allocation variables given in (27) and (29). As the Lagrangian
function L is a linear function of τ0 and τk , the maximum value
of L can always be obtained at the vertices of the region cre-
ated by (27) and (29). Moreover, τ ∗

0 and τ ∗
k , for k = 1, . . . , K ,

satisfy the complementary slackness conditions (45) and (46).
Therefore, if δ > 0, then the time constraint should be strictly
met with equality, otherwise, we obtain an associated inequal-
ity for limiting the range of time variables τk and τ0. The same
interpretation also applies to ϑ .

APPENDIX H: PROOF OF COROLLARY 2

From (48) and (49), we know that for each scheduled user k,
we have

(1 + ϑ)W log2 (1 + γk pk) − (q + μk)

(
pk

ς
+ pc

)
− δ = 0.

(51)

Note that from (47), W (1+ϑ)ς
(q+μk) ln 2 = pk + 1

γk
also holds for user

k. Substituting this relation into (51) and after some manipula-
tions, we obtain

D(pk) � W log2 (1 + pkγk) − Wς(
pk + 1

γk

)
ln 2

(
pk

ς
+ pc

)

− δ

1 + ϑ
= 0. (52)

If the total available transmission time is not used up,
i.e., τ0 +∑K

k=1 τk < Tmax, it follows from (45) that δ = 0.
Note that D(pk) is increasing in pk . Moreover, when
pk = 0, D(pk) = − Wςγk

ln 2 pc < 0, and when pk → +∞,
D(pk) → +∞. Therefore, there is always a unique solution pk

for (52). Combining (52) with (7) and (9), after some manipu-
lations, we conclude pk = p	

k . On the other hand, if the total

available transmission time is used up, i.e., τ0 +∑K
k=1 = Tmax,

it follows that δ ≥ 0. Hence, we conclude that pk ≥ p	
k

since D(pk) is monotonically increasing with respect to pk .
Corollary 2 is thus proved.

APPENDIX I:
PROOF OF COROLLARY 3

If WET is activated, i.e., τ0 > 0, from (27), we obtain

δ = Pmax

K∑
k=1

(q + μk)hk − q

(
Pmax

ξ
+ Pc

)
. (53)

Meanwhile, for any scheduled user k, it follows that (52)
also holds true. Combining (53) and (52), and after some
manipulations, we obtain

W log2(1 + pkγk) − W (pk + pcς)(
pk + 1

γk

)
ln 2

−
K∑

k=1

W Pmaxςhk(
pk + 1

γk

)
ln 2

+
q
(

Pmax
ξ

+ pc

)
1 + ϑ

= 0. (54)

If the energy of any user m is not used up, μm = 0
holds due to the associated complementary slackness con-
dition in (44). Thus, from (47), we know that pm = Em

τm
=[

W (1+ϑ)ς
q ln 2 − 1

γm

]+
,∀ m. Therefore, substituting pm into (54),

we have

log2(1 + pkγk) − (pk + pcς)(
pk + 1

γk

)
ln 2

−
K∑

k=1

Pmaxςhk(
pk + 1

γk

)
ln 2

+
ς
(

Pmax
ξ

+ pc

)
(

pm + 1
γm

)
ln 2

= 0. (55)

From (55), we observe that the transmit powers of the sched-
uled users depend only on the system parameters W , ξ , ς , Pmax,
pc, and γk . Moreover, the left hand side of (55) is a mono-
tonically increasing function of pk . Therefore, as long as the
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energy of user m is not used up, (55) holds true and pk remains
constant. Note that if the energy of user m is used up, i.e.,

μm > 0, pm =
[

W (1+ϑ)ς
(q+μm ) ln 2 − 1

γm

]+
and μm is thereby intro-

duced in (55). Then, the value of pk varies with μm . On the
other hand, since WET is used, i.e., τ0 > 0, and the energy of
user m is not used up, it can be further shown that the total
available time must be used up, i.e., τ0 +∑K

k=1 τk = Tmax. At
the same time, the required system throughput has to be satis-
fied, i.e.,

∑K
k=1 τk log2(1 + pk gk) ≥ Rmin. Therefore, as Rmin

increases, the information transmission time
∑K

k=1 τk has to
be increased since pk remains constant. Thus, it follows that
τ0 decreases due to the more stringent time constraint. Then,
the energy harvested at each user ηPmaxhkτ0 decreases and
the transmission time for any user k �= m also decreases as
τk = Pmaxhkτ0+Qk

pk
ς

+pc
.
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