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Abstract— This paper investigates the hybrid precoding design
for millimeter wave multiple-input multiple-output systems with
finite-alphabet inputs. The precoding problem is a joint opti-
mization of analog and digital precoders, and we treat it as a
matrix factorization problem with power and constant modulus
constraints. This paper presents three main contributions. First,
we present a sufficient condition and a necessary condition
for hybrid precoding schemes to realize unconstrained optimal
precoders exactly when the number of data streams Ns satisfies
Ns = min{rank(H), Nrf}, where H represents the channel
matrix and Nrf is the number of radio frequency chains.
Second, we show that the coupled power constraint in our matrix
factorization problem can be removed without loss of optimality.
Third, we propose a Broyden-Fletcher-Goldfarb-Shanno-based
algorithm to solve our matrix factorization problem using gra-
dient and Hessian information. Several numerical results are
provided to show that our proposed algorithm outperforms
existing hybrid precoding algorithms.

Index Terms— Hybrid precoding, finite-alphabet inputs, matrix
factorization, nonconvex optimization.

I. INTRODUCTION

M ILLIMETER wave (mm-wave) multiple-input multiple-
output (MIMO) communication is a promising tech-

nology for future generation cellular systems to address the
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wireless spectrum crunch. It makes use of the mm-wave
band from 30 GHz to 300 GHz, which implies a much
wider bandwidth than current cellular systems operating in
microwave bands. Moreover, a short wavelength of radio
signals in the mm-wave band enables large number of antennas
to be equipped in transceivers, and this allows for applying
massive multiple-input multiple-output (MIMO) technique in
mm-wave communication systems.

For conventional MIMO systems, linear precoding is uti-
lized to maximize the data rate, and it is implemented in the
digital domain by the unconstrained optimal precoder. How-
ever, the implementation of unconstrained optimal precoders
requires one radio frequency (RF) chain per antenna, which
will result in prohibitive cost and power consumption in mm-
wave MIMO systems. To address this issue, a hybrid precoding
scheme has been proposed for mm-wave MIMO systems to
reduce the number of RF chains [1]–[7]. This scheme divides
the linear precoder into analog and digital precoders, which
are implemented in analog and digital domains, respectively.
The digital precoder is realized by a small amount of RF
chains, and the analog precoder is realized by phase shifters.
Due to the property of phase shifters, each entry of the
analog precoder satisfies the constant modulus constraint.
These nonconvex constant modulus constraints form a major
barrier for hybrid precoding design.

Several hybrid precoding algorithms have been proposed for
mm-wave MIMO systems [1]–[7]. The work in [1] first formu-
lated the hybrid precoding problem as a matrix factorization
problem, and then applied the orthogonal matching pursuit
(OMP) algorithm to find near-optimal analog and digital
precoders. Yu et al. [3] utilized the formulation proposed
in [1], and then employed a manifold based alternating mini-
mization algorithm to design hybrid precoders. References [5]
and [7] introduced and analyzed low complexity hybrid pre-
coding algorithms based on the matrix factorization. There
were also some studies on how to achieve the performance
of unconstrained optimal precoders with hybrid precoding
schemes [2], [4], yet requiring the number of RF chains to
be twice as much as the number of data streams.

Most existing works on hybrid precoding assume Gaussian
inputs, which are rarely realized in practice. It is well known
that practical systems utilize finite-alphabet inputs, such as
phase-shift keying (PSK) or quadrature amplitude modulation
(QAM). Furthermore, it has been shown that precoding designs
under Gaussian inputs are quite suboptimal for practical
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systems with finite-alphabet inputs [8]–[14]. A unified frame-
work for linear precoding design under finite-alphabet inputs
has been proposed in [15]. Recently, the authors in [6]
presented an iterative gradient ascent algorithm for mm-wave
MIMO systems with finite-alphabet inputs. In each iteration,
the gradient ascent algorithm updated the unconstrained pre-
coder using gradient information, and then it employed a
heuristic way to partition the unconstrained precoder into
analog and digital precoders. Simulation results illustrated that
the gradient ascent algorithm can achieve up to 0.4 bps/Hz
gains compared to the Gaussian inputs scenario.

A. Contributions

In this paper, we investigate the hybrid precoding design
for mm-wave MIMO systems with finite-alphabet inputs. The
contributions of this paper are summarized as follows:

• We first provide a sufficient condition under which hybrid
precoding schemes can realize any unconstrained optimal
precoders exactly. When the sufficient condition does not
hold, we also present a necessary condition for hybrid
precoding to achieve the performance of unconstrained
optimal precoders.

• We prove that the power constraint in the hybrid precod-
ing problem (10) can be removed without loss of local
and/or global optimality. This result greatly simplifies the
precoding design, and it enable us to design an efficient
algorithm for the hybrid precoding problem.

• We present closed form expressions for gradient and
Hessian of the hybrid precoding problem. Then we utilize
these information to design a BFGS-based algorithm. The
proposed algorithm outperforms existing hybrid precod-
ing algorithms.

B. Notations

The following notations are adopted throughout the paper:
Boldface lowercase letters, boldface uppercase letters, and
calligraphic letters are used to denote vectors, matrices and
sets, respectively. The real and complex number fields are
denoted by R and C, respectively. The superscripts (·)T,
(·)∗ and (·)H stand for transpose, conjugate, and conjugate
transpose operations, respectively. tr(·) is the trace of a matrix;
‖ · ‖ denotes the Euclidean norm of a vector; ‖ · ‖F represents
the Frobenius norm of a matrix; Ex(·) represents the statistical
expectation with respect to x; Xkl represents the (k, l)-th
element of X; I and 0 denote an identity matrix and a zero
matrix, respectively, with appropriate dimensions; X � 0
denotes a positive semidefinite matrix; ⊗ and ◦ are Kronecker
and Hadamard matrix products, respectively; I(·) represents
the mutual information; � and � are the real and image parts
of a complex value; log(·) is used for the base two logarithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present system and channel models
for mm-wave MIMO systems, and then formulate the hybrid
precoding design as a matrix factorization problem. Finally,
we briefly introduce a few notations on complex matrix
derivatives.

A. System Model

Consider a point-to-point mm-wave MIMO system, where
a transmitter with Nt antennas sends Ns data streams to
a receiver with Nr antennas. The number of RF chains at
the transmitter is Nrf , which satisfies Ns ≤ Nrf ≤ Nt.
We consider the hybrid precoding scheme, where Ns data
streams are first precoded using a digital precoder, and then
shaped by an analog precoder. The received baseband signal
y ∈ CNr×1 can be written as

y = HFRFFBBx + n (1)

where H ∈ CNr×Nt is the channel matrix; FRF ∈ FNt×Nrf

is the analog precoder with F =
{
f
∥
∥f | = 1√

Nt

}
being

the constant modulus set; FBB ∈ CNrf×Ns is the digital
precoder; x ∈ CNs×1 is the input data vector and n ∈
CNr×1 is the independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian noise with zero-mean
and covariance σ2I.

Suppose that the channel H is known at both the transmitter
and receiver, and each entry of the input data vector x
is uniformly distributed from a given constellation set with
cardinality M . Then the input-output mutual information is
given by [12]

I(x;y) = Ns logM − 1
MNs

MNs∑

m=1

En

{

log
MNs∑

k=1

e−dmk

}

(2)

where dmk = σ−2(‖HFRFFBB(xm −xk)+n‖2−‖n‖2), with
xm and xk being two possible input data vectors from x.

