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Wavelet Basis Packets
and Wavelet Frame Packets

Ruilin Long* and Wen Chen

ABSTRACT.  This article obtains the nonseparable version of wavelet packets on R® and gener-
alizes the “unstability” result of nonorthogonal wavelet packets in Cohen-Daubechies to higher

dimensional cases.

1. Introduction

The wavelet packets introduced by R. Coifman, Y. Meyer, and M. V. Wickerhauser played an
important role in the applications of wavelet analysis as shown, for example, in [CMW1, CMW?2].
But the theory itself is worthy of further study. Some developments in the wavelet packets theory
should be mentioned, such as the tensor product version (due to [CM]) and the non-tensor-product
version (due to [S]) of wavelet packets on R?, the nonorthogonal version of wavelet packets on R!
(due to [CL]), and the wavelet frame packets on R' (due to [C]). The higher dimensional version
of wavelet packets obtained in [S] is very close to the expected one. But it seems that there is a
shortcoming in Shen’s result; specifically, the implied frequency index is denoted by the point 7 in Zi,
which makes the correspondence between the index pair (77, j) and the dyadic interval [5;, ; less natural
than that in the one-dimensional cases. One task of this article is to set up a more natural framework
for the wavelet packets in the higher dimensional case. Another task of this article is to study the lack
of stability of nonorthogonal wavelet packets. As shown in [CD], starting from one-dimensional
biorthogonal multiresolution analysis (MRA), a stable wavelet packet can hardly be constructed
unless the matrix used in the splitting trick is unitary. We want to generalize the result to R.

The notation and symbols used in this article are standard in wavelet theory. We list them as
follows. For more detail see [LC].

An MRA is a nondecreasing family {V;}%, of closed subspaces of L?(R9) satisfying:

i NV =10,UV, = L*RY;
il. f(x)eV;e f2x)e Vi, V),
iii. 3Jp(x) € Vy such that {¢(x — &)}, is a Riesz basis of Vj.
@(x) is called the scaling function of MRA {V;}* . and @(x) satisfies the refinement equation
3{d} € {? such that

o(x) =24 dego(2x —k)ae. x € R4,
p
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The function
mo(€) = ) _ dee™** e LX(TY)
k
is called the filter function of {V;}>_. When the vector (mg(§ + vrr)), (v € E; = {all vertices of

the cube [0, 1]}) can be extended to a nonsingular matrix M(£) = (mu(& +vm))uv(n, v € Ey)
for a.e. £, with all m,(£) in L®(T?%), we can define the wavelet functions [¥,. () ek, bY

Va8 =m,(8)¢(§),  p € Eq (p(x) = $o(x)),

where the Fourier transform is defined by
f® = f fe™*tdx Vf e L'\®) N LARY.
Re

When the MRA {V;}>_ and {({,-}‘foo satisfy

(@, ¢(- —k)) = /R ) P(X)@(x — k) dx = 8y,

we say that {V;, Vj}i"oo is a biorthogonal MRA (pair) (in the case ¢ = @, {V;}%, is called an
orthogonal MRA). Under some mild conditions, the following results have been established in [L.C).

{v;, Vj} is biorthogonal if and only if M (S)A—ZT(s) = ] fora.e. §; when {V}, \71-} is biorthogonal and

M (&), M (&) consist of entries in the class C(T%), then {¥,, j &, Yy jk} (W ja(x) = 2 F 9,2 x—k)),
j € Z, k € Z4, is biorthogonal in the sense

(Voo W) = 88 jr ki
For f, g € L%(R?), the bracket product of f and 2 is defined by
[f.216) =) f& +2m)3(5 +27a), aeZ’.

A sequence {¢;} in a Hilbert space H is called a Riesz basis if H = SP({e i (“SP” means the
closed, linear span) and

2

Ali{c; 3 < < Bll{c,}I? Vic;} € 2@)

§ :Cjej
J

is called a frame if

ANFIP <D I fie)P < BIfI® VfeH.
J

Notice that a Riesz basis {e;} is always a frame, and an independent frame is also a Riesz basis.
When {e;} is a Riesz basis and a frame, then the Riesz basis bounds and the frame bounds are the

same.
In what follows, we do not always start from an orthogonal MRA {V;} or a biorthogonal MRA

{v;, 1% J}, so the function ¢ or {t,} we treat need not be associated with some MRA {V;}.
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2. Orthogonal or Biorthogonal Wavelet Basis Packets
and Wavelet Frame Packets

Just as Daubechies [D] indicated, the main tool in obtaining wavelet packets is the so-called
splitting trick, which is a well-known technique in constructing wavelet bases. Since what we need
is more general, we still state it as a lemma. The proof of the lemma will follow [LC].

