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The Error Estimation of Sampling in Wavelet Subspaces

Wen CHEN†, Nonmember, Jie CHEN†, and Shuichi ITOH†, Members

SUMMARY Following our former works on regular sampling
in wavelet subspaces, the paper provides two algorithms to es-
timate the truncation error and aliasing error respectively when
the theorem is applied to calculate concrete signals. Furthermore
the shift sampling case is also discussed. Finally some important
examples are calculated to show the algorithm.
key words: sampling, scaling function, wavelet subspaces, trun-
cation error, aliasing error

1. Introduction and Preliminaries

Sampling is a fundamental question in signal process-
ing, which studies how to represent a signal in terms
of a discrete sequence. Shannon’s popular sampling
theorem states that the finite energy band-limited sig-
nals are completely characterized by their samples val-
ues. Realizing that the Shannon interpolating function
sinc (t) = sin(t)/t is in fact a scaling function of an
MRA, Walter [18] found a sampling theorem for a class
of wavelet subspaces.

Suppose ϕ(t) is a continuous orthonormal scal-
ing function of an MRA {Vm}m∈Z such that |ϕ(t)| ≤
O((1 + |t|)−1−ε) for some ε > 0. Let ϕ̂∗(ω) =∑

n

ϕ(n)e−inω.Walter showed that there is an S(t) ∈ V0

such that

f(t) =
∑
n∈Z

f(n)S(t− n) (1)

holds for any f(t) ∈ V0 if ϕ̂∗(ω) �= 0. Following Wal-
ter [18]’s work, Janssen [12] studied the shift sampling
case by using the Zak-transform. Xia-Zhang [22] dis-
cussed the so-called sampling property (S(t) = ϕ(t)).
Walter [19], Xia [21] and Chen-Itoh [7], [9] studied the
more general case “oversampling.” Liu-Walter [15],
Liu [14], and Chen-Itoh-Shiki [8] even studied irregular
sampling in wavelet subspaces.

On the other hand, Aldroubi-Unser [1]–[3] and
Unser-Aldroubi [17] studied the sampling procedure in
shift invariant subspaces. They established a more
comprehensive sampling theory for shift invariant sub-
spaces. One of their important results states that, when
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ϕ(t) (∈ L2(R)) is a generating function, the orthogonal
projection gp(t) of a function g(t) ∈ L2(R) on the shift
invariant subspace V0(ϕ) is given by

gp(t) =
∑
n∈Z

〈g(·), ϕ̃(· − n)〉ϕ(t− n), (2)

where {ϕ̃(t − n)}n is the biorthogonal basis of {ϕ(t −
n)}n in V0(ϕ), and 〈·, ·〉 is the L2(R)-inner product.
They then found that the ϕ(t) can be replaced by an
interpolating generating function S(t) if ϕ(t) ∈ L1(R)∩
L2(R),

∑
k ϕ̂(ω + 2kπ) �= 0, and the Fourier transform

ϕ̂(ω) of ϕ(t) satisfies |ϕ̂(ω)| ≤ O((1+|ω|)−1−ε) for some
ε > 0 (see Theorem 7 in Aldroubi-Unser [3]). In fact
these constraints are related to those of Walter sam-
pling theorem due to the fact

∑
k ϕ̂(ω+2kπ) = ϕ̂∗(−ω)

in some sense.
Chen-Itoh [10] improvedWalter [18]’s andAldroubi-

Unser [3]’s works and found a general sampling theorem
for shift invariant subspace.

Theorem 1: (see Chen-Itoh [10]) Suppose ϕ(t) (∈
L2(R)) is a generating function such that the sampling
{ϕ(n)}n makes sense and {ϕ(n)}n ∈ l2. Then there is
an S(t) ∈ V0(ϕ) such that

f(t) =
∑

n

f(n)S(t− n) for f(t) ∈ V0(ϕ) (3)

holds in L2(R)-sense if and only if

1
ϕ̂∗(ω)

∈ L2[0, 2π] (4)

holds. In this case Ŝ(ω) = ϕ̂(ω)/ϕ̂∗(ω) holds for
a.e. ω ∈ R.

