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Oversampling Theorem for Wavelet Subspace

Wen CHENY', Nonmember and Shuichi ITOH', Member

SUMMARY  An oversampling theorem for regular sampling
in wavelet subspaces is established. The sufficient-necessary con-
dition for which it holds is found. Meanwhile the truncation
error and aliasing error are estimated respectively when the theo-
rem is applied to reconstruct discretely sampled signals. Finally
an algorithm is formulated and an example is calculated to show
the algorithm.
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1. Introduction and Preliminaries

Sampling theorem is a classical problem which studies
how to reconstruct the original signals from their dis-
crete samples. For a finite energy band-limited signal
f(t), ie., f(t) € L2(R) and supp f(-) C [—0, 0], the fa-
mous Shannon sampling theorem gives the recovering
formula

ft) =Y f(nm/o)

sino(t — nn/o)

ot —mnm/o) ’

where f(w) is the Fourier transform of f(t) defined by
flw) = Jg F(t)e"dt, and supp F() is the support set
of f(w) defined by supp f(-) = {w : f(w) £ 0}. If we let
o =2Mn, m € Z, Shannon sampling theorem can be in
fact regarded as a special case of sampling in a wavelet
subspace with ¢(t) = sinwt/nt playing the role of scal-
ing function of MRA {V,, = span{¢(2™t — n)}n}m-
Realizing this property, Walter [ 13] established a recov-
ering formula for the sampling in a class of wavelet
subspaces.

Suppose ¢(t) is a continuous scaling function of an
MRA {V,;, }mez such that |p(t)] < O(J¢t|717¢) for some
e > 0 when [t| — oco. Let ¢*(w) = >, ¢(w + 2k7).
Walter showed that, in orthonormal case, if $*(w) F 0
there is an S(¢) € Vg such that

f&) =Y f(m)S(t—n) for feVp )
nez

holds. Following Walter [13]’s work, Janssen [9] stud-
ied the shift sampling case by using Zak-transform. Xia-
Zhang[17] discussed the so-called sampling property,
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ie.,

F&)y=>_f(n)p(t—n) for f €V (3)

n

It is also shown that ¢(t) satisfies sampling property if
and only if ¢*(w) = 1 holds for a.e. w € R. Obvi-
ously the constraint is too strong to include many im-
portant scaling functions, such as Meyer scaling func-
tion and certain of Daubechies scaling functions. Thus
Walter [ 14] proposed a weaker expression as

FO=31(5)e@-n) forfev. @

Xia[16] extended (4) to a more general form as that for
some J € Zt U {0},

F0 =Y f(57) 0@t —n) forfeVo. (5

(5) is the so-called oversampling property with rate
J. Tt is also shown that ¢(f) satisfies oversampling
property with rate J (J € Z* U {0}) if and only if
Pw) = @%(w)p(277w) holds for a.e. w € R, where
Ph(w) = >, #lw + 2/ nw). Oversampling property
does cover many important scaling functions and it was
shown by Chen-Itoh [6] that all bounded interval band
orthonormal scaling functions show oversampling prop-
erty with rate J for J € ZT.

However all these works on sampling in wavelet
subspaces at least have some of the following three
shortcomings.

1. The continuity constraint imposed on scaling func-
tion, which even excludes Haar scaling function
(Walter [ 13] wrongly applied his theorem to calcu-
late it).

2. The decay constraint imposed on scaling function
(|(t)| < O([t|717¢) for somee > 0 when [t| — o),
which even excludes Shannon scaling function.

3. The constraint ¢(w) = @’}(w)g&(Z*“]w) is too re-
strictive to include a broad class of important scal-
ing functions (even some bounded interval band
scaling functions).

