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PAPER

Supremum of Perturbation for Irregular Sampling

in Shift Invariant Subspace

Wen CHEN†a), Nonmember, Shuichi ITOH†, Regular Member, and Junji SHIKI†, Nonmember

SUMMARY In the more general framework “shift invariant
subspace,” the paper obtains a different estimate of sampling in
function subspace to our former work, by using the Frame Theory.
The derived formula is easy to be calculated, and the estimate
is relaxed in some shift invariant subspaces. The former work is
now, however, a special case of the present.
key words: sampling, shift invariant subspace, generating func-

tion, Zak-transform

1. Introduction and Preliminaries

In digital signal and image processing, digital communi-
cations, etc., a continuous signals is usually represented
and processed by using its discrete samples. Then a
fundamental question is how to represent a signal in
terms of a discrete sequence. The famous classical
Shannon Sampling Theorem describes that a finite en-
ergy band-limited signal is completely characterized by
their samples values. Realizing that the Shannon func-
tion sinc(t) = sin(t)/t is in fact a scaling function of an
MRA (Multi-Resolution Analysis)(see Appendix), Wal-
ter [18] found a sampling theorem for a class of wavelet
subspaces. Following Walter [18]’s work, Janssen [13]
studied the shift-sampling in Wavelet subspaces by us-
ing Zak-transform. Xia-Zhang [22] discussed the so-
called sampling property. Walter [19], Xia [21] and
Chen-Itoh [7], [8] studied the the more general case
“oversampling.” On the other hand Aldroubi-Unser
[1]–[3] and Unser-Aldroubi [17] studied the sampling
procedure in shift-invariant subspaces. Chen-Itoh [9]
improved the works by Walter [18] and Aldroubi-Unser
[3], and we found a general sampling theorem for shift-
invariant subspace.

However, in many real applications samplings are
not always made regularly. Sometimes the sampling
steps need to be fluctuated according to the signals so
as to reduce the number of samples and the computa-
tional complexity. There are also many cases where
undesirable jitter exists in sampling instants. Some
communication systems may suffer from the random
delay due to the channel traffic congestion and encod-
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ing delay. In such cases, the system will be made to
be more efficient if the irregular factor is considered.
How should these irregularly sampled signals be dealt
with? For the finite energy band-limited signals, a gen-
eralization of Shannon Sampling Theorem, known as
the Paley-Wiener 1/4-Theorem (see Young [23]), can be
used. Following the works on sampling in wavelet sub-
space, Liu-Walter [15], Liu [14], and Chen-Itoh-Shiki
[4] extended Paley-Wiener 1/4-Theorem to a class of
wavelet subspaces. But their estimate are strictive.
Then Chen-Itoh-Shiki [6] introduced a function class
Lλ

σ[a, b] (λ > 0, σ ∈ [0, 1) and 0 ∈ [a, b] ⊂ [−1, 1]) and a
norm ‖ · ‖Lλ

σ [a,b] of Lλ
σ[a, b]. Finally we found an irreg-

ular sampling theorem for wavelet subspaces with an
Lλ

σ[a, b]-scaling function as the following. The defini-
tions of Zϕ(σ, ω) and qϕ(s, σ)‖Lλ

σ[a,b] follow from (72)
and (13) respectively.

Theorem 1: (see Chen-Itoh-Shiki [6]) Suppose a con-
tinuous Lλ

σ[a, b]-scaling function ϕ(t) of an MRA
{Vm}m is such that the Zak-transform Zϕ(σ, ω) �= 0 and
ϕ(t) = O(|t|−s) for s > 1. Then there is a δσ,ϕ ∈ (0, 1]
such that for any sequence {δk}k ⊂ [−δσ,ϕ, δσ,ϕ]∩ [a, b],
there is an sequence {Sσ,k(t)}k ⊂ V0 such that

f(t) =
∑

k

f(k + σ + δk)Sσ,k(t) (1)

holds for any f(t) ∈ V0 if

δσ,ϕ <


‖Zϕ(σ, ω)Gϕ(ω)‖0‖Zϕ(σ,ω)

