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Wavelet Basis Packets 
and Wavelet Frame Packets 

Ruilin Long* and Wen Chen 

ABSTRACT. This article obtains the nonseparable version of wavelet packets on ~a and gener- 
alizes the "'unstability" result of nonorthogonal wavelet packets in Cohen-Daubechies to higher 
dimensional cases. 

1 .  I n t r o d u c t i o n  

The wavelet packets introduced by R. Coifman, Y. Meyer, and M. V. Wickerhauser played an 
important role in the applications of  wavelet analysis as shown, for example, in [CMW1, CMW2]. 
But the theory itself is worthy of  further study. Some developments in the wavelet packets theory 
should be mentioned, such as the tensor product version (due to [CM]) and the non-tensor-product 
version (due to [S]) of  wavelet packets on 11~ d, the nonorthogonal version of  wavelet packets on ll~ ~ 
(due to [CL]), and the wavelet frame packets on R t (due to [C]). The higher dimensional version 
of wavelet packets obtained in [S] is very close to the expected one. But it seems that there is a 
shortcoming in Shen's result; specifically, the implied frequency index is denoted by the point ~ in Za+, 
which makes the correspondence between the index pair ($, j )  and the dyadic interval I~, j less natural 
than that in the one-dimensional cases. One task of  this article is to set up a more natural framework 
for the wavelet packets in the higher dimensional case. Another task of  this article is to study the lack 
of stability of  nonorthogonal wavelet packets. As shown in [CD], starting from one-dimensional 
biorthogonal multiresolution analysis (MRA), a stable wavelet packet can hardly be constructed 
unless the matrix used in the splitting trick is unitary. We want to generalize the result to/~d. 

The notation and symbols used in this article are standard in wavelet theory. We list them as 
follows. For more detail see [LC]. 

An MRA is a nondecreasing family {Vj } ~  of  closed subspaces of  L2(~, d) satisfying: 

i. N Vj = {0}, U Vj = L2(~a);  

ii. f ( x ) ~  Vj ~ ,~ f ( 2 x ) ~  Vj+I,Vj; 

iii. 3~o(x) ~ Vo such that {~o(x - k)}k is a Riesz basis of  V0. 

~o(x) is called the scaling function of  MRA {Vj}~_~, and ~o(x) satisfies the refinement equation 
3{dk} ~ l 2 such that 

qg(x) = 2 d ~ dk~o(2x -- k) a.e. x ~ ~a.  
k 
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The function 

mo(~) = Z dke-ik'~ • L2(Ta) 
k 

is called the filter function of {Vj}~_oo. When the vector (m0(~ + vrC))v (v • Ea = {all vertices of 
the cube [0, 1]a}) can be extended to a nonsingular matrix M(~) = (mu(~ + vzr))u,~(IZ, v • Ea) 
for a.e. ~, with all m~,(~) in L°°(Ta), we can define the wavelet functions {~l,u(x)}u~e d by 

~u(2~) = mu(~)~(~), lz • Ea (~o(x) = ~0(x)),  

where the Fourier transform is defined by 

f (~)  = f~,~ f(x)e-iX~dx V f  • LI (R  a) (q LZ(~d). 

When the MRA {Vy}~  and {Vj}_~ satisfy 

<~o, (o(. - ~)> = ~ ~o(x)-~(x - ~) dx = 6o,~ , 

we say that {Vy, 17')}_~oo is a bior*.hogonal MRA (pair) (in the case 9 = 9, {Vj}~-oo is called an 
orthogonal MRA). Under some mild conditions, the following results have been established in [LC]. 

{ V), 17') } is biorthogonal if and only if M (~) m-ZT(~) = I for a.e. ~; when { Vj, 17'j } is biorthogonal and 
2A 

M(~),  3t(s  ~) consist of entries in the class C(Ta), then {*u.j.k, ]t~,,j.k }OPu,j.k (x) = 22 lpu ( 2 J x - k ) ) ,  
j • Z, k • Z a, is biorthogonal in the sense 

~ 

(~u.J,~, ~u',j'.k') = 3u.u'6j.i'6k.k'. 

For f ,  g • LZ(~d),  the bracket product of f and ~ is defined by 

I f '  g](~) = Z f ( ~  + 2zrot)~(~ + 2zrot), a • Z 't. 
O t  

A sequence {ej} in a Hilbert space H is called a Riesz basis if H = SP({ej}) ("SP" means the 
closed, linear span) and 

Alllcj}ll~ <_ y']  cjej <_ BIl{cj}ll~ ¥{cj} • 12(Z) 
--7 

is called a frame if 

AIIfl[ 2 -< ~ I(f, ej)[ 2 _< BIIfll 2 'Of • H. 
J 

Notice that a Riesz basis {ej} is always a frame, and an independent frame is also a Riesz basis. 
When {ej} is a Riesz basis and a frame, then the Riesz basis bounds and the frame bounds are the 
same. 

In what follows, we do not always start from an orthogonal MRA { Vj } or a biorthogonal MRA 

{Vj, V j}, so the function 9 or {~Pu} we treat need not be associated with some MRA {Vj}. 
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Proof. 

We have 

2. Orthogonal or Biorthogonal Wavelet Basis Packets 
and Wavelet Frame Packets 

Just as Daubechies [D] indicated, the main tool in obtaining wavelet packets is the so-called 
splitting trick, which is a well-known technique in constructing wavelet bases. Since what we need 
is more general, we still state it as a lemma. The proof of the lemma will follow [LC]. 

Lemma 2.1. 
Let ~o(x) E L2(R d) be such that {2~o(2x - k)}k is orthonormal. Denote V = S-ff({2~ ~o(2x - 

k)}k). Let {u~,,k}k 6 12(Zd), tt ~ Ea. Define 

~pu(x) = 2 d Z uu,k~o(2x - k), (2.1) 
k 

mu(~) = Z u t z , k e - i k ~ ,  ~ E Td(= [0, 2Zr) a = [--zr, re)d). (2.2) 
k 

Then {~lz(x -k)}u.k  is orthonormal if and only if M(~) = (mu(~ -4- vzr)) (tz, v ~ Ea) is a unitary 
matrix, for a.e. ~ E T d. Furthermore, {~t,(x - k)}u,k is an orthonormal basis of V whenever it is 
orthonormal. 