Recently Chen-Itoh[5] find the fact that there is an
S(t) € Vp such that (2) holds in L2(R)-sense if and only
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if 55y € L*[-m,] holds. Although Chen-Itoh[5]’s
work removes the continuity and decay constraints im-
posed on scaling functions and obtain a sufficient-
necessary condition for (2) to hold, It can not cover the
oversampling property case (p(w) = ¢%(w)p(277w) for
any J € ZT). Meanwhile there are many scaling func-
tions neither show oversampling property are nor cap-
tured by Chen-Itoh[5]’s Theorem. For example, take
@c(t) such that

2
vw), lol< 3
2
R 1, % < |w| £,
fule) = o ©
-1, w<|w£—,
4m s
0, - < |wl,

where 1 < |[v(w)] < 2. Tt is easy to show that p.(t) is
a scaling function (refer to Boor-Devore-Ron[3]). But
¢r(w) =0 on [—m, &)U [3F, 7). Obviously i €
L?[—m,x] does not hold. It can also be shown that
©c(t) does not show oversampling property with rate
J for any J € Z7T except for v(w) = 1 (refer to
Xia[16] and Chen-Itoh[6]). Therefore we can nei-
ther apply the Sampling Theorem (see Walter [ 13] and
Chen-Itoh [5]) nor use the oversampling property (see
Walter [ 14], Xia[16] and Chen-Itoh [6]) to recover sig-
nals by ¢.(t). Our task in this paper is to establish the
so-called oversampling theorem for sampling in wavelet
subspaces, which can capture these scaling functions
like the above ¢, (t). Since truncation error and alias-
ing error should be estimated when recovering signals
by using scaling functions, we present two methods to
estimate them respectively.

Let us now introduce MRA (Multi Resolution
Analysis) which has been aforementioned. For more
details see Long-Chen [10] or Long-Chen-Yuan[11] or
any books on wavelets such as Chui[7] and Meyer [12].
A so-called MRA {V,,} ez is a family of subspaces
of L*(R), which satisfies (1) Vi, € Vipr1, UnVin =
L*(R), and N,V = {6}; (2) f(t) € V,,, if and only
f(2t) € Vipg1; (3) There exists a function ¢(t) € Vo
(called scaling function) such that {¢(¢t — n)}, forms a
Riesz basis of V. Each V,,, is called to be a wavelet sub-
space. A scaling function ¢(¢) is said to be orthogonal
(resp. orthonormal) if {¢x(xz — n)}, forms an orthogo-
nal (resp. orthonormal) basis of V. Let ¢(¢) be a scal-
ing function of MRA {V;,}.,. Then {¢(2t — n)}nez
is a Riesz basis of V7. Therefore there is a sequence
{ek}r € 17 such that ¢(t) = >, cep(2t — k). Let
Wy = V4 © Vi be the direct complement of V4 in Vi,
and 9(t) € Wy. Then there is a sequence {dy}x € I?
such that (t) = >, drp(2t — k). If {¢(t — k)} is
a Riesz basis of Wy, ¥(t) is said to be the wavelet of
MRA{V,,} . Therefore for f(t) € Viny1 = Wi B Vi,
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there must be {a,}n € [ and {b,}, € [* such that
O =3 anp@™t—n)+ > bap(2"t —n). (7)

{bn}n 1s called to be the wavelet coefficients of f(¢) in
Won. The above argument also implies that

o) =mo(5)e(5), (®)
b =m (3)¢(3) ©)

hold for a.e. w € R, where mo(w) = £ >, cxe** and

miw) = 13, dee. Take Gylw) — (3, [6lw +
2nm)[?)2/2. Tt is well known (see Chui[7], Meyer[12]
or Walter[15]) that

0 < [lGp(@)llo < [|Gy(w)lloo < 00 (10)

always holds, and (t) is orthonormal if and only if
Gy(w) =1 holds for a.e. w € R,

Finally we introduce some notations used in this
paper. For measurable subset £ C R, [E| denotes the
measure of F. For measurable function f(t), we write

i = ([ 4f<t>|2dt>1/2, an

150k = sup, iot 7)), (12)

1 ®)llo = fnf sup |FE)], (13)
1 tcFE

Xe(t) = { 0 otherwise (14)

where x g (t) is called the characteristic function of set
E.