Gϕ(ω) ‖0
‖qϕ(s, σ)‖Lλ

σ[a,b]




1/λ

. (2)

Applying the theorem to calculating the B-spline of
degree 1 scaling function N1(t) = tχ[0,1) + (2− t)χ[1,2),
we find δ0,N1 < 1/2

√
3 when δk ≥ 0 or δk ≤ 0. But

Liu-Walter [15] found that the δ0,N1 of the B-spline of
degree 1 is δ0,N1 < 1/2, and they also showed that 1/2 is
the optimal upper bound of perturbation for sampling.
This implies that Chen-Itoh-Shiki [6]’s result is not at
least optimal.

Our purpose in this paper is trying to find the opti-
mal δσ,ϕ such that (1) holds. We would like to consider
the sampling in the more general framework “shift in-
variant subspaces.” In this framework we obtain a dif-
ferent estimate of δσ,ϕ by using the Frame Theory. By
applying the new result to calculating the B-spline of
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degree 1, we find δ0,N1 < 1/2 when δk ≥ 0 or δk ≤ 0.
As we mentioned, 1/2 is optimal for N1(t). Unfortu-
nately, even by now, we can not yet show if our formula
is optimal for a general generating function.

Let us now roughly introduce the shift invariant
subspaces and the Frame Theory respectively. For a
function ϕ(t) ∈ L2(R), let

V (ϕ) = {
∑

k

ckϕ(t− k) : {ck}k ∈ l2}. (3)

In general {ϕ(t − k)}k is not a Riesz basis of
V (ϕ). In fact {ϕ(t − k)}k is a Riesz basis of V (ϕ)
if and only if 0 < ‖Gϕ(ω)‖0 ≤ ‖Gϕ(ω)‖∞ < ∞, where
Gϕ(ω) = (

∑
k |ϕ̂(ω+2kπ)|2)1/2, and ϕ̂(ω) is the Fourier

transform of ϕ(t) defined by ϕ̂(ω) =
∫

R
ϕ(t)e−iωtdt. If

{ϕ(t − k)}k is a Riesz basis of V (ϕ), ϕ(t) is called a
generating function. The {ϕ(t − k)}k is an orthonor-
mal basis of V (ϕ) if and only if Gϕ(ω) = 1 (a.e.). In
this case, ϕ(t) is called an orthonormal generating func-
tion (see deBoor-deVore-Ron [12] and Aldroubi-Unser
[3]).

A function sequence {Sn(t)}n is called a frame of a
subspace H of L2(R) if there is a constant C ≥ 1 such
that

C−1‖f‖2 ≤
∑

n

|〈f(t), Sn(t)〉|2 ≤ C‖f‖2 (4)

holds for any f(t) ∈ H. Obviously a basis is a frame.
Moreover there exists an unique frame S̃n(t) of H
(called the dual frame of {Sn(t)}n) such that

f(t) =
∑

n

〈f(t), S̃n(t)〉Sn(t) (5)

=
∑

n

〈f(t), Sn(t)〉S̃n(t). (6)

always holds for any f(t) ∈ H. if {Sn(t)}n is indepen-
dent, {Sn(t)}n is biorthogonal to {S̃n(t)}n, i.e.,

〈Sm(t), S̃n(t)〉 = δm,n, (7)

where δm,n is Dirac function†(see Young [23]).
The following are some notations used in this pa-

per. For a measurable set E, |E| denotes the measure
of E. For the measurable functions f(t) and g(t), we
write

〈f(t), g(t)〉 =
∫

R

f(t)g(t)dt, (8)

‖f‖ =
√
〈f(t), f(t)〉, (9)

‖f‖π = (
∫ 2π

0

|f(t)|2dt)1/2, (10)

‖f‖∞ = inf
|E|=0

sup
R\E

|f(t)|, (11)

