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Abstract— This letter studies an multi-cluster over-the-air
computation (AirComp) system, where an intelligent reflecting
surface (IRS) assists the signal transmission from devices to
an access point (AP). The clusters are activated to compute
heterogeneous functions in a time-division manner. Specifically,
two types of IRS beamforming (BF) schemes are proposed to
reveal the performance-cost tradeoff. One is the cluster-adaptive
BF scheme, where each BF pattern is dedicated to one cluster,
and the other is the dynamic BF scheme, which is applied to
any number of IRS BF patterns. By deeply exploiting their
inherent properties, both generic and low-complexity algorithms
are proposed in which the IRS BF patterns, time and power
resource allocation are jointly optimized. Numerical results show
that IRS can significantly enhance the function computation
performance, and demonstrate that the dynamic IRS BF scheme
with half of the total IRS BF patterns can achieve near-optimal
performance which can be deemed as a cost-efficient approach
for IRS-aided multi-cluster AirComp systems.

Index Terms— Intelligent reflecting surface (IRS), over-the-air
computation (AirComp), dynamic beamforming (BF), computa-
tion rate maximization.

I. INTRODUCTION

THE sixth generation (6G) network aims to integrate
communication, sensing, computing, and intelligence

together [1], [2], [3]. A series of advanced services are progres-
sively conceived and experimented in such multi-functional
systems, such as extended reality (XR), edge artificial intelli-
gence (AI), and autonomous driving [4], [5], either of which
needs to collect and process enormous data from distributed
devices. Conventionally, the raw data collection and process
are regarded as separate procedures and designed in isolation.
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In practice, these intelligent services demand the functional
computation results of the raw data, such as the maxi-
mum reading of several temperature monitors, the average
of local models, and the minimum distance between cars
and barricades. The recently aroused over-the-air computa-
tion (AirComp), deemed as a task-oriented multiple-access
(MA) strategy, has shown its high efficiency in integrating
communication and computation through leveraging the sig-
nal superposition characteristic of the wireless channel [6].
AirComp was conceived [7], [8] and validated [9] to be a
promising scalable function computation strategy in a series
of works. Specifically, the transceiver design that exhibits a
uniform-forcing structure to compensate individual channel
fading was proposed in [10], and the multiple-input multiple-
output (MIMO) AirComp [7] was exploited for simultaneously
multi-modal sensing. However, the harsh wireless propagation
environment still significantly weakens the signal strength and
thus deteriorates the computation performance.

Intelligent reflecting surface (IRS) has emerged as a promis-
ing technology for future wireless networks. Several works
have exhibited the effectiveness of IRSs in the single-cluster
AirComp system, e.g., the authors in [11] and [12] employed
an IRS to strengthen channels thus reduce the distortion.
If the single-cluster AirComp is intuitively extended to a
multi-cluster case like the conventional communication sys-
tems [6], [13], the considered configuration times of IRS
passive beamforming (BF) is the same as the number of
participated clusters, otherwise its BF remains static during
a transmission frame, i.e., each cluster is assigned with a
dedicated BF pattern or all clusters employ the same pattern.
It is observed that the two policies are rigid in that they provide
the upper and lower bounds on system performance with
no tradeoff. Although harnessing more BF patterns provides
more degrees of freedom (DoFs) which can configure a
suitable propagation environment for devices, thereby further
enhancing the system performance, it also adds extra signal-
ing overhead. Hence, a flexible dynamic IRS BF scheme is
desired to balance the system performance and cost. