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An Estimate of Irregular Sampling in Wavelet Subspace

Wen CHEN', Nonmember and Shuichi ITOH!, Member

SUMMARY The paper obtains an algorithm to estimate the
irregular sampling in wavelet subspaces. Compared to our for-
mer work on the problem, the new estimate is relaxed for some
wavelet subspaces.
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1. Introduction and Preliminaries

In digital signal and image processing, digital com-
munications, etc., a continuous signal is usually rep-
resented and processed by using its discrete samples.
Then a fundamental question is how to represent a
signal in terms of a discrete sequence. The famous
classical Shannon Sampling Theorem describes that a
finite energy band-limited signal is completely char-
acterized by their samples values. Realizing that the
Shannon function sinc(t) = sin(¢)/¢ is in fact a scal-
ing function of an MRA, Walter[20] found a sam-
pling theorem for a class of wavelet subspaces. Fol-
lowing Walter[20]’s work, Janssen[12] studied the
shift-sampling in wavelet subspaces by using Zak-
transform.  Xia-Zhang[24] discussed the so-called
sampling property. Walter[21], Xia[23] and Chen-
Itoh [7],[8] studied the the more general case oversam-
pling. On the other hand Aldroubi-Unser[1]-[3] and
Unser-Aldroubi[19] studied the sampling procedure in
shift-invariant subspaces. Chen-Itoh[9] improved Wal-
ter [20] and Aldroubi-Unser [3]’s works, and we found
a general sampling theorem for shift-invariant subspace.

However, in many real applications samplings are
not always made regularly. Sometimes the sampling
steps need to be fluctuated according to the signals so
as to reduce the number of samples and the computa-
tion complexity. There are also many cases where un-
desirable jitter exists in sampling instants. Some com-
munication systems may suffer from the random de-
lay due to the channel traffic congestion and encod-
ing delay. In such cases, the system will be made to
be more efficient if the irregular factor is considered.
Then how are these irregularly sampled signals dealt
with? For the finite energy band-limited signals, a gen-
eralization of Shannon Sampling Theorem, known as
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the Paley-Wiener 1/4-Theorem (see Young[25]), can
be used. Following the works on sampling in wavelet
subspaces, Liu-Walter[14], Liu[13], and Chen-Itoh-
Shiki[4] extended Paley-Wiener 1/4-Theorem to a class
of wavelet subspaces. But their results are not mild.
Then Chen-Itoh-Shiki[5] introduced a function class
L)a,b] (A > 0, ¢ € [0,1) and 0 € [a,0] C [-1,1])
and a norm [} - || (e, Of L)[a,b]. Finally we found an
irregular sampling theorem for wavelet subspaces with
an L)[a, b]-scaling function. Chen-Itoh[6] improved it
and obtained the following result. We always use _,
to stand for ) 7° _ in this paper.

Theorem 1: (see Chen-Itoh[6]) Suppose an L) |a,b]-
scaling function (t) of an MRA {V,,},, is such that
C™H < |3, plk+o)e ™| < C (ae) for some con-
stant C' > 1, and such that {¢(n+0c)}, € I2. Then there
is a 8., € (0,1] such that for any sequence {8x}r C
[—60,0, 60,0, there is an sequence {S, 1 (t)}x C Vo such
that

F&) = flk+0+6:)S,x(t) (1)
k
holds for any f(t) € Vp if
1/A
1Z,(,)G ()| 2.7
5.0 < £ 0 . (2

||Q<p(5» C’)HLg[a,b]

Applying the theorem to calculating the B-spline of
order 1 scaling function N1(t) = tx[0,1) + (2 — t)X[1,2)»
we find dg, n, < 1/3\/5 (bo,n, < 1/2\/5 when &, = 0
or 6 £ 0). In this paper we obtain a different esti-
mate. When it is applied to the B-spline or order 1, a
relaxed estimate (6, < 1/4.94) can be obtained, and
the estimate keeps the same when §; > 0 (or & < 0).

Let us now roughly introduce the aforementioned
MRA (Multi-resolution Analysis). For more details,
see Long-Chen|[16] and Long-Chen-Yuan[17] or any
books on wavelets, such as Chui[10], Meyer[18] and
Walter [22]. An increasing close subspace sequence
{Vin}m of L?(R) is called an MRA if

1. Ny Vi, = {0} and U, V,,, = R,
2. f(t) € V,,, if and only if f(2t) € V11,

3. there is a function ¢(t) € V; (called a scaling func-
tion) such that {¢(t — k)}x is a Riesz basis of V;.
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If {x(t — k)}x is an orthonormal Riesz basis of Vo, ¢(t)
is called an orthonormal scaling function. For a scaling
function pair {¢(t), p(t)} of an MRA pair {Vy,, V.. }, if
Jr et —k)@(t —)dt = 61, the MRA pair {V;,, Vi } s
called a biorthogonal MRA. For an MRA the fact

0 < [Gp(w)llo £ [Gp(w)lloo <00 3)

always holds. The G,(w) = 1 (a.e.), if ¢(t) is an or-
thonormal scaling function.