B. Channel Model

The mm-wave MIMO channel can be characterized by
standard multipath models. Suppose the number of physical
propagation paths between the transmitter and the receiver
is L. Each path � is described by three parameters: complex
gain α�, angle of arrival θr,� and angle of departure θt,�. The
angles {θr,�}L

�=1 and {θt,�}L
�=1 are i.i.d. uniformly distributed

over [0, 2π), and the complex gains {α�}L
�=1 are i.i.d. complex

Gaussian distributed with zero-mean and unit-variance. Under
this model, the channel matrix H is given by [16, Ch. 7.3.2]

H =

√
NrNt

L

L∑

�=1

α�a(θr,l)a(θt,l)H (3)

where a(θt,l) and a(θr,l) are array steering vectors of the trans-
mit and receive antenna arrays. In this paper, the transmitter
and receiver adopt uniform linear arrays, whose array steering
vector a(θ) is given by

a(θ) =
1√
N

[
1, e−j 2π

λ d sin θ, . . . , e−j 2π
λ d(N−1) sin θ

]T

(4)

where N is the number of antenna element, λ is the wave-
length of the carrier frequency and d = 1

2λ is the antenna
spacing.

The channel in (3) can be rewritten in a more compact
form as

H = Ardiag(α)AH
t (5)
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where α = [α1, . . . , αL]T , Ar ∈ CNr×L and At ∈ CNt×L are
array steering matrices with constant modulus entries, given by

Ar =
[
a(θr,1), . . . ,a(θr,L)

]
(6)

At =
[
a(θt,1), . . . ,a(θt,L)

]
. (7)

Note that At is a full rank matrix when the angles {θt,l}L
l=1 are

distinct [1], and this event occurs with probability one because
{θt,l} are drawn independently from the uniform distribution.
Similarly, Ar and diag(α) are also full rank matrices with
probability one. Therefore, the rank of H is given by

rank(H) = min{L,Nr, Nt}. (8)

C. Problem Formulation

A fundamental approach for hybrid precoding design is to
maximize the input-output mutual information under the power
and constant modulus constraints. Suppose that the mm-wave
receiver can optimally decode data using the received signal
y, then the hybrid precoding problem is formulated as

maximize
FRF∈U ,FBB

I(x;y)

subject to tr
(
FH

BBF
H
RFFRFFBB

) ≤ P
(9)

where I(x;y) is given in (2), P is the transmit power
constraint and U = FNt×Nrf is the feasible set of analog
precoders. It is challenging to solve problem (9) directly due
to two reasons: First, problem (9) is nonconvex because both
I(x;y) and U are neither convex nor concave with respect to
(FRF,FBB). Second, iterative algorithms for problem (9) have
to evaluate the objective function I(x;y) in each iteration,
which can be very costly because I(x;y) has no closed form
expressions.

To mitigate these difficulties and simplify the precoding
design, we adopt the following matrix factorization formu-
lation [1], where hybrid precoders (FRF,FBB) are found by
approximating the unconstrained optimal precoder Fopt, i.e.,

minimize
FRF∈U ,FBB

‖Fopt − FRFFBB‖2
F

subject to tr
(
FH

BBF
H
RFFRFFBB

) ≤ P. (10)

The unconstrained optimal precoder Fopt is given by [12], [13]

Fopt = maximize
F∈F

I(x;y) (11)

where F =
{
F

∣
∣tr(FHF) ≤ P

}
.

D. Preliminaries on Complex Matrix Derivatives

The problems investigated in this paper are nonlinear
optimization with complex matrix variables, thus we briefly
introduce a few definitions on complex matrix derivatives. For
a univariate function f(x) : C → R, the definition of the
complex derivative is given in [17]:

∂f

∂x
� 1

2

[
∂f

∂�(x)
− j

∂f

∂�(x)

]
(12)

∂f

∂x∗
� 1

2

[
∂f

∂�(x)
+ j

∂f

∂�(x)

]
. (13)

For a multivariate function f(X) : Cn×r → R, the partial
derivatives with respect to X and X∗ are matrices

∂f

∂X
�

[
∂f

∂Xk�

]
and

∂f

∂X∗ �
[
∂f

∂X∗
k�

]
(14)

where Xk� denotes the (k, �)-th element of X. In addition,
the complex gradient matrix ∇Xf(X) is defined as

∇Xf(X) � ∂f

∂X∗ . (15)

Let X1 ∈ {X,X∗} and X2 ∈ {X,X∗}, then the complex
Hessian of f(X) with respect to X1 and X2 is defined in
[17]:

HX1,X2f � ∂

∂vecT (X1)

[
∂f

∂vecT (X2)

]T

. (16)

III. STRUCTURES OF THE HYBRID PRECODING PROBLEM

In this section, we first present a sufficient condition and a
necessary condition, under which hybrid precoding schemes
can realize any unconstrained optimal precoder exactly. Then
we prove that the power constraint tr

(
FH

BBF
H
RFFRFFBB

) ≤ P
in problem (10) can be removed without loss of local and/or
global optimality.

A. Optimality of Hybrid Precoding Schemes

The hybrid precoding scheme offers a tradeoff between per-
formance gain and hardware complexity, and its performance
is bounded by the unconstrained optimal precoder. When
the hybrid precoding scheme can realize any unconstrained
optimal precoder exactly, it is an optimal scheme. Then a
fundamental question arises:

• Question 1: under what conditions can hybrid precoding
schemes realize unconstrained optimal precoders exactly?

In other words, we want to find necessary and/or sufficient
conditions, under which there exist (FRF,FBB) such that
FRF ∈ U and Fopt = FRFFBB. The best known result related
to this question was shown in [2] and [4]. It states that
when the number of data streams Ns satisfies Ns ≤ 1

2Nrf ,
we can construct analog and digital precoders to realize any
unconstrained optimal precoder with dimensions Nt × Ns.
However, this result sacrifices the number of data streams to
satisfy Fopt = FRFFBB. In order to achieve the maximum
degree of freedom, we should transmit min{rank(H), Nrf}
data streams rather than 1

2Nrf data streams. This motivates us
to reconsider Question 1 under Ns = min{rank(H), Nrf}.

First, we transform Question 1 into another existence prob-
lem through the following proposition.

Proposition 1: Suppose FRF is a full rank matrix, then the
following two statements are equivalent:

1) There exists (FRF,FBB) such that FRF ∈ U and Fopt =
FRFFBB.

2) There exists a full rank square matrix S ∈ CNrf×Nrf

such that UFS ∈ U .

Here UF ∈ CNt×Nrf is a semi-unitary matrix whose columns
are left singular vectors of Fopt.
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Proof: See Appendix A.
Based on Proposition 1, our original problem is equivalent

to the existence problem of a full rank square matrix S
satisfying UFS ∈ U . By exploiting the inherent structure of the
mm-wave MIMO channel, we provide a sufficient condition to
guarantee the existence of such full rank matrix S. The main
idea is similar to [18, Th. 1].

Proposition 2: When the number of paths L satisfies
L ≤ min{Nr, Nt, Nrf}, there exists a full rank matrix S
satisfying At = UFS ∈ U , where At is the array steering
matrix given in (7).

Proof: See Appendix A.
Combining Propositions 1 and 2, we conclude that when

L ≤ min{Nr, Nt, Nrf}, hybrid precoding schemes can realize
any unconstrained optimal precoder Fopt exactly. However,
the sufficient condition in Proposition 2 does not always hold
in practice because the number of paths may be greater than
the number of RF chains. In the rest of this subsection,
we propose a necessary condition for the existence of S
satisfying UFS ∈ U , and the proposed necessary condition
is independent of L, Nrf , Nr and Nt.

We first rewrite UFS ∈ U as

[
UFs�sH

� UH
F

]
kk

=
1
Nt
, k = 1, . . . , Nt, � = 1, . . . , Nrf (17)

where s� is the �th column of S. Combining condition (17)
and rank(S) = Nrf , the original problem is equivalent to the
existence of Nrf linear independent solutions {s�}Nrf

l=1 to the
following system of quadratic equations:

[
UFssHUH

F

]
kk

=
1
Nt
, k = 1, . . . , Nt. (18)

Unfortunately, problem (18) is intractable because checking
the existence of solutions to a general quadratic system is
NP-hard [19]. Instead, we investigate necessary conditions for
the existence of solutions to (18).