We can get ~ kb(~ + 2zrot)l 2 = 1 a.e. s e by the orthonormality of {2~o(2x - k)}k. 

Therefore 

( ~ , ,  ~ u , ( -  - k ) )  

- 

= . 7 1 . ( x ) ~ . , ( x  - k)  d x  

1 d 2 

1 a 
: (2-~) f a  v ~  mu ( ~  +vzr)-m--'~u'(~-}-VTr) eik''d'" 

(2.3) 

(2.4) 

From (2.4) we see that {~u (x - k)}~z,k is orthonormal if and only if M(~) is unitary for a.e. ~. Now 
we assume that {~u(x - k)}u,, is orthonormal and want to prove 

Z ( f '  2 ~ 0 ( 2 . - k ) ) 2 ~  ~o(2x - k) 

*~z~ (2.5) 
= ~ Z ( f , ~ g ( - - I ) ) ~ ( x - l )  V fEL2(~a) .  

l, tEEd IEX d 

Once (2.5) is proved, 2~o(2x - k) can be expanded as a linear combination of  {~pu (x - l)}u,t, and 
hence {~pu(x - k)}u,k is an orthonormal basis of  V. 
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Now we show (2.5). Since each side of (2.5) is L2-convergent, in order to prove (2.5) it is 
enough to prove (2.5) in the weak sense, that is, 

Z ( f ,  2~o(2 • -k))(g, 2~0(2. -k ) ) -  
k 

= E E (f' ~"("- l))(g' ~Pu("-I>)- 
,~ l 

V f, g E L 2. 
(2.6) 

Making use of Plancherel theorem and Parseval formula we have 

I = ~ E (  f, 7*~,("-l))(g, ~u(. -- l)}- 
/.~ l 

" E ~(e + Dr,6)~u(~e + 2Jr,6)eU~d~ a 

- 

= ~ -  E f ( ~  +21rot)}u( ~ +2~rot)~-~(~ +2Jr,6)}u( ~ +2~r'6)d~. 
a ~ B 

(2.7) 

Since from (2.1), (2.2) we have 

Iz ~ Ea, (2.8) 

substituting v + 2or' for a and v' + 2fl' for ,6 in (2.7) and noticing the unitary property of M(~) 
yields 

1 d 

= ~ E / ( ~  + 27rv + 4rcot')~(~ + 2try + 4zt'fl') 

• ~ (-~ + vn" + 2n'ot')~b (-~ + vn" + 2rr'6')d~ 
(2.9) 

2 
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On the other hand, we have 

Z (  f ,  2~¢p(2. - k ) ) (g ,  2~o(2 • - k ) ) -  
k 

-j7 ~ ~ f(~)-~ ( ~ )  eik~ d~ (~ag,(~)-~ ( ~ ) e  ik~ d~) -  

. ( f2Te~g(~+47r f l ) -~ (~+4Jr f l ) e ' k~d~) -  

(2.10) 

Combining (2.9) and (2.10), (2.7) follows. [ ]  

R e m a r k .  The function ~o (x) in Lemma 2.1 is not necessarily the scaling function of a MRA, 
and the matrix M(~) used in the splitting trick has no relationship to ~o(x) either. Hence we get more 
freedom in performing the splitting trick in what follows. [ ]  

Lemma 2. I has a biorthogonal version as follows. 

Lemma 2.2. 
Let ~o (and (o) ~ L2(~ d) be such that {tp(x - k)}k (and {ff(x - k)}k) is a Riesz basis of the 

closed zd-translation invariant subspaces Vo (and ~'o) generated by it and {tp(x - k), ~3(x - k)}k 
be biorthogonal. Let V = 2Vo (and Q = 2V0). Suppose that mu(~), rfiu(~) E L~(Td)for every 
Ix E Ed and 

mu(~) = Zuu.ke-ik~ and 7nu(~) = Z ~ , k e  -ik~, tx ~ Ed. (2.11) 
k k 

Define 

¢/.(x) =2dy-~uu,k~O(2x - k )  and ~.(x) =2aZFtu,k~(2x - k ) ,  IX ~ Ed. (2.12) 
k k 

Then { ~u (x - k), ~u (x - k) }u,k is biorthogonal if and only if the matrices M (~ ) = (m ~ (~ + vzr) ) u,~ 
and M(~) = (rh~(~ + vzr))u.~ satisfy 

",-~-t 
M(~)M (~)= I a.e.~ E T d, (2.13) 

.--~-t 

where the superscript t means the transpose (hence M = ,(4* with • denoting the conjugate). 
Furthermore, we have the direct sum 

V = ~ )  ~--P({¢.(x - k)lk), I? = G S--p([~u(x - k) l t )  (2.14) 

whenever {~Pu (x - k), ~ (x - k) }u,k is biorthogonal. 
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The proof is almost the same and can be omitted. 
Lemma 2.1 can be used to yield a general result on the decomposition of  Hilbert spaces, which 

is due to Coifman-Meyer-Wickerhauser [CMW2]. 

Proposition 2.3. 
Let d ~ Z+ and {e~} be any orthonormal basis of a Hilbert space H. Assume that {uu,~} ~ 

12(Zd),/z ~ Ed, and define 

m u ( ~ ) = ~ u ~ , ~ e  -ik'~ and f ~ , ~ = 2 ~ u u , 2 k - l e , ,  IZ~Ed,  k , l ~ Z  d. (2.15) 
k k 

Then {fu,k}u,~ is orthonormal if and only if the matrix M(~) = (m~(~ -4- vrr))u.~ is unitary for a.e. 
~. Furthermore { f~,~ }u.k is an orthonormal basis of H whenever { fu.k }~,~ is orthonormal. 