2. Oversampling Theorem

We consider the . (¢) defined in the Introduction. Al-

though = ¢ L?[—r,7] does not hold, we find
@5(w) = v(w) on [, 2F]. It is exactly the sup-
port set of mg(w) on [—m, @] (supp ¢.(2-) = [—%F, 3F],
suppcﬁc(-) = [_4?’”74%] and (ﬁc(zw) = mO(w)(Pc(w)
force that supp mo(-)|j—n = [-%F, %] holds. In fact
mo(W)|j_rm] = %:’)) holds in this case.). This im-

plies that we can consider (ﬁ%(w)xsuppmo(_)(w) instead
l c

of @

Theorem 1: Let ¢(t) be the scaling function of

MRA{V,,},, such that {¢(n)}, € [®. Then there is

an S(t) € Vp and a J € Z such that

F&) =2 In)S@7t—n) for f(t) eV (15)

Fortunately it does work.

holds in L?(R)-sense if and only if

1
WXQ;;(}Q—Jsuppmo(.)(w) € Lz[_ﬂ-7 7('] (16)
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holds. In this case S(w) = ﬂé"w)) holds for a.e. w €
Ny =52~ suppmo(-).
Proof Step 1: sufficiency.

2
Assume (w)xﬂ 19- ]Suppmo<)( w) € L*[—
¢*(w) £ 0 holds for ae w € ﬂj;&
there is a {ci}x € I? such that

1
o* (w)X o2~ Isuppmo(-) che (17)

w,m]. Then
2~ suppmg(w), and

holds in L?[—m, w]-sense. We now let

Flw) = ‘;D*((ww)) Xﬂj o 27 Isuppmo(- )(w)' (18)
Then
/ (o) P
¢< ) ’
- & ( )Xﬂ 1o~ Jsuppmo()(w) dw (19)
S e+ 2k
(W)
’ Xﬁj;DIQ_J suppmo (-) (w)dw (20)
4 1
< |G 2
<G, /_W B
X 2 Isuppmo(-) (CU) (21)

It is easy to see F(w) € L%(R) due to (10) and (21).
Hence we can take the inverse Fourier transform of F(w)
in L*(R) denoted by S(t) (refer to Introduction), i.e.,
we can derive

36) = 2 b s ©) 22)
or
D) Xrs 1 2-ssuppma() () = S(@)E" (). (23)

Since suppmo(2-) = 2suppmo(-), (23) implies

Hmo 2]

nsZ T tsuppmg (27 )( )

= H mo(2w)@* (W) S(w), (24)
ie.,
J—1 .
[ mo(@w)é H mo(2w)@* (W)S(w).  (25)
7=0
By the way,

P5(27w) =Y p(27w + 27 k) (26)
k
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J-1
= | [ mo(27w) Z G(w + 2km) (27)
§=0 k
J-1
= mo(2’w)@* (w) (28)
7=0
and
J-1
[ mo(@w)p(w) = @(27w). (29)
j=0

Take inverse Fourier transform on both sides of (22)
and refer to (17), we have

St =Y crp(t — k). (30)
k

It implies S(t) € Vo due to {¢(t — k)} is a Riesz basis
of Vo. On the other hand, (25), (28) and (29) implies
that

p(27w) = §5(27w)S(w), (1)
le.,
P(w) = ¢ ()52 w). (32)
From Poisson summation formula,
¢h(w) = @w+2" nm) (33)
=277 3" g2 n)em i (34)

Take inverse Fourier Transform on both sides of (32)
and refer to (34),

=> p(2n

For any f(t) € V;, it can be written to be f(t) =
S anp(t — k) for some {ax}, € [*. Due to (35) we

have
- Yo e
—zakzw
425 2%—1 Zaw 27—k (38)
:Zf 27708

.

where (37) is due to the index transform [ = 27k + n.

