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On Irregular Sampling in Wavelet Subspaces

Wen CHEN', Nonmember and Shuichi ITOH!, Member

SUMMARY The paper provides the algorithm to estimate the
deviation bound admitting to recovering irregularly sampled sig-
nals in wavelet subspaces, which does not need the symmetricity
sampling constraint of Paley-Wiener’s and relaxes the deviation
bounds in some wavelet subspaces. Meanwhile the method does
not need the continuity and decay constraints imposed on scaling
functions by Liu-Walter and Chen-Itoh-Shiki.

key words:  sampling, wavelet, scaling function, orthogonality,
biorthogonality, MRA, Zak-transform

1. Introduction and Notations

For finite energy v-band continuous signal f(¢), t € R.
ie, f € L(R) and suppf(w) = [-v,7], the classical
Shannon Sampling Theorem gave the following recon-
struction formula,

sm7 —nT) T
Zf TLT*)—’ T= pot (1)

where f(w) is the Fourier transform of f (t) defined by
flw) = Jr f(t)e~**dt. Unfortunately it is not appro-
priate for non-band-limited signals. However if we let
v = 2™m, m € Z, this problem can be viewed as a
special case of wavelet subspaces with ¢(t) = sin wt/mt
playing the role of scaling function of MRA {V,, =
span{p(2™t — n},}m. Realizing these properties, Wal-
ter [16] extended (1) to a class of wavelet subspaces.
Let o(t) be the scaling function of MRA{V,,},, such
that ¢(t) < O(|¢t|=17*) for some ¢ > 0, which captures
many important cases and includes the Haar, Spline and
Daubechies Scaling Functions. Walter [16] showed that,
in orthonormal case, if $*(w) # O there is an S(t) € V,

such that
Z f(k)S(t — k)

However in many practical cases the sampling are
not always at the same step, or say irregular sampling,
then how to deal with it? Paley-Wiener’s }I-Theorem
(see Young[18]) said that, if supy |6k| < %, 6k = —6_

for f € V. 2)
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then for f(t) € P, (Paley-Wiener Space),

B G(t)
- ; f(k+ &) G'(k+ 61)G(t — (k + b))’

3)

where G(t) = t[[,—,(1 — t*/(n + 6,)%). But it can
not well deal with non-band-limited signals, and the
sampling with symmetricity constraints 6, = —é_j is
also restrictive. Following Walter [16], Liu-Walter [12]
tried to extend Paley-Wiener’s to the sampling in a
class of orthonormal wavelet subspaces without &, =
—6_r. But they could not claim the existence of
some 6, C (0,1] such that a reconstruction formula
similar to (3) holds when sup, |6x] < &é,. Then
Liu[11] turned to deal with the special case —spline
wavelets by Feichtinger-Grochenig Iterative Algorithm
(see Feichtinger-Grochenig[8]). Even so, it is to es-
timate the sampling density, not the deviation bound
admitting to recovering original signals. Chen-Itoh-
Shiki[2] obtained a recovering formula for sampling
in general wavelet subspaces without the symmetricity
requirement for sampling but lead to a [!-bound on
{6k }k. In fact they still can not estimate the above de-
scribed 6,. Ahthough Chen-Itoh-Shiki[3] obtained an
[*°-bound 6, the continuity assumption and the decay
constraint (p(t) < O(Jt|~17¢) for some £ > 0) imposed
on scaling function ¢(t) by Liu-Walter[12] and Chen-
Itoh-Shiki[2] can not be removed yet, which even ex-
clude Haar scaling function and Shannon scaling func-
tion.

In this paper, we provide the algorithms which can
estimate a [*° deviation bound to recovering irregularly
sampled signals in general wavelet subspaces. It does
not require the symmetricity constraints 6, = —é_
of Paley-Wiener[18]’s for sampling, but also remove
the continuity and the decay constraints imposed on
the scaling function ¢(t) by Liu-Walter [12] and Chen-
Itoh-Shiki[2]. Furthermore the theorems are modi-
fied to a more useful case by using Zak transform
(see Janssen[10]). Summarily, we can estimate some
6, € (0,1], for any {6}, with sup;, |6| < &, there is a
{Sk(3)}x C Vi such that

=" f(k+8)Sk(s) for f € V. (4)
k

At the end, we calculate some examples and indicate
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that 8, can be near 1 when we calculate Haar scaling
function, and bigger than 1 of Paley-Wiener [ 12]’s when
we calculate B-Spline of order 1.

We now drop in MRA (Multi-Resolution Analysis)
which has been talked about above and can be found in
any books on wavelet or see Long-Chen[13] and Long-
Chen-Yuan[14]. A subspace sequence {V;, }, of L*(R)
is said to be an MRA if

1. Vi C Vina1, O Vi = {0}, U Vi, = L3(R),

2. Function f(t) € V,, if and only if f(2t) € V44,

3. There is a function (called scaling function) ¢(t) €
Vb such that {(t — k)}, forms a Riesz basis in Vj.

The terms Multi Resolution Approximation and Multi
Resolution Decomposition sometimes are also used.

MRA{V,,}, is said to be orthogonal (resp. or-
thonormal) if {¢(t — k)}, forms an orthogonal (resp.
orthonormal) Riesz basis in V. Then the scaling func-
tion o(t) is also said to be orthogonal (resp. orthonor-
mal). _

MRA pair {V,,,, Vin}in is called to be biorthogo-
nal if [, @(t — k)@(t — l)dt = 6x1, where ¢(t) € Vo and
@(t) € V, are scaling functions of MRA{V,,,},, and
{Vin}m respectively. In that case, scaling function pair
{p(t),@(t)} is also said to be biorthogonal.

The followings are some notations used in this pa-
per. For measurable set E C R, |E| denotes the measure
of E. For measurable function f(¢) and g(t) (¢t € R),
A>0,0€ [a,b] C [-1,1], we write

1= ([ lf(t)|2>1/2,

fllo = sup inf |f(%)],
1 £llo |E|—poR\E| (t)]

oo = inf su t)l,
||f|| |Bl=0 \Plf( )1

1 llzeey = ( / |f(t>|2)1/2,

12(E) = {f(t) [P < o},
= {{ak}k : Z lax| < oo}
{{ak}k Zlakl2 <0

e = { o sup|ak|<oo}
G ( (Zlfw-i—Zlm )

1/2
Gy glw (Z flw+ 2km)g(w + 2k:7r)> ,
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Zfs—n (t—mn),
=aneznw:Zszkﬂ.),
n k

Lip* = {f : |f(s) -

qust

f(t)| < Cfls - tl)\7 5,1 € R}v

Lipp, () = {f : [f(s + k) — f(5)| < C(s)|hl*,
h € [a,b]},
s+ h) = f(9)]
“f”Lip[*a’b](s) = sup P ;

for f(t) € Lip[)‘ayb](s).

Finally we introduce a function class and display
some basic properties of the class. Since the proofs of
the propositions are easy we omit them here.

Definition 1: f(t) € L)[a,b] (A > 0,0 € [0,1),0 €
[a,b] € [-1,1]) holds if there is a constant C; ¢ > 0
such that for any {éx}x C [a,b]

A
ST 1f(k+ 0+ 8) = f(k+0)| < Co (sgpm) .
k

)

We also write

Sulfk+o+8) -
(supy, [6x])*

flk +0)|

I f1lL2(a,b) = SUP
[a,b]

Proposition 1:

1. L)a,b]
A> N,

2‘ {f : Zk ”f”Llp? b](k+a) < 00} - Lé[a’b] -
ﬂkLipf;’b] (k+0).

= L}a,0] N L2[0,b], L)[a,b] C L) [a,b] if

3. If f(t) is differentiable on each k + o + [a,b] and
>k SUPk ooy [f/(B)] < 00, then f(t) € Li[a, b].

2. Irregular Sampling in Biorthogonal Wavelet Sub-
spaces

Firstly we estimate the deviation bound admitting to
recovering irregularly sampled signals in biorthogonal
wavelet subspaces then deduce that of general case by
some tricks (constructing a biorthogonal MRA from a
general MRA) in the next section.

Theorem 1: Suppose {¢(t),(t)} be a biorthogonal
scaling function pair of MRA pair {V,,V;;}n (with
Vo = Vo) satisfying

1. §(t) €

2. there is a constant C > 1 such that C~1 <
|<23*(w)] £Cae w.