. . p d 

P r o o f .  Fred a ~p(x) ~ L2(~  a) such that {~o(x - k)}k Is orthonormal and define V = SP({2-~ tp 
d 

(2x -- k)}k). Make the correspondence between ek and 2-~0(2x - k). Making use of  (2.1), we define 
{ ~ } .  Then {f~,~} and {~p~(x - k)} have a one-to-one correspondence. Proposition 2.3 is now 
deduced by Lemma 2.1. [ ]  

We now turn to the construction of  orthogonal wavelet packets. Let ~0(~ L2(I~d)) and M(~) = 
(m,(~ + vrr))~,~ (2zrZa-periodic bounded measurable functions matrix) be given. Assume that 

{2~o(2x - k)}k is an orthonormal basis of  V = S-P({2~0(2x - k)}~). 
Applying the splitting trick to V, we get 

~pu(x)=2a~U~,k~O(2x--k), ~z(~) = m~ (~ )  ~ (~ )  . (2.16) 
k 

Once again we get 

lpul,u~ (X ) = ( lp~2 ) U, (X ) = 2 d ~ U Ul,k ~U: (2X -- k ), 
k 

(2.17) 

Continuing in this way, for j ~ Z+, we can define ~p,~,...,,j (x). 
Now we simplify the index. Consider the 2 '/-adic expansion of  positive integers. For n ~ Z+, 

we have unique/z = (/zl . . . . .  /x j)  such that 

n /zl + 2d/z2 + + 2~J-~)alzj . . . .  . . . . .  , j = 0 ,  1 ,2 ,3 ,  

with/z i running through 0, 1,2 . . . . .  2 d -  1 ¥i. When we order the elements of  Ed as 0, 1, 2 . . . . .  2 d -  1 
in any way, we can write lzi ~ Ed Vi. 

Let Aj  be the set of  these j - tuple /z  = (/zl . . . . .  /z j) with length j ,  and denote A = U j ~ l  A i. 
Notice that when i < j ,  Ai can be imbedded in Aj  naturally, by considering (/zl . . . . .  /zi) as 
(/zl . . . . .  /zi, 0 . . . . .  0). Now, we rewrite (2.16) and (2.17). For /z l  ~ [0, 1 . . . . .  2 d - 1] = Ed, 
write w ~  (x) = ~,~ (x). For/zl , /x2 ~ Ed, since 2a/x2 + / z l  is correspondent to (/zl,/z2), we write 
w2~:+~, (x) = v/~,,.~2 (x). 
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As such, we have 

W~. I (X ) = 2 d Z u u , , k ~ ( 2 x  - k), 
k 

//32atZz+/Z I (X) m_ 2 a Z uu,,k w~,2 (2x - k). 
k 

I n  general, w h e n  n = / / , 2  + " ' "  "1- 2(J-2)dld'j, l e t  tOn(X) = ~u2,...,uj(X). S i n c e  2dn + 11,1 = 1.1,1 -~- 
2 d / z 2  -k- • • - -k- 2(J-1)dl, z j ,  w e  c a n  w r i t e  

w2dn+u, (x) = ~Pu~...u~fx)" (2.18) 

Hence we can rewrite the repeated splitting as 

1.1)2dn+t~ 1 (X ) = 2 a Z u u"k wn (2x - k), 
k 

n 6 Z+ , / z t  E Ea. (2.19) 

Now we can formulate the first and the most fundamental result on wavelet packets. 

T h e o r e m  2.4. 
Suppose that ~o(x ) is a scaling function of  an orthogonal MRA { Vj }~o of L 2(]l~ d) and 27r Z d- 

periodic measurable functions matrix M(~)  = (mu(¢ q- vzr))u,v is unitary for  a.e. ~. Then 
{wn(x)}nez+ defined in (2.19) makes {w , (x  - k)}n,k an orthonormal basis of L 2(]~d). 

P r o o f ,  We use the notation wn(x)  and w~(x) ,  when n = (/zl . . . . .  /zj)  = # ,  to denote the 
functions defined in (2.19). We want to prove that {wu(x - k)} (k ~ Z d,/1. e A j )  or {w~(x -- k)} 
(k ~ Z d, 0 < n < 2 ja) is an orthonormal basis of  Vj ( j  > 1) by induction. 

By Lemma 2.1, when j = 1 we know that {w~,(x - k)} (/z ~ Ed, k ~ Z d) is an orthonormal 
basis of  VI. Suppose that we have proved the assertion for j ,  that is to say {w~ (x - k) } (0 < n < 2 jd, 
k ~ Z d) is an orthonormal basis of  Vj ( j  > 1). Since Vj+~ = { f (2x)  : f ~ Vj}, {2~wn(2x - k)} 
(0 < n < 2 jd, k ~ Z d) consists of  an orthonormal basis of Vj+l. Now the formula (2.19) and 
Lemma 2.1 show that 

{w2dn+u,(x -- k)}, O < n < 2 J d ;  /zl = 0 ,  1,2 . . . . .  2 a - I "  k E Z  d, 

is an orthonormal basis of  Vj+l too. Since 

{2tin q- Izl : 0 < n < 2 jd , /z l  = 0, 1 . . . . .  2 d -- 1} = {n : 0 < n < 2(J+l)d}, (2.20) 

we conclude that 

{wn(x - k) : 0 < n < 2 ( j+l)d,  k E Z a} = {Wu(X - k) : / z  E A j+l ,  k ~ Z a} 

forms an orthonormal basis of  Vj+l. Since [..J vj  = L2(~d),  we conclude that {wn(x - k)} (k 
Z d, n ~ Z+) is an orthonormal basis of  L2(]l~d). [ ]  

Now we introduce the wavelet packets as in the one-dimensional case. 

D e f i n i t i o n  2.5. The family {2~wn(2Jx  - k)}, n, j ~ Z+, k ~ Z d, is called a wavelet 

basis packet, where n is called the oscillation parameter, j the scaling parameter, and k the location 
parameter. [ ]  
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The main results on wavelet packets is to characterize the set S of  index pair (n, j ) ,  which 

makes {2~wn(2Jx - k)}, (n, j )  ~ S, k ~ Z a, being an orthonormal basis of  L2(~d). To the index 
pair (n, j )  e Z+ x Z+ we correspond the dyadic interval 

l~,j = {1 E Z+ : 2Jan < l < 2Jd(n + 1)}. (2.21) 

Then Theorem 2.4 and Lemma 2.1 tell us that the following orthogonal direct sum decomposition 
holds 

L2(~ d) = ~ Un; 2U. = ~ U2~n+u,, /zl = O, 1 . . . . .  2 d - I. (2.23) 
n /~.l 

We now claim 

2 j (-In = ~ Ut, 2Jan < l < 2Ja(n + 1), n, j ,  l E Z+. (2.24) 
l 

It can be proved by induction. The case j = 1 follows from (2.23). Now deduce the j + 1 case from 
the j case. In fact, we have 

2J+lUn = 2(2JOn) = ~ 2 U I  = ~ U 2 d l 3 v l z ,  = ~ U m ,  
l l tzl m 

where m ~ ln,j+l can be seen as follows. The set {2dl + #1 

l E In,j, IZl E E d, m E In,j+1, 

(2.25) 

: 2Jdn < l < 2Jd(n q- 1), /Zl = 

O, 1,2 . . . . .  2 d - 1} consists of  2 (j+l)d ( =  2d(2Jd(n + 1) --  2Jdn)) integers, which are between 
2~J+°an and 2~J+Od(n + 1) -- 1 (=  2d(2Jd(n + 1) -- 1) + 2 d -- 1) and different from each other. This 
set is nothing but In,j+l; (2.24) is thus proved. Finally we get 

• sP(12  @ 
(n.j)~S (n,j)ES lEln.j 

(2.26) 

Therefore, the left-hand side of  (2.26) is an orthogonal direct sum decomposition of  L2(~ d) if and 
only if U(n,j)~s In,j is a partition of  g+ .  [ ]  

R e m a r k .  Let I E Z+, S = {(n, j )  : (n, j )  E ([0, 2 td) X {0}) U ([2/d, 2 (/+l)d) × Z+)} .  Then 
{l,,j}((n, j )  ~ S) forms a disjoint covering of  Z+. In fact, we have 

U In,j = [2 q+j)a, 2 (l+j+l)d) N Z+, U In,j = Z+. 
2ta <n <2 ct+ l)a (n, j)~ S 

j d  
Hence {2 ,- wn(2Sx - k) : (n, j )  ~ S, k ~ Z d} is an orthonormal basis of  L2(~;~d). In particular, 

when I = 0, this is exactly {wo(x -- k), 2~wn(2Jx - k), 1 < n < 2 a - 1, j = 0, I . . . . .  k ~ zd}, 

The main result can be formulated in the same way as in the one-dimensional case. 

Theorem 2.6. ia 
Suppose that the conditions in Theorem 2.4 are satisfied and S C Z+ x Z+. Then {2 2 wn (2Jx - 

k) }~n,j)~ S,k~Z d is an orthonormal basis of L 2 (~d) if and only if { In,j }~n,j)e s is a disjoint covering 
of g+ .  

P r o o f .  Let 

Un = S--P({wn (x - k)}k), 2Un = S-P({2~ w,(2x - k)}k). (2.22) 
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which, when m0(~) is the filter function of  an MRA, is the known wavelet basis. Another typical 
example of  wavelet basis packets is that corresponding to S = Z+ x {0}, that is, 

{w~(x - k)}, n E Z + , k  E Z a. 

The biorthogonal case is similar to the orthogonal case, modulo the stability. That is to say, 
if we want to get stable wavelet basis packets, in general, we can perform splitting operations only 
finitely many times. We will discuss this problem in detail in the next section. Here we give only 
some parallel results in the biorthogonal case. [ ]  

Theorem 2.7. 
Let {Vj, f/j} be a biorthogonal MRA; {mu}, {thu} be defined by (2.11) satisfying (2.13); and 

{w~}, {tb~} be definedby (2.19). Then for j E Z+, {wu(x - k)} and {tb~(x - k)} (/z E A j, k E Z a) 

are Riesz basis of Vj and of f/j, respectively, and 

(wu(. - k), tb~(- - l) = ~u,~Sk,l, tz, v E A j, k, l E Z a. (2.27) 

The proof is almost unchanged, and can be omitted. 
Now we discuss what kind of results we can get by performing the splitting trick to wavelet 

frames. Chen [C] studied the problem in the one-dimensional case and obtained Lemma 2.8 and 
some similar results in following Theorems 2.9 and 2.10 with a different, less simple, and less natural 
formulation. 

Let qb --__ {~o (r) } be a family consisting ofn  functions in L 2 (IR a) and S(qb) = S-P({@(r) (X --k) }r,k ). 
Let P(~) = (p~,~.(se))r.s be an n x n matrix with 27rZd-periodic bounded measurable functions as 
entries. 

Define 

~(r)(~) ~- ~ pr, s(~)(~(s)(~), 
s=l 

r = 1 . . . . .  n. (2.28) 

Suppose that {~o(r)(x - k)} is a frame of  S(~)  with the upper bound B and the lower bound A, we 
want to discuss whether {~p(~)(x - k)}r.k is still a frame of S(q~), and what is the upper bound and 
the lower bound of {~(r)(x - k)}r,k when it is the case. 

L e m m a  2.8. 
Assume that 

Ci l  < P*(~)P(~) < C21 a.e. ~ ~ T a, (2.29) 

where I denotes the identity matrix. Then for all f E L2(IR u) we have 

Cl Z ~ ](f' q)(r)(._ k))12 _~< Z Z I(f, ~r(r)(" -- k))l 2 -~< C2 Z ~  [(f' ~0(r,(" - k))12" 
r k r k r k 

(2.30) 

On the contrary, when {~o (r) (x - k ) } r , k  is a Riesz basis of S(~),  then (2.29) is necessary for (2.30). 

For the proof we refer to [C]. 
Now we apply the splitting trick to wavelet frames. Let ~p(x) ~ L2(IRd) be such that {~o(x --k)}k 

is a frame of the space V = SP({~0(x - k)}~), and let M(~) = (mu(~ + vrr))u,, be a nonsingular 
matrix for a.e. ~ where 

m~(~) = Z Utz,ke-i~:'~ E L~(Td) ,  lZ ~ Ed. 
k 
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Define lpu(x) as in (2.12), Ix 6 Ea. Let 

d 
~ov(x) = 2+:~o(2x - v), 

Then ~pu(x) has the equivalent expression 

ff/u(x) = E vu,v,l~O~(X -- l), 
v,l 

where 

The matrices 

v E Ect. 

~,bu(~) = ~ pu,.(~)¢.(~), 
tJ 

Ix= Ea, (2.31) 

P(~) = (Pu.v(~))u.v and M(~) = (mu( ~ + vrr))u,v 

are often used in the construction of wavelet bases. They obey the relationship (see [LC]) 

M ( ~ )  = P(~)2-~e ( ~ ) ,  e(~) = @v'.~(~))v'.~, E~',~(~) = e -/p'(~+~'° • (2.34) 

Since 2-~e(~) is unitary for every ~, from 

• ~ ,~ 
we know that M (g)M(g) and P*(~)P(~) are similar matrices and 

C t I < M * ( ~ ) M ( ~ ) < C 2 1 . ' .  , . C , I < P * ( , ) P ( ~ ) < C 2 1  ¥~. (2.35) 

Let A(~) and Z(s e) be the maximal and minimal eigenvalues of the positive definite matrix M*(~) 
and M(~). respectively; and let 3, = infq k(~) and A = sup~ A(~). When 0 < L < A < (~z, we 
know from Lemma 2.8 that 

~ . E l ( f , Z ~ q ) ( 2 . - k ) ) l  2 < E E l ( L O u t ( . - k ) ) l  z < A E l ( f ,  2~o(2 . -k ) ) l  2, (2.36) 
k U l  k k 

where we have used the fact that 

E I(f, gOv(. - l))l 2 = E I{f, 2~o(2 • -k))l  z. (2.37) 
v,l k 

Performing the splitting trick to each Ou,, we get 

k E l ( f , Z ~ - O u , ( 2 . - k ) ) l  2 < E E l ( f ,  ~pu,.u,(. - k))l 2 < A E I(f, 2~pu,(2- -k))l  2. (2.38) 
k /22 k k 

d 
v~,.vj = 2~Uu.k, w h e n k = 2 1 + v ,  I ~ Z  '~, IX, v ~ E a ;  (2.32) 

PU,V(~) • E 1)u'v'le-il~' IX, v ~ Ea. (2.33) 
l 
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From (2.37), (2.38), and an induction argument, we see that for every f 6 L2(N d) and j E Z+, we 
have 

)'J~'~- I(f'2~°(2j'-k))[2< Z Z ](f' 7:"',-..,", ('-k))[2 -< AJZ](f'2~°(2J'-k))]2" 
k /zl ,...,/z: k k 

(2.39) 
The arguments can be formulated to a theorem. 

Theorem 2.9. 
Let ~0(x) E t 2 ( ] ~ d ) ,  V 0 -~- S--fi({qg(x - k)}k), and {~0(x - k)}k be a frame of Vo with the upper 

bound B and the lower bound A. Assume that M ( ~ ) = ( m u ( ~ + v zr))u, v is a matrix of 2zr Z a -periodic 
bounded measurablefunctions satisfying 0 < ), < A < c~. Let {wu(x) } = {w,(x)} be defined by 
(2.19). Then for all j E Z+, {wu(x - k)},/z E A j, k E Z a, is a frame of Vj = { f  : f ( 2  - j )  E V0} 
with the upper bound A j B and the lower bound )~J A. 

Proo f .  Since {qg(x - k)}k is a frame of V0 with the upper bound B and the lower bound A, 

we know that {2 ~ ~o(2Jx - k)}~ is a frame of Vj with the same bounds for all j .  By (2.39) and (2.18), 
we have 

XJAIIfII~ <- ~ ~ I(f, w~(. - k))l 2 < AJBIIfll 2 Y f  E Vj. [] (2.40) 
NEAj k 

When M(s e) is unitary for a.e. ~, the splitting trick can be operated for infinitely many times, 
as shown by the following theorem. 

Theorem 2.10. 
Let ~o E L2(~ a) be such that {~o(x - k)}k is a frame of the space Vo generated by itself with 

the bounds A and B, and let Vo C 2Vo. Assume that M(~) is unitary for a.e. ~, then {w,(x - k)}, 
n E Z+, k ~ Z d, is a frame of(L2(~2)) v with the same bound A and B, where 

= U 2j supp ~b. (2.41) 
J 

More generally, let S = {(n, j)} E Z+ × Z+} be such that U(,,j)~s In,j is a partition of  Z+; then 

{2~ w,(2J x - k)}(,,,j)~s,k~z~ is a frame of ( L Z ( g2) ) v with the same bounds A and B. 