The main idea is to transform (18) into a linear system by
semidefinite programming. Define Z = NtssH , the quadratic
system (18) can be written as

[
UFZUH

F

]
kk

= 1, ∀k, Z � 0, rank(Z) = 1. (19)

Furthermore, according to

vec
(
UFZUH

F

)
=

(
U∗

F ⊗ UF

)
vec(Z) (20)

equations (19) is expressed more compactly as

KFvec(Z) = 1, Z � 0, rank(Z) = 1 (21)

where the kth row of KF is chosen as the
[
(k−1)Nt+k

]
th row

of U∗
F⊗UF. Through some standard algebraic manipulations,

we can express KF as

KF =
[
diag(u∗

1 )UF, . . . ,diag
(
u∗

Nrf

)
UF

]
(22)

where u� represents the �th column of UF.
The main barrier for solving equations (21) is the nonlinear

constraints Z � 0 and rank(Z) = 1, which restrict solutions
of KFvec(Z) = 1 with a certain structure. Therefore, we first
relax the nonlinear constraints and focus on the linear system

KFvec(Z) = 1. Clearly, if equations (21) has Nrf linear inde-
pendent solutions, then KFvec(Z) = 1 should have at least
Nrf linear independent solutions. Based on this observation,
the following proposition provides a necessary condition for
the existence of a full rank S such that UFS ∈ U .

Proposition 3: If there exist a full rank square matrix S
satisfying UFS ∈ U , then

rank(KF) ≤ N 2
rf −Nrf + 1 (23)

Proof: See Appendix A.
Note that we can compute rank(KF) without the knowledge

of Fopt because its left singular vectors UF can always be
chosen as the first Nrf columns of VH, with VH ∈ CNt×Nt

being the right singular vectors of H [12, Proposition 2].
Therefore, when the transmitter has perfect channel state infor-
mation, it can construct KF and check whether rank(KF) ≤
N 2

rf −Nrf + 1 holds. If the necessary condition does not hold,
then hybrid precoding schemes cannot realize unconstrained
optimal precoders exactly.

When the sufficient condition in Proposition 2 does not
hold, KF is usually a full rank matrix. In this case, we derive
the minimum number of RF chains required for hybrid pre-
coding to achieve the performance of unconstrained optimal
precoders.

Corollary 1: When KF is a full rank matrix, it requires at

least
√
Nt − 3

4 + 1
2 RF chains for hybrid precoding schemes

to realize unconstrained optimal precoders exactly.
Proof: Since KF is a full rank matrix, rank(KF) =

min{Nt, N
2
rf}. Inserting rank(KF) into rank(KF) ≤ N 2

rf −
Nrf + 1 and using quadratic formula, we obtain

Nrf ≥
√

Nt − 3
4

+
1
2
. (24)

This completes the proof.

B. Structures of the Matrix Factorization Formulation

Given the unconstrained optimal precoder Fopt, the matrix
factorization problem (10) belongs to the class of polynomial
optimization: The objective function ‖Fopt − FRFFBB‖2

F is
a convex quartic function with respect to matrix variables
(FRF,FBB), the power constraint tr

(
FH

BBF
H
RFFRFFBB

) ≤ P
is a convex quartic constraint, and the constant modulus con-
straints U are nonconvex quadratic equality constraints. Such
a problem is nonconvex due to the nonconvexity of U , and
theoretical challenges of problem (10) are listed as follows:

1) The optimization variables FRF and FBB are coupled
through the power constraint. Therefore, we cannot
deploy the alternating minimization approach which
requires separate variables in constraints. If we jointly
optimize (FRF,FBB), the difficulty also lies in handing
the coupled feasible region of problem (10).

2) More importantly, the bilinear mapping (FRF,FBB) �→
FRFFBB is not a one-to-one mapping, thus (FRF,FBB)
and (FRFΣ,Σ−1FBB) result in the same objective value,
where Σ is a diagonal matrix with unit modulus diagonal
entries to ensure FRFΣ ∈ U . In other words, we should
expect problem (10) to have infinite number of local
minima and saddle points.
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The first issue is fully addressed by the following theorem,
which shows the equivalence between problems (10) and the
following relaxed problem:

minimize
FRF∈U ,FBB

‖Fopt − FRFFBB‖2
F . (25)

Theorem 1: If (F̂RF, F̂BB) is a KKT point of problem (25),
then it satisfies tr

(
F̂H

BBF̂
H
RFF̂RFF̂BB

) ≤ P .
Proof: See Appendix A.

According to Theorem 1, any KKT point of problem (25)
satisfies tr

(
FH

BBF
H
RFFRFFBB

) ≤ P , thus the power constraint
can be removed without loss of local and global optimality.

The rest of this paper focuses on solving problem (25).
Problem (25) is a constant modulus matrix factorization prob-
lem where a given matrix Fopt is factorized into two complex
matrices (FRF, FBB) under constant modulus constraints on
FRF. Since (FRF,FBB) �→ FRFFBB is not a one-to-one
mapping, problem (25) has infinite number of saddle points,
and this issue will be addressed in Section IV.

IV. CONSTANT MODULUS MATRIX FACTORIZATION

A. Problem Reformulation

First, we observe that for any given FRF, problem (25) is a
least square problem

minimize
FBB

‖Fopt − FRFFBB‖2
F . (26)

Suppose that FRF has full column rank, then the optimal
solution of problem (26) is

FBB = F+
RFFopt (27)

where F+
RF = (FH

RFFRF)−1FH
RF is the Moore-Penrose

pseudoinverse of FRF. Inserting (27) into problem (25), FBB

is eliminated and we obtain the modified problem:

minimize
FRF∈U

f(FRF) = ‖Fopt − FRFF+
RFFopt‖2

F . (28)

The following theorem guarantees that problems (25) and (28)
are equivalent.

Theorem 2: If F̂RF is a KKT point of problem (28) and
F̂BB = F̂+

RFFopt, then (F̂RF, F̂BB) is a KKT point of prob-
lem (25). Furthermore, F̂RF is a globally optimal solution of
problem (28) if and only if (F̂RF, F̂BB) is a globally optimal
solution of problem (25).

Proof: See Appendix B.
The benefit of this reformulation is that problem (28) can

be solved more efficiently because its search space is reduced
from (FRF,FBB) to FRF.

Problem (28) involves minimizing a polynomial with non-
convex constant modulus constraints, which is difficult to
handle. Note that the constant modulus constraints imply that
only the phase of FRF can be changed. Therefore, instead of
using FRF as the optimization variable, it is more convenient
to optimize the phase of FRF directly. Let the phase of FRF

be ΦRF, i.e., FRF = 1√
Nt
ejΦRF . Using ΦRF as the optimization

variable and rewriting FRF as FRF(ΦRF), we can reformulate

problem (28) as the following unconstrained minimization
problem

minimize
ΦRF

ψ(ΦRF) = ‖Fopt − FRF(ΦRF)F+
RF(ΦRF)Fopt‖2

F .