‖f‖0 = sup
|E|=0

inf
R\E

|f(t)| (12)

qf (s, t) =
∑

n

f(s− n)f(t− n) (13)

f̂∗(ω) =
∑

k

f(k)e−ikω. (14)

2. A Sampling Theorem for Shift Invariant
Subspaces

When we want to find a method to reconstruct a sig-
nal f(t) by using their samples {f(tk)}k, obviously the
samples can not be arbitrary, i.e., some constraints
should be imposed on {f(tk)}k. The weaker the con-
straints is the better the reconstruction method is. Our
purpose in this section is to find this kind of weak con-
straints. Fortunately we found a nearly necessary con-
dition such that a reconstruction formula like (1) holds.
The result will be also applied to the following sections.

Theorem 2: Suppose a generating function ϕ(t) of
a shift invariant subspace V (ϕ) is such that {ϕ(tn −
k)}k ∈ l2 for any n ∈ Z. Then there is a frame {Sn(t)}n

of V (ϕ) such that

f(t) =
∑

n

f(tn)Sn(t) (15)

holds for any f(t) ∈ V (ϕ) if there is a constant C ≥ 1
such that

C−1‖f‖2 ≤
∑

n

|f(tn)|2 ≤ C‖f‖2 (16)

holds for any f(t) ∈ V (ϕ).

Proof: Take g(t) such that ĝ(ω) = ϕ̂(ω)G−1
ϕ (ω).

Then g(t) is an orthonormal generating function of
the shift invariant subspace V (ϕ) (see deBoor-deVore-
Ron [12]). Suppose G−1

ϕ (ω) =
∑

k gke
−ikω. Then

g(t) =
∑

k gkϕ(t− k), and

(
∑

k

|g(tn − k)|2)1/2

=
1√
2π

‖
∑

k

g(tn−k)eikω‖π (17)

=
1√
2π

‖
∑

k

∑
l

glϕ(tn−k−l)eikω‖π (18)

=
1√
2π

‖
∑

l

gle
−ilω

∑
k

ϕ(tn−k−l)ei(k+l)ω‖π

=
1√
2π

‖G−1
ϕ (ω)

∑
k

ϕ(tn−k)eikω‖π (19)

†δm,n =
{

1, m = n
0, m �= n
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≤ 1√
2π

‖G−1
ϕ (ω)‖∞‖

∑
k

ϕ(tn−k)eikω‖π (20)

= ‖G−1
ϕ (ω)‖∞‖(

∑
k

|ϕ(tn−k)|2)1/2. (21)

Therefore {g(tn − k)}k ∈ l2 due to {ϕ(tn − k)}k ∈ l2.
Let

qg(t, tn) =
∑

k

g(t− k)g(tn − k). (22)

Then qg(t, tn) is well defined and qg(t, tn) ∈ V (ϕ) since
{g(t − n)}n is a Riesz basis of V (ϕ). For any f(t) ∈
V (ϕ), there is a {ck}k ∈ l2 such that f(t) =

∑
k ckg(t−

k). Following the Parseval Identity, we derive

〈f(t), qg(t, tn)〉 (23)

=
1
2π

∫
R

f̂(ω)q̂g(ω, tn)dω (24)

=
1
2π

∫
R

ĝ(ω)
∑

k

cke
−ikω

∑
k

ĝ(ω)g(tn−k)e−ikωdω

=
1
2π

∫ 2π

0

G2
g(ω)

∑
k

cke
−ikω

∑
k

g(tn−k)e−ikωdω

=
1
2π

∫ 2π

0

∑
k

cke
−ikω

∑
n

g(tn−k)e−ikωdω (25)

=
∑

k

ckg(tn − k) (26)

= f(tn), (27)

where (25) is due to the fact Gg(ω) = 1 (a.e.). Hence

C−1‖f‖2 ≤
∑

n

|〈f(t), qg(t, tn)〉|2 ≤ C‖f‖2 (28)

holds for any f(t) ∈ V (ϕ). It means that {qg(t, tn)}n is
a frame of V (ϕ). Thus there is a dual frame {Sn(t)}n

of {qg(t, tn)}n in V (ϕ) such that

f(t) =
∑

n

Sn(t)〈f(t), qg(t, tn)〉 (29)

=
∑

n

f(tn)Sn(t) (30)

holds for any f(t) ∈ V (ϕ).