Lemma 2.1. ) o,
Let p(x) € L>(R?) be such that {2% p(2x — k)}; is orthonormal. Denote V = SP({27¢(2x —
k)e). Let {uy i }e € 1*(Z%), u € E; . Define
Vu() =2 upepx = k), 2.1)
k

m, () =) uue™5, £ eTU=[0,21) = (-7, 7). 2.2)
k

Then {Yr,(x — k)}u x is orthonormal if and only if M(§) = (my(§ + vr)) (1, v € Ey) is a unitary
matrix, for a.e. £ € T?. Furthermore, {{r,(x — k)},. x is an orthonormal basis of V whenever it is
orthonormal.

Proof. We can get Z |6(¢ + 2ma)|? = 1 a.e. & by the orthonormality of {22 (2x — k)}.
[+
We have
(Yu, Y (- = K))

=/![;d '/’ﬂ(x)_‘l?u/(x—k)dx

= 1\? E\__ (& £

B (E> ./Rd My (E) my (5) <—2-)
d

() [Zm () ()

(Vs Vi = K)) = 8y 8ok
= Zm” (% + vrr) my (% -+ wr) =08, ae.é.

From (2.4) we see that {{,,(x — k)}, x is orthonormal if and only if M (&) is unitary for a.e. £. Now
we assume that {, (x — k)}, x is orthonormal and want to prove

2
; ot g (2.3)

Therefore

(2.4)

S (f.2%0@ —0)2ip2x — k)

keZd ) 2.5)
=D D (S¥ul—Diux -0 Yfel*®R).

ueky lezd

Once (2.5) is proved, 2%<p(2x — k) can be expanded as a linear combination of {,,(x — )}, ;, and
hence {v,(x — k)}, « is an orthonormal basis of V.
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Now we show (2.5). Since each side of (2.5) is L>-convergent, in order to prove (2.5) it is
enough to prove (2.5) in the weak sense, that is,

> (280 ~)g. 2802 —k))”

k

(2.6)
=Y (v =DM Yu( = D) Vfgel’
um 1
Making use of Plancherel theorem and Parseval formula we have
=Y "3 {fi¥ul—D)g ¥ul- = D)~
" !
1\ R - .
N (271) 2 /T,, D € +2mayi, (¢ + 2n)e™ df
.l «
. - Q.7
: ( fT DB+ 2B + znﬂ)e”'fds)
B
1\ . - - .
= (-2;) > f Y FE 2wyl +2me) Y B(E + 2B (E +2mB) dE.
n YT g B
Since from (2.1), (2.2) we have
V() =m, <—§-> ¢ (%) . umeEy, 2.8)

substituting v + 2’ for « and v’ + 28’ for 8 in (2.7) and noticing the unitary property of M (§)
yields

d
I = (%r-) LEZZf(§+2nv+4na’)Wu(§+vn>$(§+vn’ +27roz’)

©oova

'ZE(’? + 27V + 4np)m, (g + V'N) @ (-i— +v'r + ZNﬂ') dE
v, B8

1\? . _
= (E) / Z }:f(g: + 27+ 4ma’)g(E + 2nv + Anp)
Td v oa'p

(2.9)

5(% +vrm +2na')q3 (% + v +27t/3’> d&

1\¢ . _ 3 e i
(2_) Z/ § f& +47ra')§(§ +4nﬁ’)¢ (g +ana )(a (g +4np ) dE
T veEy ( 2 2

0,2m ]d +2ry alvﬂl

1\ . = (& +4ra ) (& +4n\\
(5) [T Feramer (25 )(zﬂ:g(§+4xﬂ)<ﬂ( . )) d.

i
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On the other hand, we have

Z(f, 2502 —k))(g. 2502 - —k))~
k
LY 1 FEYD ik N 2.k
=(5) g [ @ (5)etas ([ s (§) i)
k
1\ /7 1\¢ ) /4 dna "
.—_(57—[-) (Z;) ;/;sza:f(f—’r‘ina)go( 5 >e 14
([ D ani3 (2 +4”‘3) et gt
21 2
| d A - S 47[(1 $+471'ﬂ
2(5) Ard;f(§+4na)w( )Z ($+4nﬁ)<p( 5 )dg_

Combining (2.9) and (2.10), (2.7) follows. O

(2.10)

Remark. The function ¢(x) in Lemma 2.1 is not necessarily the scaling function of a MRA,
and the matrix M (§) used in the splitting trick has no relationship to ¢(x) either. Hence we get more
freedom in performing the splitting trick in what follows. O

Lemma 2.1 has a biorthogonal version as follows.

Lemma 2.2.