S(27t —n). (35)

Tn)S27(t—k)—n)  (36)

2771 —k)S(27t — 1) (37)
2% — 1), (39)

Step 2: necessity.
On the contrary, if there is an S(¢) € V, such that (15)
holds in L?(R)-sense, then

= Z ©(277n)S

(27t — n) (40)
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holds in L*(R)-sense. By taking Fourier transform on
both sides of (40) and referring to (34), we obtain

Pw) = ¢5(w)5 (27 w), (41)
ie., @(2‘]w) = (2Jw)§(w) or (42)

H mo( 2jw

(43) implies that

Hmo (P w)p* (w)S(w).  (43)

ﬁj:ol supp mo(2’-) M supp ¢(-)

C NJZgsuppmo(27-) N supp ¢* (") (44)
holds except for a zero measure subset of R, i.e.,
ﬂ‘] o suppmg(27-) N supp @(- + 2kn)
C Ny g suppmo(2’-) M supp " () (45)

holds for all k € Z since mg(w) and ¢*(w) are 27-
periodic. Meanwhile

Ugsupp ¢(- + 2km) = R (46)

holds except for a zero measure subset of R. Otherwise
there must be some nonzero measure subset § C R such
that @(w+2kw) = 0 holds for any w € § and any k € Z.
Then G, (w) = 0 holds for any w € §. It is contradictory
to (10). Therefore (45) and (46) imply that
Ny suppmo(27-) N supp "(-)
D ﬁj:o supp mo(27-) (47)

holds except for a zero measure subset of R, ie,
suppg* (1) D ﬁj;olsuppmo(%-). Now (43) can be
rewritten to be

sﬁ(w)
( ) 02 Jsuppmo()(w)
= S(w)xﬂj;olZ—jsupp mo(‘)(w). (48)

Since 5(w) € L2(R) due to S(w) € L?(R), we derive

p 2
¢(w)
oo>/R g&*(w)‘ an;c}Q—gsuppmo(_)(w)dw (49)
_ " Lile(w + 2%km)?
e W)?
. Xﬂ;.];()lZ*Jsupp mo(.)(w)dw (50)
Tl
> 2 L
2 (@l [ =

2

dw. (51)

’ Xﬂf;012_j supp mo (+) (UJ)

From (51) and (10), we can now conclude that
7 1(w>an 2 9-supp mo() (W) € L?[—n, 7| holds.

Remark

1. The so called oversampling property (see Introduc-
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tion or Walter[14] or Xia[16]) i is 1n fact the special
case S(w) = @(w) for a.e. w € ﬁ]: 12 I supp mo (-).

2. If suppmo(-) C  2suppmg(-) holds, we find
Xﬁf;[]lZ*Jsupp mo(+) (w) = X2l~Jsuppmy(-) (w) In
many practical case, it does be the true story. But
the condition mX21—Jsuppmo(.)(W) € L*(R) is
easier to be verified.

3. The theorem can be easily modified to V,, since
f(27™t) € Vy when f(t) € V;,. By using formula
(15), f(27™t) can be recovered by

Zf 2 J— My,

f(27™t) = S(27t—m),  (52)

)= f@ 7 s —n)  (53)

k)

for f(t) € V. Since V,,, — L2(R) in L?(R)-
sense (refer to Boor-Devore-Ron[3]), we can ap-
proximately recover any finite energy signal f(t) €
L?(R) if the sampling is fine enough (m is big
enough for fixed J).

3. Truncation Error and Aliasing Error

When oversampling theorem is applied to reconstruct
signals we should know how many items we need to
calculate so that the recovered signal is as close to the
original one as we expected. Then the truncation error

defined by
= > fe

[n|>N

S(27t — n) (54)

for f(t) € Vp should be estimated. But we need a little
stronger constraint to be imposed on scaling function

than in Theorem 1.