P r o o f .  Since ~. = A = 1, (2.39) becomes an equality and (2.40) becomes 

2 # - 1 

Allf[[~ _< Z ~ [(f '  w,( .  - k))l z < Bllfl l  2 ' ¢ f  E v:.  (2.42) 
n = 0  k 

By a result in [BDR], that is, ( ~ j  Vj)-  = (L2(f2)) v, we know that for any f 6 (L2(f2)) v there 
exists a sequence {fj} such that f )  ~ Vj and limj--,o~ f j  = f .  We fix j at first; when j < J ,  we 
have 

2 # -  1 

t<s,, w . ( -  k)>i _< elrs, lt]. 
n=O k 

Letting J --+ oo at first and then j ~ oo, we get 

oo 

~--~'ff~ I(f,  w n ( . - k ) ) l  a < Bllfll~ v f  E (L2(f2)) v. 
n = 0  k 
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Meanwhile we have 

i ). ) Ilf:ll2 < A -" Z l ( f j -  f,  w n ( . - k ) ) [  2 + A - '  Z l ( f , w ~ ( . - k ) ) l  2 
\ n = 0  k \ n=0  k 

I 

<A-JB½I[fj - f l l2  + A-½ I ( f ,  W n ( ' - k ) ) l  2 • 
n=0  k 

Letting J --+ oo (we get finally) 

o o  

AtlflI2 2 _< ~ ~ l(f, w.(-- k))I 2. 
0 k 

The first assertion of  the theorem has been proved. 
Now we consider the general case. Assume that S = {(n, j )  : U ( n , j ) ~ s  In , j  is a partition of 

Z+}. Making use of  Lemma 2.2 and the argument in the proof of  Theorem 2.6, we know that the 
z~ 

space generated by {2 2 w,(2Jx - k)} is 2)Un = (~t Ut, l ~ l,,j, where (~) denotes the direct sum 
(not necessarily orthogonal). In addition, owing to the equality (2.39) (in the case ~. = A, (2.39) 
becomes an equality) we have 

2 d -  1 

Z ~ l(f, w2.+., (-- k))I 2 = ~ l(f, 2 -~ w.(2.-k))l 2, 
/z l=0 k k 

Z Z l(f' w"(2""+",)+~'2(" - k))i2 = ~ l(f'2~wn(22"-k))]2" 
/zl ,/z2 k k 

For j e Z+,  the subscript of  w in the left-hand side is 2Jan q- 2(J-1)d//,l -~- - - - -[- / g j .  Since the set 
{2 (2- l)d/Zl -4-.. • + / x j  } = {0, 1 . . . . .  2 jd - 1 }, the subscript of w runs through all integers from 2Jan 
to 2Jd(n + 1) -- 1, that is, the integers in l , , j .  

Up to now, we have not only the direct sum decomposition 2 j Un = (~)l~l..j UI but also the 
identity 

12 Zl(f, 22w.(2'.-k)) = Z ~ -~l(f'wz('-k))12" 
k lel.., k 

(2.43) 

By appealing to the first assertion of the theorem, for all f ~ (L2(ff2)) v we have 

Allfll2 ~ ~ Z Z l(f'~121('-k))12= ~Z l(f, Wn(" - k))[2 --~ Sllfll~. 
(n,j)ESIEIn.i k n = 0  k 

(2.44) 

Combining (2.43) and (2.44) we get 

j d  
Altf[l~ _< ~ ~ I(f,  22 w~(2 J • - k ) ) l  2 ~ Bllfll~ V f  ~ (L2(g2)) v. [ ]  (2.45) 

(n,j)eS k 

R e m a r k .  The results in Theorem 2.10 cannot be transfered to the Riesz bases case in general. 
That is to say, starting from V0 = SP({tp(x - k)}~), where {~o(x - k)}k is a Riesz basis of  V0 with A, B 
as its bounds, perfoming the splitting trick with a unitary matrix M($) ,  we cannot get a stable wavelet 
packet in general but can only get a wavelet frame packet. The reason and the counterexample have 
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been showed in [LC], where it was showed that when the filter function mo (~) of MRA { Vj } permits a 
unitary extension, then under very mild condition, the wavelet functions {~p~,}~,~e~_lol make {~P,,j,k} 
a tight frame of Le(IK J) and not being an orthonormal basis (the case d = 1 is due to W. Lawton 
[L]). [ ]  

3. The Instability of Nonorthogonal Wavelet Packets 

In this section, we discuss what kind of conditions should be imposed on M (~) when we want 
to get a wavelet frame of L2(IR d) from a nonorthogonal MRA. Our intention is to generalize the 
result in [CD] to the higher dimensional case. We only consider the biorthogonal cases. At first, we 
discuss the necessary conditions imposed on M(~) when we assume Ilw,, ll2 = O(1).  Notice that 
any frame {e j} of Hilbert space H satisfies Ilej 11 = O(1) always. This comes from 

Ilei[[ 4 =  I(ei, ei)l 2 __< ~ [(ei, ej)l 2 ~ Blleill 2 ¥i. 
J 

Hence the condition ]1 w~ ll 2 = O (1) is weaker than the frame property of {wn (x - k) }~,k. 

Theorem 3.1. 
Let {V j, ~/j} be a biorthogonal MRA and ~o(x), (o(x) be the associated scaling functions. 

Assume that M(~) = (m,(~ + vrr)),,v and/Q(~) = (fft,(~ e + vrr)),,~ are two matrices of2rrZ a- 
~ t  

periodic bounded measurable functions satisfying M ( ~ ) M ( ~ ) = l for a.e. ~, where {m~} and {r~u} 
are defined by (2.11). Suppose that IlwnIt2 = 0(1) = tiff;nil2, where {w,}, {if;n} are defined in 
(2.19). Then, both of M* M and l~-l* lVI are diagonal matrices. More precisely (only see M'M),  we 
have 

M*(~)M(~) = diag(p(~) . . . . .  p(~ + vrr) . . . .  ), P(~) = E [mu(~)12" (3.1) 
/z 