Let ¢ (and §) € L*(RY) be such that {@(x — k)}A (and {¢(x — k)}+) is a Riesz basis of the
closed Z4-translation invariant subspaces Vo (and Vo) generated by it and {o(x — k), ¢(x — b))}«
be biorthogonal. Let V = 2V, (and V= ZVO) Suppose that m, (&), m,(§) € L®(T?) for every
u € E;and

myE) =Y u,ue”™ and (&) =) duue*, peEy Q.11)
k k
Define
V) =29 uua0@x —k) and Y (x) =2 d,¢Qx—k),  peEs. (212
k k

Then (Y, (x — k), 1/7” (x —k)}, x is biorthogonal if and only if the matrices M(§) = (m,(§ +vm)) .,
and M(€) = (7, (& + vr)),., satisfy

—1
MEME)=1 aeteT?, (2.13)
—t ~
where the superscript t means the transpose (hence M = M™* with x denoting the conjugate).
Furthermore, we have the direct sum
V = PSPy, - b, V = PSP - b)) (2.14)
u u

whenever {y,(x — k), 1}# (x — k) },u i Is biorthogonal.
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The proof is almost the same and can be omitted.
Lemma 2.1 can be used to yield a general result on the decomposition of Hilbert spaces, which
is due to Coifman—-Meyer—Wickerhauser [CMW?2].

Proposition 2.3.
Letd € Z, and {ex} be any orthonormal basis of a Hilbert space H. Assume that {u, ; }; €
12(Z%), u € Eg4, and define

mu(E) =3 uupe™ and fe=2%Y wumae, weEnkleZ'. (215
k k

Then { fu k) .k is orthonormal if and only if the matrix M(§) = (m,(§ + vm)),., is unitary for a.e.
. Furthermore { f,. x},.x is an orthonormal basis of H whenever { f,, x},.« is orthonormal.

Proof. Findag(x) € L2(RY) such that {p(x —k)} is orthonormal and define V = SP({2% ¢
(2x — k) }x). Make the correspondence between ¢; and 2§<p(2x — k). Making use of (2.1), we define
{¥.}. Then {f,} and {¥,(x — &)} have a one-to-one correspondence. Proposition 2.3 is now
deduced by Lemma 2.1.

We now turn to the construction of orthogonal wavelet packets. Let ¢(e L*(R¢)) and M (§) =
(mu(€ +vm))ys (27tZ“—periodic bounded measurable functions matrix) be given. Assume that

{Z%go(Zx — k)}« is an orthonormal basis of V = ﬁ({Z‘il(p(Zx — k).
Applying the splitting trick to V, we get

V) =2 Y uap@x— k), Yu® =m, (%) ¢ (%) . 2.16)

k

Once again we get

Viry () = W)y () = 29Dy ¥, 26 — ),
k

; cm (Vo (EN=m, (& APYE
],/I‘-l-l‘-z(g) =my, (5) 1[/#2 (E) =my, (2)muz (4)¢ (4) .

Continuing in this way, for j € Z, we can define ¥, p, (X)-
Now we simplify the index. Consider the 2¢-adic expansion of positive integers. Forn € Z.,
we have unique 1 = (i1, ..., u;) such that

(2.17)

n=py+ 2% 4 42U j=0,1,2,3,...,

with g; running through0, 1,2, .. ., 241 Vi. When we order the elements ofE43s0,1,2,...,2¢4—1
in any way, we can write u; € £, Vi.

Let A; be the set of these j-tuple u = (uy, ..., u;) with length j, and denote A = Uj‘;, Aj.
Notice that when i < j, A; can be imbedded in A; naturally, by considering (i), ..., ;) as
(1, ..., 1i,0,...,0). Now, we rewrite (2.16) and (2.17). For u, € [0,1,...,2¢ = 1] = E,,
write wy,, (x) = ¥, (x). For uy, uy € Ey, since 2915 + uy is correspondent to (11, f2), we write
Wy s (X)) = Yy sy (1)
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As such, we have
wy, () =293 w4028 = k),
k

Wod s+ () = 2 Z Upy Wy, (2x — k).
k

In general, when n = py + -+ + 29729 let w,(x) = Yy, (x). Since 29n + puy = py +
29py + -+ 2074y we can write
Wodp iy, (X) = Vfuy--uj(x)- (218)

Hence we can rewrite the repeated splitting as

Wotnap, () =27 )y qwa(2x — k), n€Zy p € Eqy. (2.19)
k

Now we can formulate the first and the most fundamental result on wavelet packets.

Theorem 2.4.
Suppose that ¢(x) is a scaling function of an orthogonal MRA {V;}%, of L*(R?) and 2n Z4-
periodic measurable functions matrix M(§) = (my(§ + vm)),,, is unitary for a.e. §. Then

{wn (X)) nez, defined in (2.19) makes {wy,(x ~ k)}nx an orthonormal basis of L*(R?).

Proof. We use the notation w,(x) and w,(x), whenn = (u1,..., &;) = i, to denote the
functions defined in (2.19). We want to prove that {w,(x — k)} (k € /T Aj) or {w,(x — k)}
(k € Z%,0 < n < 2/%) is an orthonormal basis of V; (j > 1) by induction.