Theorem 2: Let ¢(t) be the scaling function of
MRA {Vin}m such that {p(n)}, € [? and
g (w)xm ) € L®[~m, 7] for some J € Z¥.
Then

monse( 2 b3

2 Isupp mo(w

1/2

In|>N
‘ if((s)) X”JJQJZ’JSUPme(-)(W) - (55)
Proof From Parseval Identity, we have
1T (@)
Z f(%)S(?]t—n) (56)
In|>N
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7= f
it
1 /2J+1W =J n —i2 7w ’
= 2 Flog)e @ e
2’/T< 0 [”lgN <2J

1/2
) Xﬂ;.;lmsupp mo(-) ((U)dw) (58)

1/2

2| 3 [ ()|

[n|>N
Go(57)
. ’ Sa*(z%) Xﬂj=12jsuppmo(.)(w> . (59)
1/2
_0—=J/2 n 2
2 3 (5)
In|=N
th(w)
’ ¢ (w) X”5$ol2*fsuppmo<->(W)"m' (60)

Remark For f(t) € V,,, the truncation error is calcu-
lated as

1

2

1T <2=F | S |5 ()|

|n|=N

. (61)

G (w) XNiZg27supp mo () (@)

oo

The other error that should be estimated is the
aliasing error which was proposed by Brown[1] in re-
constructing a non-band-limited signals by means of
the band pass sampling theorems. Beaty-Higgins[2]
extended it to a more general case as to estimate the
error of approximating signals by the multiplication of
Shannon scaling function. It was Walter[13] who es-
tablished the sampling theorem for wavelet subspaces
and estimated an upper bound for the aliasing error.
Chen-Itoh [5] improved Walter’s results and obtained a
more precise upper bound. For oversampling theorem
the aliasing error is defined by

Z f(2 S(27t —n) (62)

for f(t) € V4. By calculating the aliasing error we can
select the scaling functions with the smaller aliasing er-
ror to recover signals.

Theorem 3: Let ¢(t) be the scaling function of
MRA  {Vi}m such that {p(n)}, € [* and
) YX?=32-ssuppmo() (W) € L?[~m,n] for some J €
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Z7*. Then

1/2
1A% (1) < 277 (Z |an2>

1-65-1

(63)

[e9]

where {by} is the wavelet coefficients of f(t) in W,
and §y_1 is the Dirac function, i.e.,
J=1

1,
6J—1:{ 0, J+1.

Proof Let Wy =V; © V4. Due to (15), we only need
to show (63) holds for any f € Wy. Let 9(t) € W, be
the wavelet of MRA {V,,,},,,. Since {¢(t — k)}1 forms
a Riesz basis of Wy, there must be a {b,}, € I? (the
wavelet coefficients of f(¢) in Wy) such that

(64)

=) batp(t —n). (65)
Set Cy(w) = Y., bpe™ ™ and take Fourier transform
on both sides of (65),
Fw) = Cpw)b(w). (66)
From Parseval Identity, it shows
145 ) = = |Cs(w)b(e) — 2
= — wv(w) —
f \/ﬂ f
ST FE T ne S0 (67)
Since Q*JZf 2 Ip)e 2 nw Zf (w + 27 n)
due to P01sson summation Formula, We derive
[l A% (f)H
= \/_— Z flw+27nr)
p2"w)
Lt (2Tw) XN N =i2=ssuppmo(2-7) () (68)
= |t (5)4(5)
2 2 2
- Z D(w + 27 )
P27 w)
: C’f (w) (ﬁ* (2_‘]&)) ij;gz«]“}supp mo(+) (w) (69)

Case I: J=1. Then
A5 @)
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P (E> %X%uppmo( )( )H (70)

ey (3)]

1/2
. |1 — X2supp mo(~)<w)|d‘*}> (71)

<= ([Tierra)

R E—

1/2

oz72)
1/2
. ”ml (w)Gw(w)XResuppmo(-)(w)Hoo . | (73)

Case 2: J =2 2. Then

1A% @)l

1/2
’ |1 - Xﬂj=12jsuppmo(-)(w)|dw> (76)

1 oI +1, 1/2
< = ( / |cf<w>|2dw>
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.)ml

()

()1 (5)e.