Remark:

1. On the contrary if {Sn(t)}n ∈ V (ϕ) is the frame
such that (15) holds, there is also a dual frame
{S̃n(t)}n of Sn(t) in V (ϕ) such that

C−1‖f‖2 ≤
∑

n

|〈S̃n(t), f(t)〉|2 ≤ C‖f‖2 (31)

holds for some C ≥ 1 and any f(t) ∈ V (ϕ). In
general the dual frame is not biorthogonal to frame
if the frame is not independent. Now we assume
that {Sn(t)}n is independent. Then

∑
n

|〈S̃n(t), f(t)〉|2

=
∑

n

|〈S̃n(t),
∑
m

f(tm)Sm(t)〉|2 (32)

=
∑

n

|
∑
m

f(tm)〈S̃n(t), Sm(t)〉|2 (33)

=
∑

n

|f(tn)|2. (34)

This implies that our condition (16) is also neces-
sary if {Sn(t)}n is additionally independent. So we
call that condition(16) is nearly necessary.

2. Another task is finding the {Sn(t)}n so that (15)
holds. In general case, we know that {Sn(t)}n is
a frame and biorthogonal to {qg(t, tn)}n in V (ϕ).
Then the {Sn(t)}n can be obtained by Frame The-
ory. If {Sn(t)}n is independent (this case is very
often in applications), we can have the following
simple result. {Sn(t)}n is the solution of the equa-
tions

〈Ŝm(ω), ϕ̂(−ω)G−2
ϕ (ω)

∑
k

ϕ(tn − k)eikω〉

= 2πδn,m. (35)

This is because that {Sn(t)}n is biorthogonal to
{qg(tn, t)}n and

q̂g(tn, ω)

=
∑

k

g(tn−k)ĝ(ω)e−ikω (36)

=
∑

k

∑
l

glϕ(tn−k−l)G−1
ϕ (ω)ϕ̂(ω)e−ikω

=
∑

l

gle
ilω
∑

k

ϕ(tn−k)G−1
ϕ (ω)ϕ̂(ω)e−ikω

=G−2
ϕ (ω)ϕ̂(ω)

∑
k

ϕ(tn−k)e−ikω. (37)

3. Irregular Sampling in Shift Invariant
Subspaces

An important case of sampling is the perturbation of
the regular sampling, i.e., tn = n + δn (δn ∈ (−1, 1)).
A fundamental question in this case is how to estimate
the upper bound of the perturbation {δk}k. Follow-
ing Paley-Wiener 1/4-Theorem for finite energy band-
limited signals, we have given an estimate for wavelet
subspace by using the Riesz basis theory. In the follow-
ing, we obtain a different estimate by using the Frame
Theory, which is demonstrated by an example to be
relaxed in some sense.

In order to establish the theorem, we also need to
introduce the function class Lλ

σ[a, b] (λ > 0, σ ∈ [0, 1),
0 ∈ [a, b] ⊂ [−1, 1]) given and used in our former work
(see Chen-Itoh-Shiki [6]). We have reasoned that the
class is a proper collection by giving some propositions
in that paper. Here we only repeat the definition.
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Definition 1: A function f(t) ∈ Lλ
σ[a, b] (λ > 0, σ ∈

[0, 1) and 0 ∈ [a, b] ⊂ [−1, 1]) if there is a constant
Cσ,f > 0 such that for any {δk}k ⊂ [a, b],∑

k

|f(k + σ + δk) − f(k + σ)|

≤ Cσ,f (sup
k

|δk|)λ. (38)

We also write

‖f‖Lλ
σ [a,b] = sup

[a,b]

∑
k |f(k + σ + δk)− f(k + σ)|

(supk |δk|)λ
.