Obviously the theorem holds for wavelet subspaces.
Therefore we have the following results for sampling in
wavelet subspaces:


irregular sampling theorrem [8], [14], [15]

regular




sampling
{

sampling theorem [10], [18]
sampling property [19]

oversampling
{

oversampling theorem [7]
oversampling property [9].

However, when the theorem is applied to calculate
concrete signals the truncation error and aliasing error
have to be estimated. In this paper we develop two
algorithms to estimate them respectively.

We now drop in MRA (Multi-Resolution Analy-
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sis) and do some preparations which should be used in
the following sections. A so-called MRA {Vm}m∈Z is a
family of subspaces of L2(R), which satisfies

1. Vm ⊂ Vm+1, ∪mVm = L2(R), and ∩mVm = {θ}.
2. f(t) ∈ Vm if and only f(2t) ∈ Vm+1.
3. There exists a function ϕ(t) ∈ V0 (scaling function)

such that {ϕ(t− n)}n forms a Riesz basis of V0.

Each Vm is called to be a wavelet subspace. A scal-
ing function ϕ(t) is said to be orthogonal (resp. or-
thonormal) if {ϕ(x − n)}n forms an orthogonal (resp.
orthonormal) basis of V0.

Let ϕ(t) be a scaling function of MRA {Vm}m.
Then {ϕ(2t − n)}n∈Z is a Riesz basis of V1. Therefore
there is a sequence {hk}k ∈ l2 such that

ϕ(t) =
∑

k

hkϕ(2t− k). (5)

LetW0 = V1�V0 be the direct complement of V0 in V1,
and ψ(t) ∈ W0. Then there is a sequence {gk}k ∈ l2
such that

ψ(t) =
∑

k

gkϕ(2t− k). (6)

If {ψ(t−k)}k is a Riesz basis ofW0, ψ(t) is said to be the
wavelet of MRA{Vm}m. Therefore for f(t) ∈ Vm+1 =
Wm ⊕ Vm, there must be {an}n ∈ l2 and {bn}n ∈ l2
such that

f(t) =
∑

n

anϕ(2mt− n) +
∑

n

bnψ(2mt− n), (7)

where {bn}n is called the wavelet coefficients of f(t) in
Wm. By the way (5) and (6) also imply that

ϕ̂(ω) = m0(
ω

2
)ϕ̂(
ω

2
) (8)

and

ψ̂(ω) = m1(
ω

2
)ϕ̂(
ω

2
), (9)

where m0(ω) = 1
2

∑
k cke

−ikω and m1(ω) =
1
2

∑
k dke

−ikω. Take

Gϕ(ω) = (
∑

n

|ϕ̂(ω + 2nπ)|2)1/2. (10)

It is well known (see Meyer [16]) that

0 < ‖Gϕ(ω)‖0 ≤ ‖Gϕ(ω)‖∞ <∞ (11)

always holds, and ϕ(t) is orthonormal if and only if
Gϕ(ω) = 1 holds for a.e. ω ∈ R.

Finally we introduce some notations used in this
paper. For measurable subset E ⊂ R, we write |E| to
be the measure of E. For measurable function f(t), we
write

‖f (t)‖ =
(∫

R

|f(t)|2
)1/2

, (12)

‖f (t)‖0 = sup
|E|=0

inf
R\E

|f(t)|, (13)

‖f (t)‖∞ = inf
|E|=0

sup
R\E

|f(t)|, (14)

χE(t) =
{

1 t ∈ E
0 otherwise (15)

where χE(t) is called the characteristic function of set
E.