: <1 - Xﬂj:12jsuppmo(-)(w)) (77)
1/2 J—1 N
=27/? (Z]b,ﬁ) my(w) Hmo (2—J>
n j=1
w
’ GS” (2]_1) XR@O;;DlZsuppmo(-) ("‘)) (78)

Combine Case 1 and Case 2, we derive

A7)
1/2 "
<2772 <Z \bn|2> mi(w)Gy <2J—1)

n

’ XR@WJ.]:_OlZJ supp m0(~) (w)

o

<27 (Z \bn|2> i my(w)Gy (%)

J-1 107
(I~) |
j=1

Remark

1. In orthonormal wavelet subspaces, G,(w) = 1,
|mo(w)| £ 1 and |m;(w)| < 1 hold for a.e. w € R.
Hence the aliasing error is

1/2
145l < 277 <Z|bn|2) : (80)

2. For f(t) € Vipt1, we find that the aliasing error
satisfies

145(8)] < 2737

(Zlb 12) my (w)Gp(w)
{fm) | o

j=1
[ee]

But here {b,}, is the wavelet coefficient of f(t) in

W,,. It implies that the aliasing error can be as

small as we like if the sampling is fine enough (m

is big enough for fixed J).
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4. Shift Oversampling Theorem

As done by Janssen [9] for Walter sampling theorem,
Chen-Itoh [4] for Irregular sampling and Chen-Itoh[5]
for regular sampling, the shift sampling version of
oversampling theorem can also be obtained by us-
ing Zak-transform (see Heil-Walnut[8], Janssen [9] and
Walter[14]). Let o(t) be a scaling function of MRA
{Vin}m such that {o(n + o)}, € (% for some o € [0,1).
Then Zak-transform can be defined by

= Z (o +mn)e ™,
ko3

The following is the shift sampling version of oversam-
pling theorem. Since the procedure is strongly similar
to the previous section except that Z,(o,w) takes the
role of ¢*(w), we only display the result without proof
here.

Theorem 4: Let ¢(t) be the scaling function of
MRA{V,.}, such that {¢(n + o)}, € I? for some
o € [0,1). Then there is an S,(t) € Vy and a J € Z+
such that

=Y f277(n+0))S, (2"t —n) (83)

Zy(o,w) weER. (82)

holds for f(t) € V, in L?(R)-sense if and only if

L 2
Zp(o,w) anj;olz‘“uppmo(')(w) € L¥[—m, ] (84)

holds. I‘n this case S, (w) = Zf((;l))
ﬂj;ol 27 7supp mo(-).

Remark The shift sampling version of truncation er-
ror and aliasing error for oversampling theorem also
need to be estimated. Since they can be obtained just
by using Z,(o,w) instead of $*(w), we will not display
them here. Of course the shift sampling in V;,, for over-
sampling theorem can also be obtained as the previous.

holds for a.e. w €

5. Conclusion

Based on the above discussion, we can summary an al-
gorithm as what follows.

1. For the scaling function ¢(f) of MRA
{Vin}m, find a ¢ € [0,1) such that

Xﬂj;Olz_J supp mo () (LU) € L? [—7'(', ﬂ-] .

1
Zp(ow)

2. Calculate the truncation error to determine how
many items we should at least calculate for ap-
proximating the original signals from their discrete
samples as close as we expect.