By Lemma 2.1, when j = 1 we know that {w,(x —k)} (u € E4, k € Z4) is an orthonormal
basis of V. Suppose that we have proved the assertion for j, that is to say {w,(x —k)} (0 <n < 274,
k € Z%) is an orthonormal basis of Vi (= 1. Since Vi ={f(2x): f e Vj}, {Z%w,,(Zx —k)}
(0 < n < 24 k e Z%) consists of an orthonormal basis of Vi+1. Now the formula (2.19) and
Lemma 2.1 show that ’

{Wadpgp, (x — 0O}, 0<n<?2? u=012,...,22-1; ke Z°

is an orthonormal basis of V;, too. Since

(n+u:0<n<2 u=0,1,...,22— 1) ={n:0<n <2U*thdy, (2.20)

we conclude that

fwax —k):0<n <2V ke 70 = {w,(x —k) : u € Aji1, k € Z9)
forms an orthonormal basis of V;,,. Since | JV; = L2(R?), we conclude that {w,(x — k)} (k €
Z¢, n € Z.) is an orthonormal basis of L2(R9). g
Now we introduce the wavelet packets as in the one-dimensional case.
Definition 2.5. The family {2%4 w,(2ix — k), n, j € Zy, k € 74, is called a wavelet

basis packet, where n is called the oscillation parameter, j the scaling parameter, and & the location
parameter. [
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The main results on wavelet packets is to characterize the set S of index pair (n, j), which
makes {25 w,(2/x — k)}, (n, j) € S, k € 79, being an orthonormal basis of L2(R?). To the index
pair (n, j) € Z4 x Z we correspond the dyadic interval

Ly ={€Zy:2% <1 <2 n+ 1)} (2.21)

The main result can be formulated in the same way as in the one-dimensional case.

Theorem 2.6. 3
Suppose that the conditions in Theorem 2.4 are satisfiedand S C Z XZ. Then {2 Tw,(2/x—
k)}(n, jyes kez4 is an orthonormal basis of L%(RY) if and only if {1, j}a. jes is a disjoint covering

of Z.
Proof. Let
Up =SP({wa(x —))i),  2Un = SP({27w,(2x — )}). (2.22)

Then Theorem 2.4 and Lemma 2.1 tell us that the following orthogonal direct sum decomposition
holds

LR =PUi 20 =PUsnsyy. m1=01,...,2° 1. (2.23)
n Hy

We now claim

20, =@QU. 2n=i<2n+1), njleZ,. 2.24)
[

It can be proved by induction. The case j = 1 follows from (2.23). Now deduce the j + I case from
the j case. In fact, we have

2, =220, =@P2i = PP Udi+u1 = PUn,  L€ljipr € Esme bju,
1 { My m
(2.25)

where m € I, ;41 can be seen as follows. The set {291 + pu; : 290 < | < 2% + 1), u, =
0,1,2,...,24 — 1} consists of 20UV (= 24(2/4(n + 1) — 2/9n)) integers, which are between
2U+Ddy and 2U+D4(n 1) — 1 (= 2¢9(2/9(n + 1) — 1) +2¢ — 1) and different from each other. This
set is nothing but /,, ;,1; (2.24) is thus proved. Finally we get

P P2t w.@x -k} = P Pu. (2.26)

(n,j)es (n,j)eSlel, ;

Therefore, the left-hand side of (2.26) is an orthogonal direct sum decomposition of L%(R?) if and
only if [y, jyes In.j 15 a partitionof Z,.  []

Remark. Let/ e Z,,S={(n,j): (n, j) e (10,2¥) x {0} U ({2, 2¢+Y9) x Z,)}. Then
{1, }(n, j) € S) forms a disjoint covering of Z. In fact, we have

I’l»j = [2(l+j)d, 2(I+j+l)d) ﬂ Z+, U In,j = Z+.

2id <p <2U+hd (n,j)es

Hence (25 w,2ix — k) : (n, J) € S, k € Z% is an orthonormal basis of L?(R?). In particular,
when ! = 0, this is exactly {wo(x — k), 2"21w,,(2jx —-k),1<n<?2-1,j=0,1,...,k € Z%,
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which, when mg(€) is the filter function of an MRA, is the known wavelet basis. Another typical
example of wavelet basis packets is that corresponding to § = Z, x {0}, that is,

{w (x = k)}. neZ, kel

The biorthogonal case is similar to the orthogonal case, modulo the stability. That is to say,
if we want to get stable wavelet basis packets, in general, we can perform splitting operations only
finitely many times. We will discuss this problem in detail in the next section. Here we give only
some parallel results in the biorthogonal case. O

Theorem 2.7.

Let {V;, Vj} be a biorthogonal MRA; {m,}, {m,} be defined by (2.11) satisfying (2.13); and
{w,}, {W,} be defined by (2.19). Thenfor j € Z, {w,(x — k) and {w,(x —k)} (n € Aj, k € Z%)
are Riesz basis of V; and of Vj, respectively, and

(Wu(- — k), W, (- = 1) = 8, .8k, w.veA; kleZd (2.27)

The proof is almost unchanged, and can be omitted.