Proof .  By the definition of wn, for /z  = (J/,I . . . . .  //,j) we have tbn(~) = 1-I{=1 mu,(2-i~)~ 
(2-J~). Hence, 

llw"l122 = ~ E Imu, (2-jse)121~'b(2-sse)12 dse 
n=0 a j = l  

,ra H lmu,(2-J~)12 E l(°(2-s~ q- 2rret)12 d~ 
j = ]  a 

A2dJ ~ E l m u ,  (2s-j~)12 d~ 
a j = l  

= A2aJ ~ E lmuJ +'(2j~)12 d~" 
a j=0 

(3.2) 

Here we have used the fact that {~(x - k)}k is a Riesz basis of 110 (with the lower bound A). Since 

J - [  J - 1  J - I  

E E [ m " ,  ÷'(2j~)12 = E E ]mu(2J~)12= E P(2J~) '  
/zeAs j = 0  j = 0  IzEEd j = 0  
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we have 

IIw"l12 >-- a2d't I'-I P(2J~)d~" 
n=0  ~ - ~  d j = 0  

2 a-r 1 Since Y-~n=o IIw. IIz z = o(2dJ),  (3.3) implies 

f r  logp(~)d~ _< O. 
d 

Otherwise, by the Jensen's inequality for convex functions, there would be 3 > O, such that 

log ~ "j=0I] p(2J~) d~ _> ~ ~ log j=0l--I p(2J~) d~ 

_ _  

a j = 0  

and hence, we would have 

log p(2J~) d~ 

= J ~ ,,l°g p(s e)d~ e = 6 J ,  

2 r e -  1 

IIw, llz z _> a2Jd2 J'.  
n=0  

The contradiction implies (3.4). In the same manner, we have frd log /5(~) d~ < 0; hence 

f log p(~)/5(~)d~ < 0. 
d 

Since M*M = I a.e. ~, we have 

(3.3) 

(3.4) 

(3.5) 

2 

1 = ~ m . ( ~ ) , ~ , . ( ~ )  <_ p(~)p(~). 

By (3.5), we get p(~)/5(~) = 1 a.e. ~ and, hence, 

p(~ + vzr) H /3 (~  + vzr) = 1 a.e. ~. (3.6) 
v p 

We want to use the Hadamard's inequality, which say that for any square matrix A = (aij) we have 

I det AI 2 _< 17 ~ laij 12 
j i 

and that the inequality becomes an equality if and only if the column vectors are orthogonal to each 
other. Suppose that either I det M(~)I 2 < I-L p(~ -t- vzr) or I det ,Q(~)I 2 < I-Iv/3(~ + vzr) hold on 
some set of positive measure; then on this set it would hold that 

1 [det M(~)I2I det ~(~)12 < 1-I p(~ + vJr)~(~ + vz~) = 1. 
v 
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The contradiction implies that 

I det M(~)I 2 = I - I  P(~ + vrr) and I det ,~(~)12 = I - I  P(~ + vrr) a.e. ~. 

Therefore the column vectors of  M(~) are orthogonal to each other. Similarly, for M(~) we have 
the same assertion. Thus M*M and/17/*/Q are both diagonal matrices. [ ]  

When both p(~)  and/3(~) are trigonometric polynomials, we can get more. In this case both 
M and ,Q can be shown to be unitary. For this we need some property of trigonometric polynomials. 

Proposi t ion 3.2. 
Let p(~ ) and q (~ ) be trigonometric polynomials defined on T a such that p(~ )q (~ ) -- 1. Then 

p(~) = ore ik°'~ and q(~) = ot-le -ik°~ with ot E C, ko E Z a. (3.7) 

P roo f .  First we consider the one-dimensional case. Let p(O) = )-~k °tkeik°, q(O) = 
Z r n  tim eimO' and [Kl,  K2] and [Ml, M2] be the minimal supporting interval of the coefficients o f p ( s  ~) 
and q(~),, respectively. Since 0 -¢ ax2flM,_ = Sr2.-~t,., we get K2 = - M 2 ,  and Kz < K2 = - M 2  < 
--Ml.  Similarly from 0 :fi ~x, flM, = 8x,,-M,, we get Kl = - -Ml ,  and Kl = Kz = --Ml = - M 2 .  
This implies that p(O) = ore ik°O and g(O) = o t - l e  -ik°O. This proves the proposition in the one- 
dimensional case. Now consider the d-dimensional case. Let 

p(~) = Z otk(~')eik~e, q(~) = Z flm(~')e im~", 
k m 

where otk(s e') and ~m(~') are trigonometric polynomials of d - 1 dimension. From p(~)q(~) = 1, 
we have 

p(~) = ot(~')e ikd~a and g(s e) = fl(~')e -ika~e, ot(~')fl(s ~') = 1, (3.8) 

where ot(~') and fl(~') are both trigonometric polynomials. Suppose that the assertion has been 
proved in the (d - l)-dimensional case. Then 

d - I  d-1 

ot(~') = ot I 7  ei~'~" fl(~') = °t-' H e-itJ~J" 
j=l j=l 

(3.9) 

Thus we have 

d d 

p(~) = cl I-I ei~Jt, , q(~) = cl -I 1-I e-ikJ~J. [] 
j = l  j = l  

Theorem 3.3. 
Let { Vj, lT'j }, ~0(x), ~(x) ,  M(~),  AT/(~), wn, and Co, be the same as in Theorem 3.1. In addition, 

assume that p(~ ), ~(~ ) are both trigonometric polynomials. Then both of M (~ ) and J(4 (~ ) are unitary 
a.e .  ~. 