L)[a,b],
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Then for any {6x}r C [—64,4,0,,5) N [a,b], there is a
sequence { Sy (s)}« biorthogonal to {g, (s, k+6x)}x in
(@)llo

Vb such that (4) holds if
/2
bp.5 < = .
(1|G¢<w>uoo||solugla,b]>

¢ (W)G,

We need two lemmas for the proof of the Theorem.
Lemma 1: Suppose {p(t),5(t)} be a biorthogonal
scaling function pair of MRA pair {V,,,V,,}sn (with
Vo = Vp) satisfying that there is a constant C > 1 such
that C~! < |3 (w)| < C,a.ew. Then {g, (s, k)}x is a
Riesz basis in V.

Proof C-! < |3 (w)| £ C,a.cw assure ¢ (w)
> B(k)et* e L2([0,27]), hence {@(k)}x € 2. Since
{w(s — k)}« is a Riesz basis in Vo, we can be sure that

B =3 ol —n)ak —n)

is well-defined and {q, s(s,k)}x C Vo. Let T be the
linear operator on Vp that takes >, cxp(t — k) into
>k CkGp,i(s, k) for any {ci}x € {% (the linearity can
be verified easily). Due to Parseval Identity we have

2
Z Ck‘]%ﬂz’(sv k)
k

(6)

2

1 .
= o || 2o crdo s, k) (7)
k
1 2
=5 ch Zcp e "™ G(k — n) 8)
1 2
=5 ijcm(w)é*(w)e—“w ©)
1 2
= 5 [[¢ @)Ge(w) D _exe™* (10)
k L2[0,27]
Hence
167 (@) G @)II3 S lexl?
k
2
Z CkGp,3(8, k)
k
<16 @) G @)IIZ D lexl?. (11)
k
On the other hand, from
2
> exp(s — k)
k
2
— [[#(w) Y cpethe (12)
k

1301
2
w)che“ik“’ , (13)
k L2[0,27]
we can deduce that
2
IGe@)IF > lexl* < cw(s - k)
k
< IIG ||Z|ck|2 (14)
It is well-known (see Chui[l], Meyer[15] and
Walter [17])

0 < [|Gp(@)llo = |Ge(w)]loe < o0. (15)

From (11), (14), (15), now we can conclude that the
inverse of T exists (denoted by T~1) and
C
|G (w)lloo < o0,
G (w)llo

i.e., {qp,¢(s, k) }k is a Riesz basis in V, due to {¢(t—k)}x
is.

1T, IT) < (16)

Lemma 2: Suppose the biorthogonal scaling function
pair {¢(t), p(t)} of MRA pair {V,,,, Vin}s (With Vy =
Vo) satisfy

L. @(t) € Lyla, b],

2. there is a constant C = 1 such that C!
|gz*(w)| LC aew.

<

Then for any {6}« C [a,b],
Flk+8) = /R F(&)aps(s,k +80)ds, f € V. (17)

Proof Due to {@(k
Lemma 1), we have

Y@k + 6 —n)?

SZ@ — )| + 1@k + 6 — n) — Gk —

322 |2 +
S2Z|s0 |2+0(Z|<pl+6k+z ()I)

_ &
<2310 |2+o(||sa||mab] squ,p)

Y}k € 12 (refer to the proof of

n)))?

Gl + bxq1) — 2(D]?)
(18)

(18) implies {¢(k + 6, — n)}, € I2. Therefore
Z p(s —n)p

is well defined and in V;. Suppose f(t) =

q‘pvsk-f-ék k+6k—n)

Ek Ck‘P
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k) € V3 = Vg, due to the continuity of Fourier transform
and Parseval Identity, we have

/ F(8)ap (s, k + 6i)ds

/ f(@)a

2 W) Z Cne—znw

n

Go.5(@, k + 6p)dw (19)

Z P(@)p(k + 0 — n)e~ " dw (20)
1 27 9 .
% Gwﬁ(w) che""“’
Y @k + 6 — nje ™ dw 1
2m )
_ = che—znw
Y n
> @k + 6 — njemdw (22)
=Y cad(k+ 8 —n) (23)
= f(k+ 6x), (24)
where (22) is due to G2 ;(w) = 1, a.e. w (biorthogo-

nality).

Proof of theorem If we can show that {g, s(s,k +
8k)}x is a Riesz basis in Vp, then there is a sequence
{Sk(s)}x biorthogonal to {gy,s(s, k+ 6k)}x in Vp, such
that

56 = S 5u05) [ F(5)aoa(s b +8)ds, f € Vo
k R

(25)

Following Lemma 2, it is easy to see (4) holds. How-
ever Lemma 1 tells us that {g, s(s, k)} is a Riesz basis
in V. So we only need to show {q, g(s,k + 6k)}x is
an equivalent basis of {g, 5(s, k)}r in Vp, ie., to find a
85,5 € (0,1], for any {6x}x C [—04,5, 0, 9,] N [a, b], there
is a 6 € [0,1) such that for any {ci}x € 12,

2
- Z qu%@(s, k)
k

2

<40

Z qu%‘;,(s, k)

k

(26)

In order to show (26), let

2
- ZCkQ¢,¢(S,k)

k
(Z ci(p(k+ b — n)
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2

— k- n))) p(s —n)

(ch (p(k+ 6 —m)

2

— @k - n))) Glw)e™m

1

|0 T (Teatoter =

2
n k

2

~ (k- n)))

<G

n
2

L2[0,27]

ch ok + 6k —n)

— @k —n))

= G @)l ZZ(w k+ 68k —n)

n

- @k - n))(w(l + & —n) — ¢l —n))cke

= Go@)liZ Y (Z(@(k + &k —n)

k,l n

— @k =) (@l + & —n) — (1 - n))) cker-

Take
bri= Y _(P(k+ & —n) — Gk —n))
(@l + 6 —n) — ¢l —n)). (27
Then bk,l = bl,k and
A £ [1Gp(@)l3 Y bracken (28)
k,l
< 1Gp(@)IZ Y bral(ck + cf)/2 29
k,l
1
= 5lIGe(w W)l (Z (E|bkl|)
+> (Z |bk,l|) c?) (30)
i k
=G @)IZ > (Z |bk,z|> & 31)
k l
<G W)Z% (supz |bk, 1|> > d. (32)
Meanwhile

sipz |bx 1|
l
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§31;PZZ|95(]€+51€ —n) - ¢(k —n)|
1 n

@+ 8 = n) = &l — n)|
<sup}_[p(a+ 8) = ¢(a)

S 1G(B + pik—a) — B(B), (33)
J¢]

where (33) is due to the index transform o = k —n and
B =1—n. From ¢(t) € L}[a,b], we know that

D le(a+6k) — @) > |38 + bp4k—a) — 3(B)|
a B8
< 181123 0.5 9P 1641 sup [6g+-al (34)

2
< (6180 - SNEL)

On the other hand
2

Z CkQLp,Lﬁ(sa k)

k
1 2
=5 > ekl p(w, k) (36)
T k
1 2
=5 D ckpw) Y e ™ @(k — n) 37
k n
1 2
=5 P(w) ché*(w)e_“‘w (38)
k
1 2
=5 é*(w)Gv(w) che_ik”’ (39)
k L2[0,27]
2
1 L * —tkw
2 |6 (@)Gp )15 | D exe™ (40)
k L2[0,27]
= [1¢" @)Gp@)IB D lexl*. “n
k

(26), (32), (33), (35), (41) imply that we only need

1Go @)% (635

Blliaas) < IF @G @IS
(42)

It is nothing but (6).

Remark 1

1. In the theorem we do not only obtain a L>—
bound for {64} but also remove the continuity and
decay constraints imposed on scaling functions by
Liu-Walter[12] and Chen-Itoh-Shiki[2].

2. {Sk(t)}x can be calculated as biorthogonal to
{qﬂa7¢(t7k)}k’

3. From Proposition 1, we know that L}[a,b] is a
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mind collection, which captures many important
cases and includes any local Lip-continuous com-
pactly supported scaling functions such as Haar,
Spline and Daubechies scaling functions.

4. |&()l| L[5y In (6) can be zero. Then Theorem |
holds for any irregular sampling with deviations
{6x}x C [a,b] (refer to Example 1 in Sect. 5).

5. When ¢(t) is an orthogonal scaling function,
G,(w) is constant a.e.w and @(t) = (t)/l»]%.
Then (6) becomes to be (|]<p||;§layb]||<,5*(w)||0)1/’\.