Theorem 3: Suppose a generating function ϕ(t) of a
shift invariant subspace V (ϕ) is such that

1. There is a constant C ≥ 1 such that C−1 ≤
|ϕ̂∗(ω)| ≤ C (a.e.).

2. ϕ(t) ∈ Lλ
0 [a, b].

Then for any {δk}k ⊂ [−δϕ, δϕ]∩ [a, b], there is a frame
{Sk(t)}k of V (ϕ) such that f(t) =

∑
k f(k + δk)Sk(t)

holds if

δϕ <

(
‖ϕ̂∗(ω)‖0
‖ϕ‖Lλ

0 [a,b]

)1/λ

. (39)

Proof: We want to apply Theorem 2 to the proof. Let
tk = k + δk. Then we only need to show the following
two items.

1. {ϕ(tn − k)}k ∈ l2 for any n ∈ Z.
2. C−1‖f‖2 ≤

∑
k |f(tk)|2 ≤ C‖f‖2 holds for a con-

stant C ≥ 1 and for any f(t) ∈ V (ϕ) .

The condition “1” in Theorem 3 implies

ϕ̂∗(ω) ∈ L∞[0, 2π] ⊂ L2[0, 2π]. (40)

Hence∑
k

|ϕ(k)|2 =
1
2π

‖ϕ̂∗(ω)‖2π <∞. (41)

Since(∑
k

|ϕ(tn − k)|2
)1/2

≤
(∑

k

|ϕ(n− k)|2
)1/2

+

(∑
k

|ϕ(tn − k) − ϕ(n− k)|2
)1/2

(42)

≤
(∑

k

|ϕ(k)|2
)1/2

+O


(∑

k

|ϕ(tn − k)−ϕ(n− k)|
)1/2


 (43)

≤
(∑

k

|ϕ(k)|2
)1/2

+O
(
‖ϕ‖1/2

Lλ
0 [a,b]

sup
k

|δk|λ/2

)
, (44)

we derive {ϕ(tn − k)}k ∈ l2 due to ϕ ∈ Lλ
0 [a, b]. It

is exactly the “item 1.” On the other hand, if we can
show that there is a positive number θ < 1 such that∑

k

|f(tk)− f(k)|2 ≤ θ2
∑

k

|f(k)|2 (45)

holds for any f(t) ∈ V (ϕ), then

(1− θ)2
∑

k

|f(k)|2 ≤
∑

k

|f(tk)|2

≤ (1 + θ)2
∑

k

|f(k)|2. (46)

we let

f(t) =
∑

k

ckϕ(t− k), (47)

then

f̂∗(ω) = ϕ̂∗(ω)
∑

k

cke
−ikω. (48)

Together with condition “1,” this means

C−1|
∑

k

cke
−ikω| ≤ |f̂∗(ω)| ≤ C|

∑
k

cke
−ikω|. (49)

Since {ck}k is the coefficients of f(t) expressed by basis
ϕ(t− k), we have

B−1‖f‖ ≤ ‖
∑

k

cke
−ikω‖π ≤ B‖f‖ (50)

for some B ≥ 1. Therefore

(BC)−1‖f‖2 ≤
∑

k

|f(k)|2 ≤ BC‖f‖2 (51)

holds for any f(t) ∈ V (ϕ). Facts (46) and (51) follows
“item 2.” In order to show (45), we let

∆ =
∑

k

|f(tk) − f(k)|2 (52)

=
∑

k

|
∑

l

cl(ϕ(tk − l) − ϕ(k − l))|2 (53)

=
∑

n

∑
k,l

ckcl(ϕ(tn − k) − ϕ(n− k))

×(ϕ(tn − l) − ϕ(n− l)) (54)

=
∑
k,l

ckcl
∑

n

(ϕ(tn − k) − ϕ(n− k))

×(ϕ(tn − l) − ϕ(n− l)). (55)