2. Truncation Error

When sampling theorem is applied to recover the orig-
inal signal f(t) from their discretely sampled values
{f (n)}n practically, we must know how many items we
should at least calculate so that the recovered signal is
close to the original one as we expected. Therefore we
should estimate the truncation error defined by

T e
f (t) =

∑
n≥N

f(n)S(t− n) forf (t) ∈ V0. (16)

In this section, we need a little stronger constraints to
be imposed on scaling function ϕ(t) than in Theorem 1.
But it is still very weaker than that of Walter [18] and
captures many important cases such as Haar scaling
function and Shannon scaling function. In fact we can
show that the imposed constraints can be satisfied if
Walter’s conditions are given.

Theorem 2: Let ϕ(t) be the scaling function of MRA
{Vm}m such that {ϕ(n)}n ∈ l2 and 1

ϕ̂∗(ω) ∈ L∞[0, 2π].
Then the truncation error is bounded by

‖T e
f (t)‖ ≤


∑

n≥N

|f(n)|2



1/2 ∥∥∥∥Gϕ(ω)
ϕ̂∗(ω)

∥∥∥∥
∞
. (17)

This bound can also be reached in some wavelet sub-
spaces.

Proof From Parseval identity,

‖T e
f (t)‖ (18)

=

∥∥∥∥∥∥
∑

|n|≥N

f(n)S(t− n)
∥∥∥∥∥∥ (19)

=
1√
2π

∥∥∥∥∥∥
∑

|n|≥N

f(n)e−inωŜ(ω)

∥∥∥∥∥∥ (20)

=
1√
2π


∫ 2π

0

∣∣∣∣∣∣
∑

|n|≥N

f(n)e−inω

∣∣∣∣∣∣
2

·
∑

k

|Ŝ(ω + 2kπ)|2dω




1/2
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=
1√
2π


∫ 2π

0

∣∣∣∣∣∣
∑

|n|≥N

f(n)e−inω

∣∣∣∣∣∣
2

·
∑

k |ϕ̂(ω + 2kπ)|2
|ϕ̂∗(ω)|2 dω




1/2

(21)

≤

 ∑

|n|≥N

|f(n)|2



1/2 ∥∥∥∥Gϕ(ω)
ϕ̂∗(ω)

∥∥∥∥
∞
. (22)

Take ϕ(t) to be the orthonormal cardinal scaling func-
tions (see Xia [21] or Walter [20]), for example ϕ(t) =
sin πt

πt . It is easy to see that (22) becomes

‖T e
f (t)‖ =


∑

n≥N

|f(n)|2



1/2

, (23)

i.e., the bound can be reached in the wavelet subspaces
with the orthonormal cardinal scaling functions.

Remark When the sampling step is not 1 but 2−m,
the truncation error is defined as

T e
f (t) =

∑
n≥N

f(n/2m)S(2mt− n) (24)

for f(t) ∈ Vm. Then it can be calculated to be bounded
as

‖T e
f (t)‖ ≤ 2−

m
2


∑

n≥N

|f(2−mn)|2



1
2 ∥∥∥∥Gϕ(ω)
ϕ̂∗(ω)

∥∥∥∥
∞
.

(25)

It can be also reached in the wavelet subspaces with
the orthonormal cardinal scaling functions.

3. Aliasing Error

The other error which should be estimated is the alias-
ing error which was proposed by Brown [4] in recon-
structing a non-band-limited function by means of the
band pass sampling theorems. Beaty-Higgin [5] ex-
tended it to a more general case as to estimate the
error of approximating signals by the multiplication of
Shannon scaling function. It was Walter [18] who es-
tablished a sampling theorem for wavelet subspaces and
estimated an upper bound for the aliasing error defined
by

Ae
f (t) = f(t)−

∑
n

f(n)S(t− n) (26)

for f(t) ∈ V1. But Walter [18]’s bound is not precise.
It should be estimated again.