6. In the end we will calculate some examples to
reason that §, can be bigger than i of Paley-

1
Wiener [ 18]'s.

3. Irregular Sampling in General Wavelet Sub-
spaces

Now following the results for biorthogonal wavelet sub-
spaces, we can provide an algorithm for irregular sam-
pling in general wavelet subspaces.

Theorem 2: Suppose the scaling function ¢(t) of
MRA {V,, }. satisfy that

1. ¢(t) € L}[a, b].
2. {p(k)}k € 1.

3. There is a constant C = 1 such that C~! £
[p*(w)| £ C, ae. w.

Then there is a 6, € (0,1], for any {8x}r C [—6,,0,] N
[a, b], there is a {Si(t)}x C Vo such that (4) holds if

1/x
[6* @)/ Coe)lo 14 ()G o) o
b < ( FEEDIE ) @

In order to show the theorem, we need a lemma.

Lemma 3: Suppose the scaling function ¢(t) of
MRA{V,,}., satisfy that there is a constant C > 1 such
that C~! < |¢*(w)| £ C, a.e. w. Then {q,(t, k)}x is
a Riesz basis in Vy. Suppose {gx(t)}r be biorthogo-
nal to {q4.0(tak)}k' Then Qk(t) = (io(t - k)’ 60("‘)) -
P(w)/e* (W)G5 (w).

Proof Referring to Lemma 1, it is easy to show that
{ao(t,k)}x is a Riesz basis in Vj. Since q,(t, k) =
go,(t — k,0), and {go(t — k)}x is biorthogonal to
go(t — k,0), we have Gr(t) = Go(t — k) due to the
uniqueness of §i(t) as biorthogonal to {q,(t,k)}x
(see Daubechies[5], Daubechies-Grossman-Meyer[6],
Walter [17] or Young[18]). Suppose 1/¢*G%(w) =
Yecke™.  Since 1/5*Gi(w) € L™®[0,21] C
L?[0,27], we derive that {c;}r € [? holds. Since

IIﬁgi—(w)e‘““’H < O(Jlell), we can take the inverse
2
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Fourier transform of —2) =i in [2(R) as de-
(WG (W)

noted by [—2“__e~iw]V(s) (refer to the Introduc-

&* (w)GZ (w)
tion). The above arguments show that

@(w) e—ilw ' s) = c s .
[———-—cﬁ*(w)Gi(w) ] (s) Xk: k(s +k—1).

(44)
(44) implies [%e‘””]v(s) € V5. By the way,
since ’
p(w) ’
P(w
4o(5, k) [ = 6‘”“] (s)ds
/ ’ l@*(W)GZ‘;(w)
1 ~ A(w) tlw
= 57 J el
1 ~ % ~ —ikw Qb(w) lw
= — P (w)p(w)e —_————"dw
2 Jp 7 P e w)
L[ @) ke
= — —t—e ' “dw 45)
R G2 W) (
27 Z | N 2 .
1 g [Pw +2km)|° iy
=5 ; Gi(w) e dw (46)

(w)
(47) implies that {[————“’;z—(w)

e~%w]V(s)}y is biorthog-
onal to {g,(s, k)}r. Hence

Go(s — k) = :ﬂﬂ—e‘ik“]v s

do(s ) [cﬁ*(w)G?a(w) (s)

due to the uniqueness of {go(s — k)}x in V5. It deduces
that

¢(w)

TG @)

fio(“-’) =

Proof of theorem We have, for any {8x}x C [a,b],

Zlqv(k+6k»0) - q,(k,0)|
%
=2
k
— 5" ek — n)p(—n)
<Y le(—n) Y le(k + 6k —n) — w(k — n)
n k

= Z lp(—n)| Z lo(l + 8140) — (1))
< X:I«J

)e(—n)

RILZIHARL S |6k
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This implies g, (s,0) € L}[a, b] due to {p(n)}, € I*. On
the other hand since

45 (w,0) = @*(w)@*(w), (49)

we conclude C~2 < | (w,
ply theorem 1 to the biorthogonal pair {go(¢
i.e., we only need

/2
1 (w, 0)Gy
b, < (T 0G0 .
G @)oo, Ol e

Since

0)| < C?. Hence we can ap-
), 44(t,0)},

1/2
(ij (w + 2km)| ) &1))
’ 2\ 172
<Z\ (& + 2km) /3 (@) G )\)
k

(52)
= Gy(w)/ [Fr@)GE W) (53)
= 1/|¢"(w)|Gy(w), (54)
(50) becomes to be (43).