Now we discuss what kind of results we can get by performing the splitting trick to wavelet
frames. Chen [C] studied the problem in the one-dimensional case and obtained Lemma 2.8 and
some similar results in following Theorems 2.9 and 2.10 with a different, less simple, and less natural

formulation. .
Let ® = {¢(”} be a family consisting of n functions in L2(R?) and S(®) = SP({¢" (x—k)},x).
Let P(£) = (pr,(£)),s be an n x n matrix with 27 Z4-periodic bounded measurable functions as

entries.
Define

FOE =) pes®@VE),  r=1L....n (2.28)
s=1

Suppose that {¢”(x — k)} is a frame of S(®) with the upper bound B and the lower bound A, we
want to discuss whether (¥ (x — k)}, 4 is still a frame of S(®), and what is the upper bound and
the lower bound of {7 (x — k)},, when it is the case.

Lemma 2.8.
Assume that

Cil < P*E)PE)<Cyl ae £ eT?, (2.29)

where I denotes the identity matrix. Then for all f € L*(R¢) we have

CIY Y HACDC—INPE <Y Y HAYOC—RP <Gy Y e =R (230)
r k r k r k

On the contrary, when {97 (x — k)},.x is a Riesz basis of S(®), then (2.29) is necessary for (2.30).

For the proof we refer to [C].
Now we apply the splitting trick to wavelet frames. Let¢(x) € L*(R?) be such that {p(x —k)}i
is a frame of the space V = SP({¢(x — k)}¢), and let M(§) = (m, (€ 4+ vm)),., be a nonsingular

matrix for a.e. £ where

mu§) =Y uupe ¥ € LVTY),  peks
k
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Define ¥, (x) as in (2.12), u € E,. Let
u(x) =2%p(2x —v),  veEy
Then v, (x) has the equivalent expression

Yulo) =Y vuwox =0, V@ =) pun®@).  p=Ea,
vl v

where

Vywt = 2%u,y, whenk=2l+v, [ €Z% u,vekEy;

pﬂ.v(s) = Z Uu,v,ie—u‘s, w,v € E;.
!

The matrices
P(g) = (pu,v(g))y.,v and M(E) = (mu(s + vn))u,v

are often used in the construction of wavelet bases. They obey the relationship (see [LC])
§Y _ P(EY2 5 § - — =iV (E+ym)
M 2 - (&) £ 2 ’ 8(5) - (ev’.v(g))v’,v’ 8\)’,\)(5) =e .
Since 2‘%5(%) is unitary for every £, from
§ § i (& ¢ (§
M )M Z)=2"2"2) P N
(2> (2> £ (2 (E)P(§)272¢ 3
we know that M*($)M (%) and P*(§) P(£) are similar matrices and

CI <M (%)M(%) < Cil & CI < PE)P(E) < Cal VE.

(2.31)

(2.32)
(2.33)

(2.34)

(2.35)

Let A(§) and A(§) be the maximal and minimal eigenvalues of the positive definite matrix M*(§)
and M (&), respectively; and let A = infy A(§) and A = sup; A(§). When 0 < A < A < oo, we

know from Lemma 2.8 that

A UA280C =N £ 3D KA U =R < A Y KA 2@ —h)P,
k my ok k

where we have used the fact that

S f o= =D I 2R e k)P
vl k

Performing the splitting trick to each v,,, we get

(2.36)

(2.37)

A2 2 =) £ 3 D Yo = MR < A Y1289, =R (238)
k ok k
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From (2.37), (2.38), and an induction argument, we see that for every f € L*(R4) and Jj €EZ,,we
have

MY 25 0@ )P s Y Y Y, (=)< A Y £ 280020~
k k

Brventy &
(2.39)

The arguments can be formulated to a theorem.

Theorem 2.9.

Let p(x) € L2(RY), Vo = SP({p(x — k)}i), and {@(x — k)}x be a frame of Vi with the upper
bound B and the lower bound A. Assume that M(§) = (m,(§ +vm)),., isa matrix of 2 Z%-periodic
bounded measurable functions satisfying 0 < A < A < oo. Let {w,{x)} = {w,(x)} be defined by
(2.19). Thenforall j € Z,, {w,(x —K)}, u € Aj, k € Z%, isaframe of V; = {f : f(277) € Vo)
with the upper bound AJ B and the lower bound A A.

Proof. Since {¢(x — k)}, is a frame of Vp with the upper bound B and the lower bound A,
we know that {21?d 9(2ix —k))y is a frame of V; with the same bounds for all j. By (2.39) and (2.18),
we have

MARFIZ< D D Kfwal =) < A/BIFI VFev,. O (2.40)

nep, k

When M () is unitary for a.e. &, the splitting trick can be operated for infinitely many times,
as shown by the following theorem.

Theorem 2.10.