Theorem 3: Let ϕ(t) be the scaling function of MRA
{Vm}m such that ϕ̂∗(ω), 1

ϕ̂∗(ω) ∈ L∞[0, 2π]. Then the
aliasing error is bounded by

‖Ae
f (t)‖ ≤

√
2

(∑
n

|bn|2
)1/2

·
∥∥∥∥ ϕ̂∗(ω + π)
ϕ̂∗(2ω)

Gϕ(ω) detMϕ(ω)
∥∥∥∥
∞
. (27)

where {bk}k are the wavelet coefficients of f(t) in W0,

Mϕ(ω) =
(
m0(ω) m0(ω + π)
m1(ω) m1(ω + π)

)
, (28)

and detMϕ(ω) is the determinant of Mϕ(ω). Further-
more the bound can also be reached in some wavelet
subspaces.

Proof Step 1: To estimate the aliasing error.
Since f(∈ V1) can be decomposed to be f = f1 + f0,
where f0 ∈ V0, f1 ∈ W0 = V1 � V0, we only need to
show (27) holds for f1 ∈ W0. Let ψ(t) ∈ W0 be the
wavelet of MRA {Vm}m. Since {ψ(t − k)}k forms a
Riesz basis ofW0, there must be a {bn}n ∈ l2 such that

f1(t) =
∑

n

bnψ(t− n). (29)

Set Cf1(ω) =
∑

n bne
−inω and take Fourier transform

on both sides of (29),

f̂1(ω) = Cf1(ω)ψ̂(ω). (30)

From Parseval identity, it shows

‖Ae
f (t)‖ =

1√
2π

∥∥∥Cf1(ω)ψ̂(ω)

−
∑

n

f1(n)e−inωŜ(ω)

∥∥∥∥∥ (31)

In the following (8) and (9) will be frequently used.
Since

∑
n

f1(n)e−inω =
∑

n

f̂1(ω + 2nπ), we derive

‖Ae
f (t)‖

=
1√
2π

∥∥∥∥∥Cf1(ω)ψ̂(ω) −
∑

n

f̂1(ω + 2nπ)
ϕ̂(ω)
ϕ̂∗(ω)

∥∥∥∥∥
=

1√
2π

∥∥∥Cf1(ω)m1(
ω

2
)ϕ̂(
ω

2
)

−Cf1(ω)
∑

n

ψ̂(ω + 2nπ)
ϕ̂(ω)
ϕ̂∗(ω)

∥∥∥∥∥ (32)

=
1√
2π

∥∥∥∥∥Cf1(ω)

(
m1(

ω

2
)ϕ̂(
ω

2
)

−
∑

n ψ̂(ω + 2nπ)
ϕ̂∗(ω)

m0(
ω

2
)ϕ̂(
ω

2
)

)∥∥∥∥∥ (33)
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=
1√
2π


∫ 4π

0

∑
n

|ϕ̂(ω
2

+ 2nπ)|2|Cf1(ω)|2

·
∣∣∣∣∣m1(

ω

2
) −

∑
n ψ̂(ω + 2nπ)
ϕ̂∗(ω)

m0(
ω

2
)

∣∣∣∣∣
2

dω




1/2

(34)

=
1√
2π


∫ 4π

0

G2
ϕ(
ω

2
)|Cf1 (ω)|2

∣∣∣m1(
ω

2
)

−
∑

n ψ̂(ω + 2nπ)
ϕ̂∗(ω)

m0(
ω

2
)

∣∣∣∣∣
2

dω




1/2

. (35)

On the other hand,∑
n

ψ̂(ω + 2nπ)

=
∑

n

m1(
ω

2
+ nπ)ϕ̂(

ω

2
+ nπ) (36)

=
∑

k

m1(
ω

2
+ 2kπ)ϕ̂(

ω

2
+ 2kπ)

+
∑

k

m1(
ω

2
+ (2k + 1)π)ϕ̂(

ω

2
+ (2k + 1)π)

(37)

= m1(
ω

2
)ϕ̂∗(

ω

2
) +m1(

ω

2
+ π)ϕ̂∗(

ω

2
+ π), (38)

and

ϕ̂∗(ω) =
∑

n

ϕ̂(ω + 2nπ) (39)

= m0(
ω

2
)ϕ̂∗(

ω

2
) +m0(

ω

2
+ π)ϕ̂∗(

ω

2
+ π).