(29)

Although (29) is a unconstrained problem, it is still not
recommended to solve this problem directly because the
objective function ψ(ΦRF) is ill-behaved: First, ψ(ΦRF) =
ψ(ΦRF+S) for any rank one real matrix S. Thus problem (29)
has infinite number of local minima and saddle points; Second,
the Hessian of ψ(ΦRF) at any point ΦRF is a singular matrix.
To show this, we expand ψ(ΦRF + S) at ΦRF using Taylor’s
theorem:

ψ(ΦRF + S)

= ψ(ΦRF) + vec
[∇ψ(ΦRF)

]T vec(S)

+
1
2
vec(S)T

[∇2ψ(ΦRF)
]
vec(S) + o(‖vec(S)‖2)

where ∇ψ(ΦRF) and ∇2ψ(ΦRF) are the gradient and Hessian
of ψ(ΦRF) respectively, and o(‖vec(S)‖2) is the Peano’s form
of the reminder. For any nonzero rank one real matrix S,
we have ψ(ΦRF + S) = ψ(ΦRF), which implies

vec(S) �= 0

vec
[∇ψ(ΦRF)

]T vec(S) = 0
[∇2ψ(ΦRF)

]
vec(S) = 0. (30)

Therefore, ∇2ψ(ΦRF) is a singular matrix.
We address these two issues by restricting the first row of

ΦRF being a zero vector. Note that ΦRF can be partitioned into
two blocks

ΦRF =
[
r
R

]
(31)

where r ∈ R1×Nrf is the first row of ΦRF, and R ∈
R(Nt−1)×Nrf is the remaining part of ΦRF. If r is not a zero
vector, we can always construct a unique matrix

Φ̄RF = ΦRF − 1r =
[

0
Φ

]
(32)

such that the first row of Φ̄RF is a zero vector, and ψ(Φ̄RF) =
ψ(ΦRF). Therefore, we can optimize ψ(ΦRF) over a special
class of ΦRF satisfying

ΦRF =
[

0
Φ

]
(33)

where Φ ∈ R(Nt−1)×Nrf . Using Φ as the optimization
variable, problem (29) is further reformulated as

minimize
Φ

ϕ(Φ) = ψ

{[
0
Φ

]}
. (34)
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B. Gradient and Hessian

In this subsection, we derive the gradient and Hessian
of ϕ(Φ), which are the foundation for developing numerical
algorithms to solve problem (34). Since the gradient and
Hessian of ϕ(Φ) depend on those of f(FRF), we first provide
the gradient and Hessian of f(FRF) in the following lemma.

Lemma 1: The complex gradient and Hessian matrices of
f(FRF) are given by

∇FRFf(FRF) � ∂f(FRF)
∂F∗

RF
= −Z1FoptZH

2 (35)

CHFRFf(FRF) �
[HFRF,F∗

RF
f(FRF) HF∗

RF,F∗
RF
f(FRF)

HFRF,FRFf(FRF) HF∗
RF,FRFf(FRF)

]

=
[HFRF,F∗

RF
f(FRF) HF∗

RF,F∗
RF
f(FRF)

H∗
F∗

RF,F∗
RF
f(FRF) H∗

FRF,F∗
RF
f(FRF)

]
(36)

where Z1 = I − FRFF+
RF, Z2 = F+

RFFopt, and

HFRF,F∗
RF
f(FRF) = (Z2ZH

2 )T ⊗ Z1

− [
(FH

RFFRF)−1
]T ⊗ Z1FoptFH

optZ
H
1

HF∗
RF,F∗

RF
f(FRF) =

[
(Z1FoptZH

2 )T ⊗ (F+
RF)

H
]
KNt,Nrf

+KT
Nt,Nrf

[
(Z1FoptZH

2 )T ⊗ (F+
RF)

H
]T
.

Here KNt,Nrf is the commutation matrix satisfying
vec(dFT

RF) = KNt,Nrf vec(dFRF).
Proof: See Appendix B.

With the help of Lemma 1, we can compute the gradient
∇ϕ(Φ) and Hessian ∇2ϕ(Φ). For any given Φ, we construct
the corresponding ΦRF in (33). Then ∇ϕ(Φ) is obtained by
deleting the first row of ∇ψ(ΦRF), and ∇2ϕ(Φ) is obtained by
deleting the (Nt�+1)th rows and columns of ∇2ψ(ΦRF), with
� = 0, 1, . . . , Nrf − 1. The gradient and Hessian of ψ(ΦRF)
are given in the following theorem.

Theorem 3: The gradient and Hessian matrices of ψ(ΦRF)
are given by

∇ψ(ΦRF) = 2�[
G

]
(37)

∇2ψ(ΦRF) = 2�[
M

] − 2diag
{
vec

(�[
G

])}
(38)

where G = ∇FRFf(FRF) ◦ F∗
RF and

M = [HFRF,F∗
RF
f(FRF)] ◦ vec(F∗

RF)vec(FRF)T

− [HF∗
RF,F

∗
RF
f(FRF)] ◦ vec(F∗

RF)vec(FRF)H . (39)

Proof: See Appendix B.

C. BFGS-Based Algorithm

In this subsection, we propose a Broyden-Fletcher-Goldfarb-
Shanno (BFGS)-based method to solve problem (34). The
BFGS method is a well-known quasi-Newton algorithm for
unconstrained optimization problems. It updates the current
solution Φn to Φn+1 by the following rule:

Φn+1 = Φn + ρnSn (40)

where Sn is the descent direction, and ρn > 0 is the stepsize.
The descent direction Sn is given by

vec(Sn) = −Bnvec[∇ϕ(Φn)]. (41)

Here Bn is a symmetric positive definite matrix which
approximates the inverse of ∇2ϕ(Φn). Note that the positive
definiteness of Bn ensures that Sn is a descent direction, i.e.,

tr
[∇ϕ(Φn)T Sn

]
= −vec[∇ϕ(Φn)]T Bnvec[∇ϕ(Φn)] < 0.

The matrix Bn is usually updated by the inverse BFGS
formula

Bn+1 =
(
I − snyT

n

yT
n sn

)
Bn

(
I− snyT

n

yT
n sn

)T

+
snsT

n

yT
n sn

(42)

where sn = vec[Φn+1 − Φn] and yn = vec[∇ϕ(Φn+1) −
∇ϕ(Φn)]. Clearly, Bn+1 will inherit the positive definiteness
of Bn as long as yT

n sn > 0. However, the condition yT
n sn > 0

does not hold for general nonconvex problems. In order to
ensure the positive definiteness of Bn+1, a cautious update
rule for Bn is proposed [20]

Bn+1 =

⎧
⎨

⎩
(42) if

yT
n sn

‖sn‖2‖∇ϕ(Φn)‖F
> ηbfgs

Bn otherwise
(43)

where ηbfgs = 10−6 is a small constant. The update rule
in (43) guarantees that Bn is a positive definite matrix in
each iteration, and thus Sn should be a descent direction.
However, due to the roundoff error, sometimes the direction
generated by (41) may be not a descent direction. To address
this numerical issue, we choose Sn as

vec(Sn) =

{
−Bnvec[∇ϕ(Φn)] if ξn > δbfgs

−vec[∇ϕ(Φn)] otherwise
(44)

where ξn = vec[∇ϕ(Φn)]T Bnvec[∇ϕ(Φn)] and δbfgs =
10−6 is a small constant.

After obtaining the descent direction Sn, we need to
determine the stepsize ρn such that the objective function is
decreasing in each iteration. We propose a modified backtrack-
ing line search method, which is usually more efficient than
the classic backtracking line search [21]. The main idea is to
use ρn−1 as the initial guess of ρn, and then either increases
or decreases it to find the largest ρn ∈ Gn such that

Gn =

{

ρ≥0

∣∣
∣
∣
∣
ϕ
(
Φn+ρSn

)≤ϕ(Φn)+

ρ·βbfgstr
[∇ϕ(Φn)T Sn

]

}

(45)

where βbfgs ∈ [0, 0.5] is a constant to control the stepsize.
Specifically, the stepsize ρn is set as

ρn =

⎧
⎨

⎩

2K1−1 · ρn−1 if ρn−1 ∈ Gn(1
2

)K2 · ρn−1 if ρn−1 �∈ Gn

(46)

where K1 ≥ 0 is the smallest integer such that 2K1 ·ρn−1 �∈ Gn,
and K2 ≥ 0 is the smallest integer such that ( 1

2 )K2 · ρn−1 ∈
Gn.The details of our BFGS-based algorithm is summarized
in Algorithm 1.