Let ¢ € L2(RY) be such that {¢(x — k)}x is a frame of the space V, generated by itself with
the bounds A and B, and let Vy C 2Vy. Assume that M (&) is unitary for a.e. &, then {w,(x — k)},
neZy kel isaframe of (L*(Q))Y with the same bound A and B, where

Q=2 supp ¢. (2.41)
J
More generally, let S = ((n, j)} € Z+ x Z,} be such that U("'j)es L., is a partition of Z; then
{2%1 wa(2ix — I} n, jreskeze is a frame of (L?(2))Y with the same bounds A and B.

Proof. Since A = A = 1, (2.39) becomes an equality and (2.40) becomes

24
AlFIE < Y Y WA wal —kNP < BIFI; YfeV, (2.42)
n=0 k
By a result in [BDR], that is, (Uj Vi)ym = (L¥*(Q))V, we know that for any f € (L2(2))Y there
exists a sequence { f;} such that f; € V; and lim;_, o f; = f. We fix j at first; when j < J, we
have

241

3N WS wal = ) < BISS

n=0 k

Letting J — oo at first and then j — oo, we get

SN S waC — RN < BISIZ VS € (L@
k

n=0
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Meanwhile we have

2441
Ifr? <A (Z Y Kfs = frwal =R )

n=0 &k

1=

2741
+At (Z P AAC —k)l)
n=| k

< ATIBi|f) — flla + A7 (ZZ S, wal- — k)>:2> .

n=0 k

Letting J — oo (we get finally)

ANFIE < DD K f wal =k
0 &

The first assertion of the theorem has been proved.

Now we consider the general case. Assume that S = {(n, j) : U, j)es In.j 1s 2 partition of
Z.). Making use of Lemma 2.2 and the argument in the proof of Theorem 2.6, we know that the
space generated by {Z'TJ wa(2x —k)}is 2/U, = B, Ui, I € 1, ;, where @ denotes the direct sum
(not necessarily orthogonal). In addition, owing to the equality (2.39) (in the case A = A, (2.39)
becomes an equality) we have

241

DD M war, = ) —Zl £ 28w, 2 =),

w=0 k

S Wy = N = Y1 2% w0, 22—k,
k k

i1

¥

For j € Z, the subscript of w in the left-hand side is 2/¢n +2Y~D4y | + ... + u;. Since the set
{20=Y4y 4. 4 pu;} = {0, 1, ..., 2/¢ — 1}, the subscript of w runs through all integers from 2/%n
to 2/4(n + 1) — 1, that is, the integers in 1, ;.

Up to now, we have not only the direct sum decomposition 2/U, = Dic In, U, but also the
identity

Z|<f 25w, 2 )=y Z| fowi- = )P, (2.43)

lel,,

By appealing to the first assertion of the theorem, for all f € (L*(2))¥ we have

Alfiz= Y. Y Z| frw = )P ZZW wa(- — kNP < BIFIR.  (244)

(n.j)eSlel, ; n=0

Combining (2.43) and (2.44) we get

AlFIE< Y S 2% w@ )P <BIFIE Ve @) O (245

(n,j)eS k

Remark. The results in Theorem 2.10 cannot be transfered to the Riesz bases case in general.
That is to say, starting from V = SP({(p(x k)}i), where {¢(x —k)}, is aRiesz basis of Vo with A, B
as its bounds, perfoming the splitting trick with a unitary matrix M (§), we cannot get a stable wavelet
packet in general but can only get a wavelet frame packet. The reason and the counterexample have
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been showed in [LC], where it was showed that when the filter function mg(&) of MRA {V;} permits a
unitary extension, then under very mild condition, the wavelet functions {V, }.cg,— 0y make {¥, ;i)
a tight frame of L?(R“) and not being an orthonormal basis (the case d = 1 is due to W. Lawton

Ly. O
3. The Instability of Nonorthogonal Wavelet Packets

In this section, we discuss what kind of conditions should be imposed on M (£) when we want
to get a wavelet frame of L2(R“) from a nonorthogonal MRA. Our intention is to generalize the
result in [CD] to the higher dimensional case. We only consider the biorthogonal cases. At first, we
discuss the necessary conditions imposed on M (£) when we assume {Jw, |l = O(1). Notice that
any frame {e;} of Hilbert space H satisfies |le;|| = O(1) always. This comes from

le:ll* = Iei, e)] <Zle.,e, ? < Blle:l* V.

Hence the condition ||w, || = O(1) is weaker than the frame property of {w,{x — k)}..+.

Theorem 3.1.
Let {V;, V;} be a biorthogonal MRA and ¢(x), ¢(x) be the associated scaling functions.