Proof .  From Theorem 3.1, we know that the column vectors of M(~) (and of A)(~)) are 
orthogonal to each other and that p(~)/3(~) -- 1. Using Proposition 3.2, we see that the nonnegative 
polynomials p(~)  = or,/3(~) = a - l .  But p(0)  = 1 = /3 (0 ) ,  so we get p(~) - 1 -= /3(~), which 
implies that M*M = I;  hence M(=/17/) is unitary. [ ]  
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R e m a r k .  The one-dimensional case can be found in [CD]. [ ]  

Finally, we discuss a related problem. Assume that { Vj, Vj } is a biorthogonal MRA, ~0(x) and 
if(x) are the associated scaling functions, and m0(~) and th0(~) are the associated filter functions. 
Suppose that we have the matrices M (s e ) = (m~ (s e + vzr ))~.~ and )Q (~) = (rh~ (~ + vzr ))~, ~ satisfying 
M(~)i~7/*(s e) = I a.e. s e and m , ,  rh~ E L°°(Td), lz E Ed.We now perform the splitting trick using 
these two matrices. Suppose that both {wn (x - k)}n,~ and {ff~n (x - k)}#,~ (with {w~ }, {wn } defined 
by (2.19)) are frames of L 2 (~d) with bounds A, B and ,,i,,/~, respectively. The question is what kind 
of estimates for bounds X, A and ~., A of the eigenvalues of M*M and M*M can be obtained. 

Proposi t ion 3.4. 
Let { Vj, ~/j } be a biorthogonat MRA and ~(x),  ~(x)  and mo( ~ ), rno( ~ ) be its scaling functions 

and filter functions, respectively. Assume that there is an extension {m~, n q ~ } ~ a  of {m0, fit0} 
satisfying 

M(~)hT/*(~) = I a.e. ~; 

m~, rh~ E L°°(Td), lz E Ed. 

Suppose that { wn (x - k) }n,k and { Con (x - k) }n,k (with { wn }, { ton } defined by (2.19)) are both frames 
of L2(I~d), with bounds A, B and f~, B, respectively. Then M*(~)M(~) and A~t*(~)M(se ) satisfy, 
respectively, 

B - IA1  < M*(~)M(~) < A - i B I  and B - I A I  </17/*(se)A)(~) < A - I B I ,  a.e. ~. 

Proo f .  We know that {w, (x  - k)} and {tb~,(x - k)},/z ~ A j,  k E Z d, are Riesz bases of Vj 

and 17"j, respectively, and that {wa(x - k), Co,(x - k)}a,k is biorthogonal. Hence, we have 

2 # -  1 

:(x) = - -- k) V: V;. 

n = 0  k 

(3.1 O) 

We will only consider the cases j = 0, 1. Notice that wo = <P, tb0 = ~ and w~ = ~ , ,  ~ ,  = ~p,, 
tx ~ Ed. Since {wn(x - k)}n,k is a frame of L2(I~ a) with upper bound B and lower bound A, for 
j = 0, 1 we have, respectively, 

AIIfll2 2 ~ ~--~'ff-'~ I(f, ~P , ( " -  k))l 2 < BIIfll 2 V f  s f'~, (3.11) 
/z k 

AIIfll~ <_ ff'~ I ( f , ~o ( - -k ) ) l  2 < BIIflI~ V f  E ~'0. (3.12) 
k 

Then (3.12) can be rewritten as 

Allfll~ __< ~ I(f, 2~o(2 .  -k ) ) l  2 __% BIIfll2 2 V f  ~ 17' x. 
k 

(3.13) 

Now we define operators 

2 # -  1 

E l : ,  wn( - k) 
n=0  k 

P j f ( x )  = V f  E L2(~d), (3.14) 
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and its counterpart P/. Reasoning just like in [LC], we see that/Sj is a projection from L2(]I~ d) onto 
17'j and the dual of Pj. Hence, (3.1 1) and (3.13) become 

All/Slfll'~ < Z Z [(f '  ~ u ( " -  k))[ 2 < Bll/stfll~ v f  E L2(lt{d), (3.15) 
# k 

All/5~fll~ _< ~ I(f, 2~¢p(2 . -k ) ) l  2 < BII/5,/11~ 'Of 6 g2(Rd). (3.16) 
k 

Here we have used the duality between Pt and/St and the facts 

P~(~u(" - k)) = ~u(x  - k), P~(2~0(2 • - k ) )  = 2ffcp(2x - k). 

Therefore, 

B - i A  E I{f, 2~q0(2 • -k ) ) [  2 _<< E E [(f '  ~U(" -- k))l 2 
k ~t k 

< A - ~ B  E I(f, 2~q9(2 • -k ) ) l  2 
k 

Vf  E L 2. 
(3.17) 

By Lemma 2.8, (3.17) implies B - t A I  
M* aT'/. [ ]  

< M * M  < A - I B I .  The same argument works well for 

R e m a r k .  If one of {w~(x - k)}~,k and {tbn(x - k)}~,k is a tight frame (A = B), then 
M ( =  M) is unitary. [ ]  

4 .  C o n c l u s i o n s  

1. The natural indexes are introuduced for the splitting trick, which admit that the splitted 
results can be simply formulated as {wn (x)}nez+ ({r5~ (x)},ez+). 

2. In orthogonal wavelet subspaces, a sufficient condition for {w~ (x)}~z+ to be an orthogonal 
wavelet basis packet of Le(R a) is that the M(~) used to perform a splitting trick is unitary, 
and a sufficient-necessary condition is that {I(n.j)}(n,j)az+ ×z+ is a disjoint cover of Z+. 

3. The sufficient conditions for {w~(x)},,~x+ to be a wavelet frame packet of Vj are that M(~) 
is positive definite and bounded and to be a wavelet frame packet of L2(f2) are that M(s ~) is 
unitary or that {l(n.j)}(n,j/~z+ ×z+ is a partition of Z+ where f2 = U j  2Jsupp q3. 

4. In biorthogonal wavelet subspaces, when M(~)M*(~) = I the necessary conditions for 
{con(x)}nez+ ({(5,,(x)}nez+) to be a frame of L2(R) are that M(~)M*(~)  (h7/(~).,17/*(~)) is 
diagonal and satisfies 

B - I A I  < M*(~)M(~)  < A - I B I  o r / ) - ~ A I  </l)*(~)]O(~) < /~- l /} l  a.e.s~. 

Furthermore, M(~) (3)(se)) needs to be unitary if M(~) (/Q(~)) is of  polynomial entries. 
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