Remark 2

1. We do not only obtain a L>°— bound for {8}«
but can also remove the continuity and decay con-
straints imposed on scaling function ¢(t) by Liu-
Walter [ 12] and Chen-Itoh-Shiki[2], but the alter-
native weaker condition {¢(n)}, € I! should be
assumed.

2. The {Si(s)}s in Theorem 2 is biorthogonal to
{230(),00(.0) (8 F + 81c) -

3. 1go(t,0)[Laa,) In (43) can be 0. Then Theorem

2 holds for any irregular sampling with deviation
{5k}k - [a, b].

4. In orthogonal wavelet subspaces, G,(w) is a con-

stant, then (43) becomes &, < (Ilqwll(fz)gﬁ)llz[ ])1/’\.
! LO a,b

5. When @(t) is a cardinal scaling function (see Wal-
ter[17]), g, (t,0) = ¢(t), ¢*(w) =1 a.e.w. There-

. G, Nw Gy(w
fore (43) is 8, < (” |(|¢?|”LOA”[Q b]( )“0)1/'\

4. Modified Theorem for General Wavelet Sub-
spaces

If there is a constant C 2 1 such that C~! < |¢*(w)| £
C, a.e. w, we can apply the above algorithms to deal
with the irregularly sampled signals. Unfortunately
some scaling functions, even some important scaling
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functions, do not show the property. For example, take
the B-spline of order 2 scaling function

z? 6t —2t2 -3
Na(t) = 7X[0,1)(t) + ——Q—X[l,2)(t)
3 —t)?
+ ( 5 ) X(2,3)(t)s (55)

where x(;,;41)(t) is the characteristic function of the
interval [5,7 + 1) for j = 0,1,2. Then NQ*(LU) =
3e¢“(e™ +1) = 0 when w = 7. So we should find
a proper way to solve it. This is the main purpose of
the section.

Suppose the scaling function o(t) satisfy {p(n +
o)}n € I? for some o € [0,1). Then we can define
Zak-transform of ¢ (see Heil-Walnut[9], Janssen[10]
or Walter[17]) as
)= @lo +n)em™,

n

Zy(o,w w€ER. (56)

For the above B-spline of order 2 scaling function N3(t),
we find

1 ) )
ZN, (g,w) = (14 6e™ +e**)/8 + 0.

This implies that we can improve our above algorithms
by sampling at {oc+k} instead of {k} for some o € [0,1).
Firstly we modify the theorem and algorithm for irreg-
ular sampling in biorthogonal wavelet subspaces, then
deduce the modified results for general case. Since the
procedure and trick are similar to the previous sections
except that Z,(o,w) takes the role of p*(w), here we
will not show it in detail. Now we only display the
results as what follows.

Theorem 3: Let o(t) be the scaling function of MRA
{Vin}m and for some o € [0, 1), satisfy

1. {p(k +0)}i €l
2. ¢(t) € L)[a,b].

3. There is a constant C > 1 such that C71 <
|Zy(o,w)| £C, a.e w.

Then there is a 8,,, € (0,1] such that for any {8} C
[=66,0100,0] N [a,b], there exists a {S, x(t)}x C Vo such
that

F&) = f(k+ 6 +0)Sox(t) for f(t) € Vo(57)
k

holds if
§ 12(0:0)G )0 | %55 ” . (58)
i ||Q<p(3a a)nLé[a,b]
Remark 3.

1. The {S,k(s)}r in Theorem 3 is biorthogonal to
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{qqao( DR A ,a)(s k + o + 6k)}k, where g,, k(t) =
doo(t — k) is biorthogonal to g, (t,k + o).