According to [20], the BFGS-based algorithm proposed
in Algorithm 1 can converge to a stationary point of
problem (29), i.e., the limit of ∇ϕ(Φn) satisfies

lim
n→∞ ‖∇ϕ(Φn)‖F = 0. (47)
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Algorithm 1 BFGS-Based Algorithm
1. Inputs: Fopt, Φ0 and B0. Set ρ0 = 1, βbfgs = 0.5, and
ε = 10−4.
2. For n = 0, 1, 2, . . . (outer iterations)

• Determine the descent direction Sn by (44).
• Compute the stepsize ρn via (46).
• Update Φn to Φn+1 according to (40).
• If min

{∣
∣ϕ(Φn+1)−ϕ(Φn)

ϕ(Φn+1)

∣
∣, ‖∇ϕ(Φn+1)‖F

}
< ε, stop.

• Update Bn to Bn+1 by (43).

3. Outputs: FRF = 1√
NT
ej[0;Φn], FBB = F+

RFFopt.

The performance and convergence speed of
Algorithm 1 depends on Φ0 and B0. Here a good choice for
the initial analog precoder phase is ∠UF, where ∠UF is the
phase of UF. Then the corresponding Φ0 is set as

Φ0 =
[
∠UF

]
2:NT,• − 1

[
∠UF

]
1,•. (48)

The initial inverse Hessian approximation B0 will greatly
affect the efficiency of Algorithm 1, thus we need to design
it carefully. Let the eigendecomposition of ∇2ϕ(Φ0) be

∇2ϕ(Φ0) = U0Σ0UT
0 (49)

where U0 ∈ C(Nt−1)Nrf×(Nt−1)Nrf is a unitary matrix, and
Σ0 ∈ R(Nt−1)Nrf×(Nt−1)Nrf is a diagonal matrix with eigen-
values arranged in decreasing order. Then B0 is given by

B0 = U0Σ̂
−1
0 UT

0 (50)

where Σ̂0 is a diagonal matrix with the k-th diagonal entry
being

[Σ̂0]k,k =

{∣
∣[Σ0]k,k

∣
∣ if

∣
∣[Σ0]k,k

∣
∣ ≥ δmin

δmin otherwise.
(51)

Here the small constant δmin is set as δmin = 10−4. Since Σ̂
−1
0

is a diagonal matrix with positive diagonal entries, the positive
definiteness condition of B0 is satisfied.

D. Complexity Analysis

In this subsection, we discuss the per-iteration complexity of
the proposed BFGS-based algorithm. Typically, the most time
consuming operation in Algorithm 1 is evaluating ϕ(Φ) and
∇ϕ(Φ). Therefore, it is important to analyze the complexity
for ϕ(Φ) and ∇ϕ(Φ). Given Φ, we construct the correspond-
ing analog precoder phase ΦRF satisfying (33) and the analog
precoder FRF = 1√

Nt
ejΦRF . Then we decompose FRF by QR

decomposition

FRF = QRFRRF (52)

where QRF ∈ CNt×Nrf is a unitary matrix, and RRF ∈
CNrf×Nrf is an invertible upper triangle matrix. In this way,
we can compute ϕ(Φ) efficiently as

ϕ(Φ) = ‖Fopt‖2
F − ‖QH

RFFopt‖2
F . (53)

The QR decomposition requires O(NtN
2
rf) flops, and com-

puting ‖QH
RFFopt‖2

F requires O(NtNrfNs) flops. Therefore,

Fig. 1. Average Euclidean error versus Nt with 500 randomly generated
full rank Fopt.

the complexity for computing ϕ(Φ) is about O(NtN
2
rf +

NtNrfNs).
The gradient matrix ∇ϕ(Φ) can be expressed as

∇ϕ(Φ) =
[∇ψ(ΦRF)

]
2:Nt,• (54)

where ∇ψ(ΦRF) can be expressed using QR decomposition

∇ψ(ΦRF) = 2�[
(QRFZRF − Fopt)ZH

RF(R
−1
RF )H ◦ F∗

RF

]
. (55)

Here ZRF = QH
RFFopt. Then the complexity for computing

∇ϕ(Φ) is about O(NtN
2
rf +N 3

rf +NsN
2
rf +NtNrfNs).

Finally, since Bn ∈ R(Nt−1)Nrf×(Nt−1)Nrf , the updating
rule in (43) requires O([Nt − 1]2N 2

rf) flops. Then the per-
iteration complexity of Algorithm 1 is given by

O(
NtN

2
rf +N 3

rf +NsN
2
rf +NtNrfNs + [Nt − 1]2N 2

rf

)
. (56)

V. SIMULATION RESULTS

A. Average Euclidean Error Evaluation

The proposed BFGS-based algorithm solves a general con-
stant modulus matrix factorization problem

minimize
FRF∈U ,FBB

‖Fopt − FRFFBB‖2
F . (57)

Therefore, it is of interest to evaluate the performance of our
proposed algorithm for arbitrary given matrix Fopt.

We generate N independent samples F(i)
opt ∈ CNt×Ns ,

i = 1, 2, . . . , N with i.i.d. zero-mean unit-variance complex
Gaussian entries. Each sample is then normalized to satisfy

∥
∥F(i)

opt

∥
∥2

F
= Ns, i = 1, 2, . . . , N. (58)

Subsequently, we evaluate the performance of our proposed
algorithm by the average Euclidean error, given by

1
N

N∑

i=1

∥
∥F(i)

opt − F(i)
RFF

(i)
BB

∥
∥2

F
(59)

where F(i)
RF ∈ CNt×Nrf and F(i)

BB ∈ CNrf×Ns are outputs of
Algorithm 1 with the given input F(i)

opt.
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TABLE I

AVERAGE RUNNING TIME (IN SECS.) VERSUS NT WITH 500 RANDOMLY GENERATED FULL RANK Fopt

TABLE II

AVERAGE MUTUAL INFORMATION WITH GAUSSIAN INPUTS VERSUS SNR FOR VARIOUS ALGORITHMS

We make head-to-head comparisons between our pro-
posed BFGS-based algorithm and three existing algorithms,
namely the manifold optimization based alternating minimiza-
tion (MO–AltMin) [3], the iterative matrix decomposition
(IMD) [7] and the hybrid design by alternating minimization
(HD–AM) [5]. To the best of our knowledge, these three algo-
rithms are the best existing algorithms based on the matrix fac-
torization approach. Note that the authors in [3] and [7] claim
that their proposed algorithms have significant performance
gains over other existing algorithms, and the authors in [5]
claim that the HD–AM algorithm provides the best solution
among four different hybrid precoding algorithms proposed
in [5]. Therefore, if the proposed BFGS-based algorithm can
beat these algorithms, we believe it outperforms other existing
algorithms based on the matrix factorization approach.

The matrix factorization based algorithms [3], [5], [7]
involve a normalization procedure to ensure ‖FRFFBB‖2

F = P .
Since the mutual information is monotonically increasing
with respect to ‖FRFFBB‖F , this procedure will increase the
achievable rate. However, when we choose the Euclidean error
as the performance metric, the normalization procedure will
decrease the overall performance because these algorithms and
our proposed BFGS-based algorithm are designed to solve
problem (57) without the equality power constraint. Therefore,
for the sake of fairness, we do not execute the normalization
for all algorithms in this subsection.

We set the number of samples as N = 500, and Nrf and
Ns are restricted to be Nrf = Ns = 4. The initial analog
precoders for these four algorithms are set as ∠F(i)

opt. The
average Euclidean error and average running time of four
algorithms are presented in Fig. 1 and Table I. From Fig. 1 and
Table I, we have the following remarks:

1) The proposed BFGS-based algorithm and the
MO-AltMin algorithm are guaranteed to converge
to the stationary point of problem (57), while the HD–
AM and IMD algorithms may not achieve this goal.

2) The proposed BFGS-based algorithm significantly
outperforms the HD–AM, IMD and MO–AltMin
algorithms in the whole range of NT. In addition,
it consumes much lower computational time than the
MO–AltMin algorithm.