(40)

Then (35), (38) and (40) imply

‖Ae
f (t)‖

=
1√
2π

(∫ 4π

0

G2
ϕ(
ω

2
)|Cf1(ω)|2

∣∣∣m1(
ω

2
)

−m1(ω
2 )ϕ̂∗(ω

2 ) +m1(ω
2 + π)ϕ̂∗(ω

2 + π)
m0(ω

2 )ϕ̂∗(ω
2 ) +m0(ω

2 + π)ϕ̂∗(ω
2 + π)

·m0(
ω

2
)
∣∣∣2 dω)1/2

(41)

≤ 1√
2π

(∫ 4π

0

|Cf1(ω)|2
)1/2 ∥∥∥G2

ϕ(
ω

2
)

·m1(ω
2 )m0(ω

2 + π) −m1(ω
2 + π)m0(ω

2 )
m0(ω

2 )ϕ̂∗(ω
2 ) +m0(ω

2 + π)ϕ̂∗(ω
2 + π)

·ϕ̂∗(
ω

2
+ π)

∥∥∥
∞

(42)

=
√

2

(∑
n

|bn|2
)1/2 ∥∥∥G2

ϕ(
ω

2
)

·m1(ω
2 )m0(ω

2 + π) −m1(ω
2 + π)m0(ω

2 )
m0(ω

2 )ϕ̂∗(ω
2 ) +m0(ω

2 + π)ϕ̂∗(ω
2 + π)

·ϕ̂∗(
ω

2
+ π)

∥∥∥
∞
. (43)

By the way,

m1(
ω

2
)m0(

ω

2
+ π) −m1(

ω

2
+ π)m0(

ω

2
) (44)

= − det
(
m0(ω

2 ) m0(ω
2 + π)

m1(ω
2 ) m1(ω

2 + π)

)
(45)

= − detMϕ(
ω

2
). (46)

Therefore (43) becomes to be

‖Ae
f (t)‖

≤ √
2

(∑
n

|bn|2
)1/2

∥∥∥∥ Gϕ(ω
2 )ϕ̂∗(ω

2 + π) detMϕ(ω
2 )

m0(ω
2 )ϕ̂∗(ω

2 ) +m0(ω
2 + π)ϕ̂∗(ω

2 + π)

∥∥∥∥
∞
.

(47)

Together with (40), we conclude

‖Ae
f (t)‖

≤
√

2

(∑
n

|bn|2
)1/2

·
∥∥∥∥ ϕ̂∗(ω

2 + π)
ϕ̂∗(ω)

Gϕ(
ω

2
) detMϕ(

ω

2
)
∥∥∥∥
∞

(48)

=
√

2

(∑
n

|bn|2
)1/2

·
∥∥∥∥ ϕ̂∗(ω + π)
ϕ̂∗(2ω)

Gϕ(ω) detMϕ(ω)
∥∥∥∥
∞
. (49)

Step 2: To show that the bound can be reached.
Suppose ϕ(t) be an orthonormal cardinal scaling func-
tion (see Xia [21] and Walter [20]), for example ϕ(t) =
sin πx

πx . Then ϕ̂∗(ω) = Gϕ(ω) = 1 holds for a.e. ω ∈ R
and Mϕ(ω) is unitary. By referring to the argument in
Step 1, it is easy to find

‖Ae
f (t)‖ =

√
2

(∑
n

|bk|2
)1/2

. (50)

It implies that the bound can be reached in the wavelet
subspaces with the orthonormal cardinal scaling func-
tion.