2. Since Z,(0,
when o = 0.

w) = ¢*(w), (58) is the same to (43)

3. When ||q,(s,0)lz2[a,) = 0, (57) holds for any ir-
regular sampling with deviation {&; }x C [a, d).

5. Conclusion and Examples

1. Suppose {Vin} be a Multi Resolution Decompo-
sition of L2(R) with the scaling function ¢(t) sat-
isfying, for some o € [0, 1),

A {pk+0)}p €l

B. C7! £ |Z,(o,w)] £ C ae. w. for
some C = 1.

C. p(t) € L)[a,b], (A > 0,0 € [a,b] C
[-1,1]).

We can assure that there is a é,, € (0,1], for
any irregularly sampled signals {f(k + 6x)}+ with
supy, |6x| < 6,0, the original signal can be recon-
structed via

=Y flk+0+6)Sox(s), f € Vo, (59
k

if

Z(0,w) H
G, (w)
llge(s, U)HL*[a b]

12 (o, w)Go(@)llo

bop <

(60)

2. When |lgy(s,0)l|Lrjasy = 0, (59) holds for any
{5k}k - [a, b]

3. If the sampling step is not at 1, or say T =
2™  we can regard V,, as V5. All the theo-
rems and algorithms can be modified to V,, easily
by using Hilbert Reproducing Kernel q( )(s t) =
2™ Y, (2™s — n)B(2™t — n).

4. In fact we have not used the dilation equation,
therefore all the theorems are correct only under
the hypothesis that {¢(t — n)}, is a Riesz basis of
Vo instead of that ¢(t) is a scaling function, i.e.,
only assume 0 < [|G,(w)l|o £ [|Gy(w)]|eo < 0.

Now we apply the algorithm to calculate some ex-
amples.

Example 1. (see Walter[17]) Haar scaling function
©(t) = Xjo,1)(t). Obviously it satisfies A. For any o €
[0,1), Z,(o,w) =1 % 0. It satisfies C with o € [0,1),
A=1, [a’ b] = [_Ual - J)' Since “‘p“L},(—a,l—a) =0,
from Conclusion 2, we know that (57) holds for any
{6k}k C [0',1 — ).
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Example 2. (see Daubechies[4]) Daubechies scaling
function LpN( ) (N =1,2,3,--) is defined as ¢y (w) =
[° H2 ™w , where H(w) = (22—=)¥My(w) and
Mpy(w) = -1 C’}\’,_Hn(mn2 2)". It has been shown
that pn(t) is orthonormal, supppy C [0,2N — 1] and
on(t) € Lipmin{eN.1) 'y — 0.18. Therefore ¢n(t) €
rimineNAD 11 1) for any o € [0, 1) due to Proposition
1. If Z,, (o,w) £ 0 for some o € [0,1), then

inf,, [Z,y (0, w)|
6'7#/91\1 <
2N||(pN ||Lip(min{;4N,1})

)U(min{uN»l})

(61)

Example 3. (see Meyer[15]) Meyer scaling function
is defined as

lw| < 27/3,

5320

2n/3 £ |w| £ 47/3,
otherwise,

where v(w) € C°, v(w) = 1 when w 2 1, v(w) =
0 when w £ 0 ndv()+v(1—w):1. It is
shown that () is orthonormal and r-regular. therefore

>0 SUP[ i 1) [#(t)] converges, hence o(t) € L}[—1,1]
for any o € [0,1) due to Proposition 1. Since

inf |$* (w)]
— ?’_ +2
cos | 5V | 3

=min<{ 1, inf
SrLwg 3t

o5 (-9

=1,

we obtain

b, < (Z sup |<p'(t)|) . (62)

n [+l

The following example indicates that §, can be
bigger than 1 of Paley-Wiener’s for some wavelet sub-

4
spaces.

Example 4. (see Chui[1]) the B-spline of order 1 scal-
ing function N1(t) = txp,1) + (2 — t)x[1,2)- Obviously
N1(t) satisfies constraint A and C (witho =0, A =1).
Since Ni (w) = 1, Gn (W) = (3 + 2cos?(¥))Y2,
Yk Ni(t + k)Nq(k) = Ny(t), therefore (60) becomes

1,2 5w 12
3739 (5)
0
1
(3 +2cos? (3))"?

b, <

| N1 (63)

I|L1[a. b)”

0
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Since [|[Millzz-1y = 3, IIMllzg-19 = 2 and
ML) = 2. therefore 6, < ﬁ When 6L <0

for all k or & = 0 for all k, then 6, < \/- Obviously

1
2\/§
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