3) The phenomenon that the BFGS-based algorithm
outperforms the MO-AltMin algorithm can be explained

as follows. For nonconvex problem (57), its stationary
points can be local minimum (positive definite Hessian),
local maximum (negative definite Hessian), or saddle
point (indefinite Hessian). Most stationary points are
saddle points in high dimensional space, and the
objective value at the saddle point is usually worse than
that at the local optimum [22]. In order to decrease
the possibility for converging to the saddle point,
we can 1) decrease the dimensions of the search space;
2) use Hessian information to avoid converging to the
indefinite Hessian point [22], [23]. Since the proposed
BFGS-based algorithm utilize these two techniques to
avoid saddle points, its performance is better than that
of the MO-AltMin algorithm.

B. Average Mutual Information Evaluation
With Gaussian Inputs

We consider a 4 × 72 MIMO system with Nrf = Ns = 4.
The number of physical propagation paths is set as L = 8,
and the signal-to-noise ratio (SNR) is defined as SNR = P

σ2 .
We generate N = 1000 channel realizations by (3), and
evaluate the system performance by the following average
mutual information with Gaussian inputs:

1
N

N∑

i=1

log det
[
I + σ−2HiQiHH

i

]
(60)

where Hi is the ith channel realization, and Qi =
F(i)

RFF
(i)
BB(F(i)

BB)H(F(i)
RF)H with (F(i)

RF ,F
(i)
BB) being the analog and

digital precoder solution corresponding to Hi.
We set the performance of unconstrained optimal precoder

as a benchmark, and then compare our proposed BFGS-based
algorithm with the IMD algorithm, the HD–AM algorithm
and the MO–AltMin algorithm. The unconstrained optimal
precoder Fopt under Gaussian inputs can be obtained by the
waterfilling (WF) algorithm, and all hybrid precoding algo-
rithms in this subsection use the same Fopt to design analog
and digital precoders. Moreover, the initial analog precoders
of these algorithms are set as FRF = 1√

Nt
ej[VH]•,1:Nrf , where

[VH]•,1:Nrf is the first Nrf right singular vectors of H.
Table II demonstrates the average mutual information with

Gaussian inputs versus SNR for various algorithms. From
Table II, we have the following remarks:
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1) The proposed BFGS-based algorithm has about 10%
performance gain over HD–AM and IMD algorithms in
low SNR regimes because HD–AM and IMD algorithms
are designed for full rank Fopt. However, the uncon-
strained optimal precoder Fopt is not a full rank matrix
in low SNR regimes. In addition, the HD–AM and
IMD algorithms can be applied only when Nrf =
Ns, while our proposed BFGS-based algorithm and
the MO-AltMin algorithm can work for arbitrary Nrf

and Ns.
2) When the unconstrained optimal precoder is obtained

by WF algorithm and the performance metric is chosen
as the average mutual information, the gain of our
proposed BFGS-based algorithm over the MO-AltMin
algorithm is not very significant compared with Fig. 1.
However, as shown in Table I, our proposed BFGS-based
algorithm is much faster than the MO-AltMin algorithm.
Therefore, our proposed BFGS-based algorithm also has
advantages over the MO-AltMin algorithm.

C. Average Mutual Information Evaluation With
Finite-Alphabet Inputs

We first consider a 64 × 64 MIMO system with Nrf =
Ns = 4. The number of physical propagation paths is set as
L = 6. The input signal is drawn from QPSK modulation,
and SNR is defined as SNR = P

σ2 . In addition, the system
performance is measured by the average mutual information,
which is averaged over 1000 channel realizations generated
by (3).

We set the unconstrained optimal precoder under
finite-alphabet inputs as a benchmark, and then compare
our proposed BFGS-based algorithm with the gradient
ascent algorithm [6], the classic waterfilling (WF) algorithm,
the HD–AM algorithm [5] and the MO–AltMin algorithm [3].
For fair comparisons, the initial analog precoders of these
algorithms are set as FRF = 1√

Nt
ej[VH]•,1:Nrf .

Among these algorithms, our proposed BFGS-based algo-
rithm and the gradient ascent algorithm are designed for
finite-alphabet inputs, and the remaining three algorithms are
designed under Gaussian inputs. Specifically, the HD–AM
and MO–AltMin algorithms decompose the WF optimal pre-
coder into digital and analog precoders, and then evaluate
the corresponding mutual information under finite-alphabet
inputs.

Fig. 2 demonstrates the average mutual information versus
SNR for different algorithms. The results in Fig. 2 imply
three observations. First, our proposed BFGS-based algorithm
has the potential to achieve the performance of unconstrained
optimal precoders. Second, our algorithm has about 0.2 bps/Hz
improvement compared to the gradient ascent algorithm. Since
mm-wave provide very large bandwidths, a gain of 0.2 bps/Hz
would translate to a large increase in the effective data rate.
Third, the proposed BFGS-based algorithm has about 3dB gain
over the HD–AM and MO–AltMin algorithms. This is mainly
because the unconstrained optimal precoder designed under
Gaussian inputs will lead to significant performance loss when
applying to finite-alphabet systems.

Fig. 2. Average mutual information versus SNR for different algorithms in
a 64 × 64 system with Nrf = Ns = 4.

Fig. 3. Average mutual information versus SNR for different methods in
a 32 × 80 system with Nrf = 6 and Ns = 4.

Next, we consider a 32 × 80 MIMO system with L = 8,
Nrf = 6 and Ns = 4. The input signal is drawn from QPSK
modulation. In this case, the gradient ascent and HD–AM algo-
rithms cannot work because they assume Ns = Nrf . Therefore,
we only compare our proposed BFGS-based algorithm with
the MO-AltMin Algorithm. The simulation result is shown
in Fig. 3. Based on the results in Fig. 3, we have the following
remarks:

• The proposed BFGS-based algorithm and the
MO–AltMin Algorithm are more general than the
gradient ascent and HD–AM algorithms because they
can work when Ns < Nrf .

• Our proposed algorithm can achieve the performance of
unconstrained optimal precoder in whole SNR regimes.
In addition, the MO–AltMin algorithm with WF optimal
precoder has about 2–3dB performance loss compared
with the our proposed BFGS-based algorithm.

VI. CONCLUSION

This paper considers the hybrid precoding design for
mm-wave MIMO systems with finite-alphabet inputs. The pre-
coding problem has been formulated as a matrix factorization
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problem with constant modulus constraints. We first proposed
a sufficient and a necessary condition for the hybrid precoding
scheme to achieve the performance of unconstrained optimal
precoders. Next, we decoupled the constant modulus matrix
factorization problem by showing that the power constraint
can be removed without loss of local and/or global optimality.
Then we proposed a BFGS-based method to solve the constant
modulus matrix factorization problem. Numerical results have
demonstrated the effectiveness of our proposed algorithm for
hybrid precoding designs in mm-wave MIMO systems.

APPENDIX A
PROOFS OF PROPOSITIONS 1–3 AND THEOREM 1

Proof of Proposition 1: If there exists a full rank square
matrix S such that UFS ∈ U , we can construct FRF and FBB as

FRF = UFS, FBB = S−1ΣFVH
F (61)

where ΣF is a diagonal matrix with singular values of Fopt

arranged in decreasing order, and VF is a unitary matrix with
right singular vectors of Fopt. Then

FRF ∈ U , FRFFBB = UFΣFVH
F = Fopt. (62)

Conversely, if there exists (FRF,FBB) such that Fopt =
FRFFBB, C(Fopt) is a subspace of C(FRF), where C(·) rep-
resents the space spanned by columns of a matrix. Moreover,
according to Fopt = UFΣFVH

F , the first rank(Fopt) columns
of UF form an orthogonal basis of C(Fopt). Since C(Fopt) is a
subspace of C(FRF), we can use the Gram-Schmidt algorithm
to construct the remaining Nrf − rank(Fopt) columns of UF

such that the columns of UF form an orthogonal basis of
C(FRF). Then there exists a full rank matrix S satisfying
FRF = UFS ∈ U . This completes the proof.