Assume that M(§) = (m,(§ + va)),., and M(g) = (my (& + vm)),., are two matrices of 2m Z4-

-
periodic bounded measurable functions satisfying M(EYM (§) = I fora.e. &, where {m,} and {m )}
are defined by (2.11). Suppose that |wall, = O(1) = 8,12, where {w,}, {W,]} are defined in
(2.19). Then, both of M*M and M* M are diagonal matrices. More precisely (only see M* M), we
have

M EME) = diag(p§). ... pE +vr).),  pE =Y Imu®F. (1)
n

Proof. By the definition of w,, for u = (w1, ..., 1;) we have w,(§) = ]_[{:1 my, (27 6)¢
(2-7/¢). Hence,

244 _) | d
2 ”w"”z—<;) Zf ]—Ilmu,@ T6)PpR g de
HED,
1 d
(5‘) Z/ H"”MIQ ’S)IZZI¢(2 't 4 2ma) P dt
HEL,
1 d
(271) Z/ I—[lmuﬂ’ Ig) de
HEA,

w2 () [, X [Tim.orae

HED, j=

S

(3.2)

Here we have used the fact that {¢(x — k)}; is a Riesz basis of V (with the Jower bound A). Since

J—1
Y [ Timu. @61 = H Y ima QP = Hp(zfs)

uehy j=0 j=0 peky
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we have
2741 1 d J—-1
Zuw,.||2>A2‘“( ) / Hp(zfs>ds (3.3)

Since 27w, |12 = 0(247), (3.3) implies
| loepierae <o. (3.4)
T

Otherwise, by the Jensen’s inequality for convex functions, there would be § > 0, such that
1\ ¢ It ' 1\¢ J-1 .
log (2—5) /T Q pQi&)dt > (E) fT log I;[) p(2/§)de
1\¢
= <271) / Zlog p(2/E) dk

1\¢
= (;—) / log p(§)dé =48J,
>4 Td

and hence, we would have

214

Z lwal3 > A27927.
The contradiction implies (3.4). In the same manner, we have frd log p(&)d& < 0; hence

/;d log p(§)p(§)d§ < 0. 3.5)

Since M*M = I a.e. &, we have
2

1= < p&p®).

By (3.5), we get p(§)p(§) = 1 a.e. § and, hence,
[Tre+vo[]5¢ +vm =1 aes. (3.6)

We want to use the Hadamard’s inequality, which say that for any square matrix A = (a;;) we have
Idet AP <[> lai?
i

and that the inequality becomes an equality if and only if the column vectors are orthogonal to each
other. Suppose that either |det M (§)|> < [, p(¢ + vr) or | det M(§)|* < [], (€ + vrr) hold on
some set of positive measure; then on this set it would hold that

1= |det ME)*|det ME)* < [ [ p(§ +vm)pE +vm) = 1.
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The contradiction implies that

det M) =[] p& +vr) and |det M) =[5 +vr)  ae&.

v v

Therefore the column vectors of M (§) are orthogonal to each other. Similarly, for M (§) we have
the same assertion. Thus M*M and M*M are both diagonal matrices. O

When both p(&) and p(§) are trigonometric polynomials, we can get more. In this case both
M and M can be shown to be unitary. For this we need some property of trigonometric polynomials.

Proposition 3.2.
Let p(£) and q(£) be trigonometric polynomials defined on T? such that p(£)q(&) = 1. Then

pE) =ae™t and q)=a e ™t witha € C, ky € Z°. (3.7)

Proof. First we consider the one-dimensional case. Let p(8) = Y, axe’*®, q(8) =
S Bme™, and [K}, K;] and [M,, M;] be the minimal supporting interval of the coefficients of p(£)
and g (&), respectively. Since O # ax, By, = 8k,.—-m,, We get Ko = —My,and K} < Ky = —M, <
-M,. Slmllarly from O # ozKI,BM, = 8K|,—M|, we get Ki=—-M,and K\ =K, = M = -M,.
This implies that p(9) = ae’*® and g(8) = a~'e~**? This proves the proposition in the one-
dimensional case. Now consider the d-dimensional case. Let

PE) =Y @), g€ =Y BnlE)e™,
k m

where «;(¢') and B,,(£’) are trigonometric polynomials of d — | dimension. From p(§)q(£§) = 1,
we have

p&) =a@E)e™% and g€)=pENe™ %,  aE)BE) =1, (3.8)

where «(£") and B(§’) are both trigonometric polynomials. Suppose that the assertion has been
proved in the (d — 1)-dimensional case. Then

d-1 d—1
aE)=a]e4,  BE) =o' e (3.9)
J=1 j=t

Thus we have

d d
p& =af]e%, g =a'[[e™s O
j=1 j=1
Theorem 3.3. ;

Let{V;, V;}, o(x), ¢(x), M(§), M(§), w,, and W, be the same as in Theorem 3.1. In addition,
assume that p(§), p(§) are bothtrigonometric polynomials. Then both of M (§) and M (&) are unitary
ae. k.