Take ak,l =
∑

n(ϕ(tn−k)−ϕ(n−k))(ϕ(tn−l)−ϕ(n−l)).
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Then ak,l = al,k and

∆ =
∑
k,l

aklckcl (56)

≤
∑
k,l

|akl|(c2k + c2l )/2 (57)

=
∑
k,l

|akl|(c2k + c2l )/2 (58)

= (
∑

k

c2k
∑

l

|akl|+
∑

l

c2l
∑

k

|akl|)/2 (59)

≤ (
∑

k

c2k) sup
k

∑
l

|akl|. (60)

Furthermore we have

sup
k

∑
l

|akl|

≤ sup
k

∑
l,n

|(ϕ(δn + n− k) − ϕ(n− k))

×(ϕ(δn + n− l) − ϕ(n− l))| (61)

= sup
k

∑
α,β

|(ϕ(δα+k + α)− ϕ(α))

×(ϕ(δα+k + β) − ϕ(β))| (62)

= sup
k

∑
α

|ϕ(δα+k + α)− ϕ(α)|

×
∑

β

|ϕ(δα+k + β)− ϕ(β)| (63)

≤ ‖ϕ‖Lλ
0 [a,b]

× sup
β

|δβ |λ sup
k

∑
α

|ϕ(δα+k + α)− ϕ(α)| (64)

≤ (‖ϕ‖Lλ
0 [a,b] sup

β
|δβ|λ)2, (65)

where (62) is due to the index transform n−k = α and
n − l = β. Hence ∆ ≤ (

∑
k c

2
k)(‖ϕ‖Lλ

0 [a,b] supβ |δβ |λ)2.
Since∑

k

|f(k)|2 = ‖f̂∗(ω)‖2π (66)

=
1
2π

‖ϕ̂∗(ω)
∑

k

cke
−ikω‖2π (67)

≥ 1
2π

‖ϕ̂∗‖20‖
∑
cke

−ikω‖2π (68)

= ‖ϕ̂∗‖20
∑

k

|ck|2. (69)

Therefore we only need to show(∑
k

c2k

)
(‖ϕ‖Lλ

0 [a,b] sup
β

|δβ|λ)2

≤ θ‖ϕ̂∗‖20
∑

k

c2k. (70)

It is exactly implied by (39).

Remark: The estimate in our former work is the
same to (39) when ϕ(t) is orthonormal. But Theorem
4 asserts that the estimate (39) holds for any generat-
ing functions. By the way, the Sn(t) in the theorem
is the solution of the following equations if {Sn(t)}n is
independent.

〈Ŝm(ω), ϕ̂(−ω)G−2
ϕ (ω)

∑
k

ϕ(n+ δn − k)eikω〉

= 2πδm,n. (71)

4. Shift Sampling in Shift Invariant Subspaces

Unfortunately there are some important generating
functions ϕ(t)’s with ‖ϕ̂∗(ω)‖0 = 0. An obvious exam-
ple is the B-spline of degree 2, which has been calcu-
lated in our former works. As done by Janssen [13] for
Walter Sampling Theorem [18], Chen-Itoh-Shiki [6] for
irregular sampling theorem, we also deal with it by shift
sampling. Then the shift sampling theorem can be ob-
tained by using the Zak-transform Zϕ(σ, ω) (σ ∈ [0, 1))
defined by

Zϕ(σ, ω) =
∑

n

ϕ(σ + n)einω. (72)

Theorem 4: Suppose a generating function ϕ(t) of a
shift invariant subspace V (ϕ) is such that

1. There is a constant C ≥ 1 such that C−1 ≤
|Zϕ(σ, ω)| ≤ C (a.e.).

2. ϕ(t) ∈ Lλ
σ[a, b].