Remark Compared to Walter [18]’s bound
C(
∑

n |bn|2)1/2 for some constant C > 0, we can now
be sure C =

√
2‖ ϕ̂∗(ω+π)

ϕ̂∗(2ω) Gϕ(ω) detMϕ(ω)‖∞. When

ϕ(t) is orthonormal, C =
√

2‖ ϕ̂∗(ω+π)
ϕ̂∗(2ω) ‖∞. On the other
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hand for sampling in Vm, the aliasing error is defined
by

Ae
f (t) = f(t)−

∑
n

f(2−mn)S(2mt− n) (51)

for f(t) ∈ Vm+1. By the calculation similar to that of
the sampling in V0, we find that the bound is

‖Ae
f (t)‖ ≤ 2

1−m
2

(∑
n

|bn|2
)1/2

·
∥∥∥∥ ϕ̂∗(ω + π)
ϕ̂∗(2ω)

Gϕ(ω) detMϕ(ω)
∥∥∥∥
∞
. (52)

But here {bk}k is the wavelet coefficients of f(t) inWm.

4. Shift Sampling in Wavelet Subspaces

If the constraint 1
ϕ̂∗(ω) ∈ L2[0, 2π] can be satisfied, we

only need to apply Theorem 1 to deal with the regularly
sampled signals in wavelet subspaces. Unfortunately
some scaling functions, even some important scaling
functions, do not show the property. For example, take
the B-spline of order 2 scaling function

N2(t) =
t2

2
χ[0,1)(t) +

6t− 2t2 − 3
2

χ[1,2)(t)

+
(3− t)2

2
χ[2,3)(t), (53)

where χ[j,j+1)(t) is the characteristic function of the
interval [j, j + 1) for j = 0, 1, 2. Then N̂2

∗
(ω) =

1
2e

iω(eiω + 1). Obviously 1
N̂2

∗
(ω)

= 2
eiω(eiω+1) is not

in L2[0, 2π]. Chen-Itoh [10] solves it by using Zak-
transform (see Heil-Walnut [11], Janssen [12] and Wal-
ter [19]).

Suppose ϕ(t) be a scaling function of MRA {Vm}m

such that {ϕ(n + σ)}n ∈ l2 for some σ ∈ [0, 1). Then
we can define Zak-transform

Zϕ(σ, ω) =
∑

n

ϕ(σ + n)e−inω, ω ∈ R, (54)

in L2[0, 2π]-sense. For the above B-spline of order 2
scaling function N2(t), we find ZN2(

1
2 , ω) = (1+6eiω +

e2iω)/8. Thus 1
2 ≤ ZN2(

1
2 , ω). Obviously 1

ZN2 ( 1
2 ,ω)

∈
L2[0, 2π] holds. Therefore we obtained the following
similar result [10].

Theorem 4: Let ϕ(t) be the scaling function of MRA
{Vm}m such that {ϕ(n+ σ)}n ∈ l2 for some σ ∈ [0, 1).
Then there is an Sσ(t) ∈ V0 such that

f(t) =
∑

n

f(n+ σ)Sσ(t− n) for f(t) ∈ V0 (55)

holds in L2-sense if and only if
1

Zϕ(σ, ω)
∈ L2[0, 2π] (56)

holds. In this case Ŝσ(ω) = ϕ̂(ω)
Zϕ(σ,ω) holds for a.e. ω ∈ R.

Accordingly the shift sampling versions of trunca-
tion error and aliasing error for sampling theorem can
be obtained from the results obtained in the previous
sections.

Theorem 5: Let ϕ(t) be the scaling function of MRA
{Vm}m such that Zϕ(σ, ω), 1

Zϕ(σ,ω) ∈ L∞[0, 2π]. Then
the truncation error and the aliasing error are respec-
tively bounded by

‖T e
f (t)‖ ≤


∑

n≥N

|f(n)|2



1/2 ∥∥∥∥ Gϕ(ω)
Zϕ(σ, ω)

∥∥∥∥
∞
. (57)

and

‖Ae
f (t)‖ ≤

√
2

(∑
n

|bn|2
)1/2 ∥∥∥∥Zϕ(σ, ω + π)

Zϕ(σ, 2ω)

·Gϕ(ω) detMϕ(ω)‖∞ . (58)

where {bk}k are the wavelet coefficients of f(t) in W0,

Mϕ(ω) =
(
m0(ω) m0(ω + π)
m1(ω) m1(ω + π)

)
, (59)

and detMϕ(ω) is the determinant of Mϕ(ω). Further-
more the bound can also be reached in some wavelet
subspaces.