Proof. From Theorem 3.1, we know that the column vectors of M (§) (and of M (&§)) are
orthogonal to each other and that p(§) p(§) = 1. Using Proposition 3.2, we see that the nonnegative
polynomials p(§) = a, p(€) = a~!. But p(0) = 1 = p(0), so we get p(§) = 1 = p(&), which
implies that M*M = I; hence M (= M) is unitary. (]
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Remark. The one-dimensional case can be found in [CD]. d

Finally, we discuss a related problem. Assume that {V;, Vj} is a biorthogonal MRA, ¢(x) and
@(x) are the associated scaling functions, and mq(&) and mq(&) are the associated filter functions.
Suppose that we have the matrices M (§) = (m,(§+vr)), . and M) = (M, (§+v7)) ., satisfying
M@EM*(E) = [ ae. £ and my, m, € L®(T%), u € Ez.We now perform the splitting trick using
these two matrices. Suppose that both {w,(x — k)}, and {w,, (x — k) )i (with {w,}, {w,]} defined
by (2.19)) are frames of L2(R¢) with bounds A, B and A, B, respectxvely The question is what kind
of estimates for bounds A, A and X, A of the eigenvalues of M*M and M*M can be obtained.

Proposition 3.4.
Let{V;, V;} be a biorthogonal MRA and ¢(x), ¢(x) and mo(&), mo(§) be its scaling functions
and filter functions, respectively. Assume that there is an extension {m,, m,}uce, of {mo, Mo}

satisfying
MEME) =1 aeb;

my.m, € L°(TY, ek,

Suppose that {w,(x —k)}, , and {w,, (x = k)}n i with {wg}, { {w, } defined by (2.19)) are both frames
of L>(R?), with bounds A, B and A, B, respectively. Then M*(E)M (&) and M*(S)M(S) satisfy,
respectively,

B'AI < M*()ME) < A™'BI and B~'AI < M*(E)M(§) < A'BI, ae.t.

Proof. We know that {w, (x —k)} and (@, (x —k)}, u € A, k € Z“, are Riesz bases of V;
and \7,-, respectively, and that {w,, (x — k), W, (x — k)},. « is biorthogonal. Hence, we have

24—
FE =) (frinl —)walx k) Vf eV, (3.10)
n=0 &k
We will only consider the cases j = 0, 1. Notice that wg = ¢, Wo = ¢ and w, = V¥, W, = ¥y,

i € E4. Since {wy(x — k)}ny is a frame of L2(R?) with upper bound B and lower bound A, for
J =0, 1 we have, respectively,

AllfII3 < ZZl (f ¥ul —kNP < BIFIS VS eV, (3.11)

ANFI3 <Y UF o — kNP < BIFI3 Vf eV (3.12)
k

Then (3.12) can be rewritten as

AlFI3 le £28p@2- kNP < BIfIE VfeV. (3.13)

Now we define operators

2041

Pifxy= ). Z fown(- = R)a(x — k) Vf € LARY), (3.14)

n=0
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and its counterpart P;. Reasoning just like in [LC], we see that 13,- is a projection from L*(R?) onto
‘7,- and the dual of P;. Hence, (3.11) and (3.13) become

ANPFIE <D Y WA dul =KD < BIPfIF Yf e L*(RY), (3.15)
uo ok ’

ANPfIR <Y 1f 2002 —k)P < BIAFIF VS € L*RY). (3.16)
k

Here we have used the duality between P, and 151 and the facts

Piu(— k) =W (x —k),  P2Ig(2- —k)) = 25p(2x — k).

Therefore,

BT'AY [(£280@2 )P <Y 3 IS vl — )
k u k

, (3.17)
SATIBY I(f. 2%~} Vel
k

By Lemma 2.8, (3.17) implies B~'Al < M*M < A~'BI. The same argument works well for

M*M.

O

Remark. If one of {w,(x — k)},x and {i,(x — k)}, is a tight frame (A = B), then

M(= M) is unitary.  [J

[BDR]

(€]
(CL]
(CD]

4. Conclusions

The natural indexes are introuduced for the splitting trick, which admit that the splitted
results can be simply formulated as {w, (x)}nez, ({On(X)}nez,)-

In orthogonal wavelet subspaces, a sufficient condition for {w,(x)},cz, to be an orthogonal
wavelet basis packet of L2(R?) is that the M (&) used to perform a splitting trick is unitary,
and a sufficient-necessary condition is that {/x j)}(n. jyez, xz, 1S a disjoint cover of Z,..
The sufficient conditions for {w,(x)}.ez, to be a wavelet frame packet of V; are that M(£)
is positive definite and bounded and to be a wavelet frame packet of L2(2) are that M (£) is
unitary or that {/(x ) }n. j)ez, xz, is a partition of Z, where Q =, 2/supp §.

In biorthogonal wavelet subspaces, when M (§)M*(£) = I the necessary conditions for
(@n(D)lnez, ((@n(¥)}nez,) to be a frame of L2(R) are that M (§)M*(§) (M (§)M*(§)) is
diagonal and satisfies

B'AI < M*(E)M(E) < A™'Bl or B~'AI < M*(E)M() < A™'BI ae.&.

Furthermore, M (§) (M(£)) needs to be unitary if M(£) (M(£)) is of polynomial entries.
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