Then for any {δk}k ⊂ [−δσ,ϕ, δσ,ϕ] ∩ [a, b], there is a
frame {Sσ,k(t)}k of V (ϕ) such that (1) holds if

δσ,ϕ <

(
‖Zϕ(σ, ω)‖0
‖ϕ‖Lλ

σ [a,b]

)1/λ

. (73)

Remark: The {Sσ,k(t)}k is the solution of the follow-
ing equations if {Sσ,k(t)}k is independent.

〈Ŝm(ω), ϕ̂(−ω)G−2
ϕ (ω)

∑
k

ϕ(n+ δn + σ − k)eikω〉

= 2πδm,n. (74)

5. Examples to Show the Algorithm

Since Haar function, Daubechies wavelet and Meyer
wavelet are all the orthonormal generating functions
(see Walter [20], Daubechies [11] and Meyer [16]), the
estimate by this theorem is the same to that by our
former works (refer also to the Remark of Theorem 3).
We here calculate the B-spline of degree 1 and B-spline
of degree 2. We find that the estimate is δN1 < 1/2,
which is better than our former estimate δN1 < 1/2

√
3,

and which is shown by Liu-Walter [15] to be the opti-
mal. Unfortunately by now we can not yet show that
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the bound sup
σ∈(−1,1)

‖Zϕ(σ, ω)‖0
‖ϕ‖Lλ

σ [a,b]

is optimal for all gen-

erating functions! This is an open problem.

Example 1. (see Chui [10]) B-spline of degree 1 is
defined by

N1(t) = tχ[0,1) + (2− t)χ[1,2). (75)

Then N̂1
∗
(ω) = 1. Since ‖N1(t)‖L1

0[−1,1] = 3, we derive
δN1 < 1/3. When δk ≥ 0 (or δk ≤ 0) for all k ∈ Z, the
‖N1(t)‖L1

0[−1,0] = ‖N1(t)‖L1
0[0,1] = 2. Therefore

δN1 < 1/2. (76)

The {Sn(t)}n is the solution of the equations

〈Ŝm(ω), ϕ̂(−ω)G−2
ϕ (ω)

×(δneinω+(1−δn)ei(n−1)ω)〉=2πδm,n, (77)

where

Gϕ(ω) = (1/3 + 2/3 cos2(ω/2))1/2 (78)

and

ϕ̂(ω) = (e−iω − 1)2/ω2. (79)

The next example shows the shift sampling. It is bigger
than the former estimate 1/8

√
3, therefore, closer to

the optimal estimate. But we can not show that it is
optimal.

Example 2. (see Chui [10]) B-spline of degree 2 is
defined by

N2(t) =
t2

2
χ[0,1) +

6t− 2t2 − 3
2

χ[1,2) +
(3− t)2

2
χ[2,3).

Then N̂2
∗
(ω) = eiω(eiω + 1)/2 = 0 when ω = π. So

we should apply the shift sampling theorem. Since
‖ZN2(

1
2 , ω)‖0 = 1/2, ‖N2(t)‖L1

1/2[−1/2,1/2] = 3, we de-
rive

δ1/2,N2 < 1/6. (80)

The {S1/2,n(t)}n is the solution of the equations

〈Ŝ1/2,m(ω), N̂2(−ω)G−2
N2

(ω)

×
∑

k

N2(n+δn+1/2−k)eikω〉=2πδm,n. (81)
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Appendix

A so-called MRA {Vm}m∈Z is a family of subspaces of
L2(R), which satisfies

1. Vm ⊂ Vm+1, ∪mVm = L2(R), and ∩mVm = {θ},
2. f(t) ∈ Vm if and only f(2t) ∈ Vm+1,
3. There exists a function ϕ(t) ∈ V0 (scaling function)

such that {ϕ(t− n)}n forms a Riesz basis of V0.

Each Vm is called to be a wavelet subspace. A scal-
ing function ϕ(t) is said to be orthogonal (resp. or-
thonormal) if {ϕ(x − n)}n forms an orthogonal (resp.
orthonormal) basis† of V0.

†The basis for a Hilbert space, i.e., a group of indepen-
dent generating elements in a Hilbert space.
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