Remark The shift sampling results for sampling in
Vm can be also obtained from the results obtained in
the previous sections.

5. Conclusion and Examples

Based on the above discussion, we can summarize an
algorithm as what follows.

1. For the scaling function ϕ(t) of MRA {Vm}m, find
a σ ∈ [0, 1) such that 1

Zϕ(σ,ω) ∈ L2[0, 2π].
2. Calculate the truncation error to determine how

many iterms we should calculate for approximating
the original signals from their discrete samples as
close as we expect.

3. Recover the original signals by sampling theorem
(by Formula (55)).

4. Calculate the aliasing error to recover the sampled
signals in the finer resolution wavelet subspaces.

Now we apply the algorithm to calculate some im-
portant scaling functions as examples that can be found
in Chui [6], Meyer [16] and Walter [18].

Example 1 Haar scaling function ϕ(t) = χ[0,1).
Since 1

ϕ̂∗(ω) = 1 ∈ L2[0, 2π], we have S(t) = χ[0,1) and
the sampling theorem can be applied. The truncation
error and aliasing error is respectively

‖T e
f (t)‖ =


∑

n≥N

|f(n)|2



1/2

, (60)
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and

‖Ae
f (t)‖ =

√
2

(∑
n

|bn|2
)1/2

. (61)

Example 2 Shannon scaling function ϕ(t) = sin πt
πt .

Since 1
ϕ̂∗(ω) = 1 ∈ L2[0, 2π], we have S(t) = sin πt

πt and
the sampling theorem can be applied. The truncation
error and aliasing error are the same as (60) and (61)
respectively.

Example 3 B-spline of order 1 scaling function
ϕ(t) = tχ[0,1) + (2 − t)χ[1,2). Since 1

ϕ̂∗(ω) = e−iω ∈
L2[0, 2π], we derive Ŝ(ω) = e−iωϕ̂(ω). Therefore

S(t) = ϕ(t− 1) = (t− 1)χ[1,2) + (3 − t)χ[2,3). (62)

Since Gϕ(ω) = (1
3 (1 + 2 cos2 ω

2 ))1/2, we derive

‖T e
f (t)‖

≤

∑

n≥N

|f(n)|2



1/2

sup
ω

√
1
3

(
1 + 2 cos2

ω

2

)

=


∑

n≥N

|f(n)|2



1/2

, (63)

and

‖Ae
f (t)‖

≤
√

2

(∑
n

|bn|2
)1/2

· sup
ω

|
√

1
3

(
1 + 2 cos2

ω

2

)
detMϕ(ω)|

=
√

2


∑

n≥N

|f(n)|2



1/2

sup
ω

| detMϕ(ω)|, (64)

where Mϕ(ω) depends on the wavelet constructed (see
Jia-Shen [13]). For orthonormal wavelet, Mϕ(ω) is uni-
tary.

Example 4 B-spline of order 2 scaling function
N2(t) = t2

2 χ[0,1)(t) + 6t−2t2−3
2 χ[1,2)(t) + (3−t)2

2 χ[2,3)(t).
Referring to Sect. 4, we have to use shift sampling.
Since ZN2(

1
2 , ω) = (1 + 6eiω + e2iω)/8, we derive

Ŝ 1
2
(ω) = 8

(
1 − e−iω

iω

)3

/(1 + 6eiω + e2iω). (65)

By using ‖GN2(ω)‖∞ = 1, the truncation error and
aliasing error can be estimated as

‖T e
f (t)‖

≤

∑

n≥N

|f(n)|2



1/2

sup
ω

1
|(1 + 6eiω + e2iω)/8|

= 2


∑

n≥N

|f(n)|2



1/2

. (66)

and

‖Ae
f (t)‖ ≤ 2

√
2

(∑
n

|bn|2
)1/2

sup
ω

| detMϕ(ω)|,

where Mϕ(ω) also depends on the wavelet constructed
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