3. Recover the original signals by oversampling theo-
rem (by formula (83)).

4. Calculate the aliasing error to recover the sampled
signals in the finer resolution wavelet subspaces.
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6. An Example to Show the Algorithm

Obviously the scaling functions covered by sampling
theorem and oversampling property, such as Haar scal-
ing function, Shannon scaling function, Daubechies
scaling function, Meyer scaling function, etc., all can
be captured by our oversampling theorem. Since they
are trival cases for the oversampling theorem and can be
better dealed with by the old sampling theorem or over-
sampling property (refer to Walter[13], Xia[16] and
Chen-Itoh [5],[6]) rather than by oversampling theo-
rem, we will not calculate those here. We now calculate
the scaling function ¢, () defined in the Introduction as
an examples to show the algorithm

Example ¢7(w)|(—rn = v(w)x— 2 2x) implies that
@5(w) + 0 does not hold. Therefore we can not ap-
ply sampling theorem to . (t) (refer to Walter [13] and
Chen-Itoh [5]). Since @.%(w) = ¢e(w) and . (277w) =
v(w) on supp ¢.(-) hold for any J € Z+, the equation
Pe(w) = @i w)pe(27/w), ie., the equation B.(w) =
$e(w)v(w) can not hold excerpt for v(w) = 1. Hence
we can not yet apply oversampling property to .(t)
(refer to the Introduction or Xia ([16]) and Chen-
Itoh [6]). But we have known < Xauppmo() (@) =
ﬁx[ 2n 227(w) € L®[—2% 28] Thus the oversam-
pling theorem can be used to recover signals with
J =1 and o = 0, ie, there is an S(t) € V; such
that S(w) = 2 holds for a.e. w € [—2 2] e,

v(w) 373
S(w) = X[ 2z 221 (w) and
=Y f(27'n)S(2t—n) for f(t) €V (85)

mBE/3) holds in

holds in L*(R)-sense. In fact S(t) =
this case. Therefore (85) is
47rt

0=Yr(5) 56

for f(t) € V4. The truncation error and aliasing error
are respectively
1/2

> @I @7

In|2N
1/2
<Z|b ? ) (88)

for f(t) € Vi, where m; (w) depends on the wavelet con-
structed. For orthonormal wavelet, |m;(w)| < 1 holds
for a.e. w € R. For sampling in V,,, the truncation error
and aliasing error are respectively

ITF ()N < 7
for f(t) € Vg, and

A% ()] < 21|ma (w

1/2

(S pEf) o

[n|=N

ITF @) <
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for f(t) € Vi, and

1/2
145 (@) < 2777 |fma () | o (Z Ibn|2> (90)

for f(t) € V1. But here {b,}, are the wavelet coef-
ficients of f(t) in W,,, and m;(w) also depends on the
wavelets constructed.

It is worth to indicating that this example can also
be indirectly dealed with by the classical Shannon sam-
pling theorem although it, as a special case of sampling
theorem, can not be directly applied to the wavelet sub-

spaces. Since the scaling function ¢.(t) is [—2F, 4F]-
band, it can be expressed as

33
B 3 sm(—t—mr)
_;% <4_1n> Lt —nr ©1)

Suppose f(t) = >, arp.(t — k) for f(t) € V. Then
n(

sin(4° (t — k) — nx)
0= S (Gr) sty o O
B REC —(ék:+n> )
in(4ry — L
=Y Sae G—k)%f_l—;ﬂ 04
leA k 3 3
B 1 sin(4°¢ éw) .
_l;f<1> I 99)

where (94) is due to the index transform [ = 4k + 3n,
and A = 47 4+ 3Z. From (95) we learn that the sam-
pling step is % with computing complexity 4N or step
2 with complexity 3 N?. But (86) implies that we can
recover the signal by step 1 with complexity 2N. Tt
is a typical difference of oversampling theorem and the
previous contributions, and also the advantage of over-
sampling theorem versus other ways for dealing with
the scaling functions such as ¢.(¢). It is also worth to
indicating that Shannon sampling theorem is available
only because ¢.(t) is fortunately bandlimited. In gen-
eral case it does not work while sampling theorem is
not available.
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