The following are some notations used in this pa-
per. For a measurable set £ C R, |E| denotes the mea-
sure of E. For a measurable function f(¢) and a positive
number )\, we write

I fllo = “S;‘lfo l}_iIQfE FGIF
| flleo = ]}Jnio Suplf(t)l,

Z f —znw

1/2
Gy(w) = <Z|f w + 2kr))| ) :
gr(s,t) = Zf s—n)f(t—n),

Lz(R)={fi/\f(t)l2dt<oo},
R
Lip*(R) = {f| |f(t) = f(s)| < O(lt — s")}-
Finally we introduce the function class L}[a,b]
(A >0,0€10,1), 0 € [a,b] C [-1,1]) defined and
used in our former works (see Chen-Itoh-Shiki[5] and
Chen-Itoh[6]). We have presented some simple prop-

erties of the function class in the former works, so we
only give the definition here.

Definition 1: A function f(t) € L}[a,b] (A > 0,0 €
[0,1),0 € [a,b] C [—1,1]) if there is a constant Cy 5 > 0
such that for any {6x}x C [a, D]

STIf(k+o+6) — flk+0)| < Co,s(sup 1661)>.
k

4)
We also write

NIk +o+8&) — fk+0)
1123 fas = sup =

a!

(supy, |6x[)*

2. Irregular Sampling in Orthonormal Wavelet Sub-
spaces

Firstly we establish an irregular sampling theorem for
orthonormal wavelet subspaces, then we deduce the re-
sult we want.

Theorem 2: Let (t) be an orthonormal scaling func-
tion of an MRA {V,, },, such that
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L. o(t) € Ly[a, b],
2. C7 < |p*(w)| £ C, a.e.w, for a constant C > 1.

Then for any {6z}, C [—0y,0,] N [a,b], there is a se-
quence {Sk(s)}r C Vo such that

= flk+60)Sk(1) (5)

holds for any f(t) € Vg, if

by < (HVA?*(W)||0/||90||L3[a,b])1/’\~ (6)

Let us recall the following theorem in our former
work [6]
Theorem 3: (see Chen-Itoh[6]) Suppose {p(t), p(t)}
is a scaling function pair of an MRA pair {Vis, Vin}m
(with Vg = Vg) such that

L ¢(t) € Ly[a, b,
2. C71 < |¢ (w)| £ C, a.e.w, for a constant C > 1.

Then for any {Sx}r C [~64,5,0p,5] N [a,b], there is a
sequence {Sk(s)}x C Vo such that (5) holds if

I3 @G @l |

Y (W)L \Wlo

by < - : )
’ <||G¢<w>uoonso|ug[a,b])

In the orthonormal case, we know ¢(t) = @(t) and

Gy(w) = 1 (ae.). Hence Theorem 3 becomes in fact
Theorem 2.

3. Irregular Sampling in General Wavelet Sub-
spaces

Based on the orthonormal case, we can now establish
the reconstruction formula for irregularly sampled sig-
nals in general wavelet subspace by orthonormalizing
the scaling function ¢(t).

Theorem 4: Suppose a scaling function ¢(¢) of an
MRA {V,,}, satisfies

L. |o(®)] £ O(1/[t|**¢) for some & > 0,
¢*(w) + 0,
3. ¢(t) € L}[a, b].

Then for any {8x}x C [—6,,0,] N [a,b], there is a se-
quence {S;(t)}r C Vo such that (5) holds if

G @O/ IRl aiae) - (8)

In order to show the theorem, we need a lemma.

b, < (inf |¢*(w)

Lemma 1: Suppose a scaling function ¢(¢) of an
MRA{V,,},, satisfies |p(t)] < O(1/]¢*+¢) for some
e > 0, then ¢*(w), G,(w) € Lip®.

Proof Due to |p(t)| < O(1/|t|*¢), we have
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D pk)e™ | < ek

k:gn kzn

)l £ O(1/nf). ©)

Formula (9) implies ¢*(w) € Lip® (see Edwards[11]).
Let GZ(w) = Y. dxe™™. Then (see Long-Chen[15]
and Meyer[18]),

| o

/ ot (t + )\t
[t|<]k]/2

+ /| o o R

ot + k) dt’

O(1/|k|* e d
(1K) / L
+O(1/ k) /

121l /2
< O(1/Ik**). (10)

lo(t + k)|dt

From (10) we derive | >, dpe?*| < O(1/n%). Hence
GZ(w) € Lip®. Therefore G,(w) € Lip® due to the
2m-periodicity of G, (w).