Proof of Proposition 2: Let the SVD of H be

H = UHΣHVH
H (63)

where UH ∈ CNr×rank(H) is a unitary matrix with left
singular vectors, ΣH ∈ Crank(H)×rank(H) is a diagonal
matrix with singular values arranged in decreasing order, and
VH ∈ CNt×rank(H) is a unitary matrix with right singular
vectors. Based on equation (8), when L ≤ min(Nr, Nt),
rank(H) = L. Then the columns of VH form an orthogonal
basis of C(HH). Moreover, since H = Ardiag(α)AH

t and
rank(At) = L, the columns of At also form a basis of
C(HH). Therefore, there exists a full rank square matrix
S ∈ CL×L such that At = VHS ∈ U . The semi-unitary matrix
VH has a close connection with the left singular vectors of
Fopt. Specifically, the left singular vectors of Fopt can always
be chosen as the first Ns columns of VH [12, Proposition 2],
i.e.,

UF =
[
VH

]
•,1:Ns

. (64)

Therefore, when L = Ns = min{L,Nrf} ≤ min{Nr, Nt},
we have At = ṼHS = UFS ∈ U . Finally, L =
min{L,Nrf} ≤ min{Nr, Nt} holds if and only if L ≤
min{Nr, Nt, Nrf}. This completes the proof.

Proof of Proposition 3: We first rewrite the solutions of
KFvec(Z) = 1 as

vec(Z) = ξ0 +
I∑

i=1

αiξi. (65)

Here ξ0 is a particular solution to KFvec(Z) = 1, {αi}I
i=1 are

complex numbers, and {ξi}I
i=1 is a basis of N (KF), where

N (·) represents the null space of a matrix. Since the nonliear
equations

KFvec(Z) = 1, Z � 0, rank(Z) = 1 (66)

have NRF linear independent solutions, the dimension of
N (KF) should be at least NRF − 1, which implies

dim
[N (KF)

]
= N 2

RF − rank(KF) ≥ NRF − 1. (67)

This completes the proof.
Proof of Theorem 1: If (F̂RF, F̂BB) is a KKT point of

problem (25), then it satisfies the following KKT conditions:

−(Fopt − F̂RFF̂BB)F̂H
BB + Υ ◦ F̂RF = 0 (68)

F̂H
RF(Fopt − F̂RFF̂BB) = 0 (69)

F̂∗
RF ◦ F̂RF =

1
Nt

1 (70)

where Υij is the lagrangian multiplier associated with the
equality constraint [FRF]∗ij [FRF]ij = 1/Nt. Suppose that F̂RF

has full column rank, then equation (69) becomes

F̂BB = F̂+
RFFopt. (71)

where F̂+
RF = (F̂H

RFF̂RF)−1F̂H
RF is the Moore-Penrose

pseudoinverse of FRF. Inserting equation (71) into
tr

(
F̂H

BBF̂
H
RFF̂RFF̂BB

)
, we obtain

tr
(
F̂H

BBF̂
H
RFF̂RFF̂BB

)

= tr
(
FH

optF̂RFF̂+
RFFopt

)
= tr

(
F̂RFF̂+

RFFoptFH
opt)

≤
Nt∑

i=1

λi

(
F̂RFF̂+

RF

)
λi

(
FoptFH

opt

)
(72)

where λi(·) represents the eigenvalue of a Hermitian matrix
in decreasing order. The inequality in (72) follows from [24,
Lemma II.1]:

n∑

i=1

λi(A)λn−i+1(B) ≤ tr(AB) ≤
n∑

i=1

λi(A)λi(B) (73)

where A ∈ Cn×n and B ∈ Cn×n are Hermitian matrices.
Since F̂RFF̂+

RF is a projection matrix, its eigenvalues are given
by

λi(F̂RFF̂+
RF) =

{
1, i = 1, 2, . . . , Nrf

0, otherwise
(74)

Then tr
(
F̂H

BBF̂
H
RFF̂RFF̂BB

)
can be further upper bounded by

tr
(
F̂H

BBF̂
H
RFF̂RFF̂BB

)≤∑Nrf
i=1λi

(
FoptFH

opt

)≤tr(FoptFH
opt)=P.

This completes the proof.
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APPENDIX B
PROOFS OF THEOREM 2–3 AND LEMMA 1

Proof of Theorem 2: The KKT conditions of problem (25)
are given by

−(Fopt − FRFFBB)FH
BB + Υ ◦ FRF = 0 (75)

FH
RF(Fopt − FRFFBB) = 0 (76)

F∗
RF ◦ FRF =

1
Nt

1 (77)

where Υij is the lagrangian multiplier associated with the
equality constraint [FRF]∗kl[FRF]kl = 1/Nt. Suppose F̂RF is a
KKT point of problem (28) and F̂BB = F̂+

RFFopt, (F̂RF, F̂BB)
satisfies equations (76) and (77). Moreover, F̂RF satisfies the
following stationarity condition of problem (28):

−(
I− F̂RFF̂+

RF

)
FoptFH

opt(F̂
+
RF)

H + Υ ◦ F̂RF = 0 (78)

where −(
I − F̂RFF̂+

RF

)
FoptFH

opt(F̂
+
RF)

H is the complex gra-
dient of f(FRF), and Υ is the lagrangian multiplier. Inserting
F̂BB = F̂+

RFFopt into equation (78), it becomes

−(F̂opt − F̂RFF̂BB)F̂H
BB + Υ ◦ F̂RF = 0 (79)

which is exactly the stationarity condition of problem (25)
given in equation (75). Therefore, the KKT point of prob-
lem (28) satisfies equations (75)–(77) and it is a KKT point
of problem (25).

Suppose that F̂RF is a globally optimal solution of prob-
lem (28) and F̂BB = F̂+

RFFopt, then

r(F̂RF, F̂BB) = f(F̂RF) (80)

where r(FRF,FBB) = ‖Fopt−FRFFBB‖2
F . We further assume

(F̂RF, F̂BB) is not a globally optimal solution of problem (25),
i.e., there exists a feasible solution (F̃RF, F̃BB) such that
r(F̃RF, F̃BB) < r(F̂RF, F̂BB). Since for any given FBB,
f(FRF) ≤ r(FRF,FBB), we have

f(F̃RF) ≤ r(F̃RF, F̃BB) < r(F̂RF, F̂BB) = f(F̂RF) (81)

which is a contradiction to the fact that F̂RF is a globally
optimal solution of problem (28). Therefore, (F̂RF, F̂BB) is a
globally optimal solution of problem (25).

Conversely, suppose that (F̂RF, F̂BB) is a globally optimal
solution of problem (25), then

r(F̂RF, F̂BB) = f(F̂RF). (82)

Similarly, we assume F̂RF is not a globally optimal solution
of problem (28), i.e., there exists a feasible F̃RF such that
f(F̃RF) < f(F̂RF). Let F̃BB = F̃+

RFFopt, then

f(F̃RF) = r(F̃RF, F̃BB) < f(F̂RF) = r(F̂RF, F̂BB) (83)

which is a contradiction to the fact that (F̂RF, F̂BB) is a
globally optimal solution of problem (25). Therefore, F̂RF is
a globally optimal solution of problem (28). This completes
the proof.

Proof of Lemma 1: We first compute the complex gradient
matrix ∇FRFf(FRF). Note that f(FRF) can be rewritten as

f(FRF) = ‖Fopt‖2
F − tr

(
F+

RFFoptFH
optFRF

)
. (84)

Then the differential of f(FRF) is given by

df(FRF)=−tr
(
dF+

RFFoptFH
optFRF

)−tr
(
F+

RFFoptFH
optdFRF

)
.