Proof of theorem Take R, (t) as the Fourier inverse of
R,(w) = @$(w)G, (w). Then R,(t) is an orthonormal
scaling function (see Chui[10], Meyer[18] and Wal-
ter[20]). Suppose GZ(w) = Y., dpe™™. Then for-
mula (10) implies {dx}z € I*. Now suppose G, ' (w) =
g cket™ . Since G, (w) € Lip® and |Gy (w)]lo > 0, we
have inf G,(w) > 0. Hence {cx}x € I' due to Wiener-
Levy Theorem (see pp.178 in Edwards[11]). We can
now verify that R,(t) satisfies the two conditions in

Theorem 2.
1. For any {63 }r C [a,b],

> [Ry(k 4 61) — Ry(k)]
k

—Z ch (k+ 6 —n) —(k —n)) (11)

§Z|Cn|2|ﬂa k + Okyn) — (k)| (12)
” k

<Y lenlllell .y Slllcp\&c\*- (13)

Formula (13) implies R, (t) € L{[a,b] (due to ¢(t) €
L3la,b] and {ci}r € 11).
2. On the other hand we have

= Z g~tnw Z erp(n — k) (14)
n k

= Z cke_ikw Z <p(n . k)e
k n

=G (w)@" (). (16)

—i(n—k)w (15)
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The assumption ¢*(w) = 0 together with the 27-
periodicity implies 0 < inf |¢*(w)] £ sup|g*(w)| < oo.
Therefore formula (16) implies

0 < |RL(w)llo < |1 R (w)]|oo < o0 (17)

Now we apply Theorem 1 to the scaling function R, ()
of the MRA {V,,},,. Then (6) becomes

8o < (IR @)llo/ 1R (8)l| afa,) ™ (18)
However, Lemma 1 and (16) imply that | K, (w)]jo =
inf, |¢*(w)G ;" (w)]. Therefore (18) is exactly what we
want, i.e.,

8 < (inf [¢" ()G (@)I/IIRe (0)| L0 i)™ (19)

4. Shift Sampling in Wavelet Subspaces

As done by Janssen[12] for Walter Sampling Theo-
rem [20], Chen-Itoh[6] for irregular sampling, Chen-
Itoh [7] for oversampling and Chen-Itoh[9] for regular
sampling, the shift version of this irregular sampling
theorem also can be obtained by using Zak-transform
Z,(o,w) (o € [0,1)) defined by

w) = Z o(o +n)e . (20)
Theorem 5: Suppose a scaling function ¢(t) of an
MRA {V,,}, satisfies
L. |e(t)] £ O(1/t|*+¢) for some € > 0,
2. Zy(o,w) F0,
3. ¢(t) € L)a,b].

Then for any {6x}r C [—b0,p,00,0] N [a,b], there is a
sequence {Sy 1 (t)}x C Vo such that (1) holds if

1/

inf,, | Z, (0, w)G 21

< (M Zewe@
R ()l L2 [a,0]

5. An Example to Show the Algorithm

Example. (see Chui[10]) B-spline of order 1 scal-
ing function Ni(t) = txp1) + (2 — t)x[1,2). Obvi-

ously Nl*(w) =1, and Gy, (w) = (3 + Zcos?(%))*/2.

Let r = 5 0277(;1), + 2cos?(¥))” 1/2coskwdw. Then
Ry, (t) = >, reN1(t — k). Hence

Z |RN1 (n+ 571) - RNl(n)I
=2
=2

< (Z max{|ry, — rn_1|, [Tn—1 — 7“n—2|}> on, (24)

rkN1n+6 —k)— Nl(n—k))‘ (22)

Z Tt (N1 (1 + 6,) — Na (1) )‘ (23)
l
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Therefore ||Rw,(O)|lraj-1, £ 32, max(|rn —

Tn—1|7

["n_1 — Tn_2|) < 4.94. So it is enough to let §y, <
1/4.94. Obviously 1/3v/3 < 1/4.94. When & = 0
(or 6 < 0) for all k, >, |[Rn,(n+ 6n) — By, (n)] <
(Zn |7"n_7'n—1|)6N1- Then ”RN1 (t)”Lé[O,l] < 3.46411 ~

2v/3. Therefore 8y, < 1/2v/3.
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