(85)

The differential of F+
RF = (FH

RFFRF)−1FH
RF in equation (85)

can be computed as follows:

dF+
RF = d

[
(FH

RFFRF)−1
]
FH

RF + (FH
RFFRF)−1dFH

RF

= (FH
RFFRF)−1dFH

RF(I − FRFF+
RF)− F+

RFdFRFF+
RF (86)

where the second equality in (86) holds due to the following
equation

d
(
A−1

)
= −A−1dAA−1. (87)

Inserting (86) into (85), we have

df(FRF) � tr
(
dFH

RF∇FRFf(FRF)+∇FRFf(FRF)HdFRF
)

(88)

= −tr
(
dFH

RFZ1FoptZH
2

)−tr
(
Z2FH

optZ
H
1 dFRF

)
(89)

where Z1 = I−FRFF+
RF and Z2 = F+

RFFopt. Thus the complex
gradient matrix of f(FRF) is ∇FRFf(FRF) = −Z1FoptZH

2 .
Next, we compute the Hessian matrix CHFRFf(FRF).

Since CHFRFf(FRF) contains four blocks, we first determine
HFRF,F∗

RF
f(FRF) and HF∗

RF,F∗
RF
f(FRF). According to the defi-

nition

vec
[
d∇FRFf(FRF)

]
� HFRF,F∗

RF
f(FRF)vec(dFRF)

+HF∗
RF,F

∗
RF
f(FRF)vec(dF∗

RF) (90)

we obtain HFRF,F∗
RF
f(FRF) and HF∗

RF,F∗
RF
f(FRF) through com-

puting the differential of ∇FRFf(FRF):

d∇FRFf(FRF) = −dZ1FoptZH
2 − Z1FoptdZH

2 . (91)

where

dZ1 = −dFRFF+
RF − FRFdF+

RF, dZH
2 = FH

opt(dF
+
RF)

H . (92)

Inserting dF+
RF in (86) into (92), d∇FRFf(FRF) can be

expressed as

d∇FRFf(FRF) = Z1dFRFZ2ZH
2 + (F+

RF)
HdFH

RFZ1FoptZH
2

−Z1FoptFH
optZ

H
1 dFRF(FH

RFFRF)−1

+Z1FoptZH
2 dFH

RF(F
+
RF)

H . (93)

Then we vectorize d∇FRFf(FRF) using the formula
vec(AXB) =

(
BT ⊗ A

)
vec(X):

vec
[
Z1dFRFZ2ZH

2

]

= vec
[
(Z1FoptZH

2 )T ⊗ (F+
RF)

H
]
vec(dFRF) (94)

vec
[
Z1FoptFH

optZ
H
1 dFRF(FH

RFFRF)−1
]

= vec
[[

(FH
RFFRF)−1

]T ⊗ Z1FoptFH
optZ

H
1

]
vec(dFRF) (95)

vec
[
(F+

RF)
HdFH

RFZ1FoptZH
2

]

=
[
(Z1FoptZH

2 )T ⊗ (F+
RF)

H
]
KNt,Nrf vec(dF∗

RF) (96)

vec
[
Z1FoptZH

2 dFH
RF(F

+
RF)

H
]

=
[
(F+

RF)
∗ ⊗ Z1FoptZH

2

]
KNt,Nrf vec(dF∗

RF) (97)
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where KNt,Nrf is the commutation matrix such that
vec(dFH

RF) = KNt,Nrf vec(dF∗
RF). Then we can obtain

HFRF,F∗
RF
f(FRF) = (Z2ZH

2 )T ⊗ Z1

− [
(FH

RFFRF)−1
]T ⊗ Z1FoptFH

optZ
H
1 (98)

HF∗
RF,F∗

RF
f(FRF) = (Z1FoptZH

2 )T ⊗ (F+
RF)

HKNt,Nrf

+ (F+
RF)

∗ ⊗ Z1FoptZH
2 KNt,Nrf . (99)

The remaining two blocks HF∗
RF,FRFf(FRF) and

HFRF,FRFf(FRF) can be obtained via HFRF,F∗
RF
f(FRF)

and HF∗
RF,F∗

RF
f(FRF). Since ∂f(FRF)

∂FRF
= [∇FRFf(FRF)]∗,

vec
[
d∂f(FRF)

∂FRF

]
can be expressed as

vec

[

d
∂f(FRF)
∂FRF

]

� HF∗
RF,FRFf(FRF)vec(dF∗

RF)

+HFRF,FRFf(FRF)vec(dFRF) (100)

=
[HFRF,F∗

RF
f(FRF)

]∗vec(dF∗
RF)

+
[HF∗

RF,F∗
RF
f(FRF)

]∗vec(dFRF). (101)

As a consequence, one can obtain

HF∗
RF,FRFf(FRF) =

[HFRF,F∗
RF
f(FRF)

]∗
(102)

HFRF,FRFf(FRF) =
[HF∗

RF,F∗
RF
f(FRF)

]∗
. (103)

This completes the proof.
Proof of Theorem 3: We first rewrite ψ(ΦRF) as the com-

position of f(FRF) and FRF(ΦRF), i.e.,

ψ(ΦRF) = f
[
FRF(ΦRF)

]
. (104)

Using the chain rule in differentiation, the differential of
ψ(Φ̄) is

d[ψ(ΦRF)] = tr
[∇FRFf(FRF)HdFRF(ΦRF)

+ dFRF(ΦRF)H∇FRFf(FRF)
]
. (105)

Inserting dFRF(ΦRF) = jFRF ◦dΦRF into (105), d[ψ(ΦRF)] is
expressed as

d[ψ(ΦRF)] = jtr
[∇FRFf(FRF)H(FRF ◦ dΦRF)

− (FRF ◦ dΦRF)H∇FRFf(FRF)
]

(106)

= jtr
[
(∇FRFf(FRF)∗ ◦ FRF)T dΦRF

− (∇FRFf(FRF) ◦ F∗
RF)

T dΦRF
]

(107)

where (107) holds due to the following equality

tr
[
AT (B ◦ C)

]
= tr

[
(A ◦ B)T C

]
. (108)

Then the gradient of ψ(ΦRF) can be obtained from (107):

∇ψ(ΦRF) = j∇FRFf(FRF)∗ ◦ FRF − j∇FRFf(FRF) ◦ F∗
RF

(109)

= 2�[∇FRFf(FRF) ◦ F∗
RF

]
. (110)

Next, we compute the Hessian of ψ(ΦRF). According to the
definition

vec
[
d∇ψ(ΦRF)

]
� ∇2ψ(ΦRF)vec(dΦRF) (111)

we can obtain ∇2ψ(ΦRF) by computing the differential of
vec[∇ψ(ΦRF)]:

vec
[
d∇ψ(ΦRF)

]
= 2�{

d
(
vec

[∇FRFf(FRF) ◦ F∗
RF

])}
. (112)

Using the product rule in differentiation, d
(
vec

[∇FRFf(FRF)◦
F∗

RF

])
is given by

d
(
vec

[∇FRFf(FRF) ◦ F∗
RF

])

= vec
[
d∇FRFf(FRF)

] ◦ vec(F∗
RF)

+ vec
[∇FRFf(FRF)

] ◦ vec(dF∗
RF) (113)

where

vec
[
d∇FRFf(FRF)

]
= HFRF,F∗

RF
f(FRF)vec(dFRF)

+HF∗
RF,F

∗
RF
f(FRF)vec(dF∗

RF) (114)

vec(dFRF) = jvec(FRF) ◦ vec(dΦRF) (115)

vec(dF∗
RF) = −jvec(F∗

RF) ◦ vec(dΦRF) (116)

Inserting the equations in (114) into (113), vec
[
d∇ψ(ΦRF)

]

can be rewritten as

vec
[
d∇ψ(ΦRF)

]
=

{
2�(M)−2diag

(
vec

[�(G)
])}

vec(dΦRF)
(117)

where G = ∇FRFf(FRF) ◦ F∗
RF, and M =

[HFRF,F∗
RF
f(FRF)] ◦ vec(F∗

RF)vec(FRF)T − [HF∗
RF,F∗

RF
f(FRF)] ◦

vec(F∗
RF)vec(FRF)H . Therefore, the Hessian matrix

∇2ψ(ΦRF) is given by

∇2ψ(ΦRF) = 2�(M) − 2diag
(
vec

[�(G)
])
. (118)

This completes the proof.
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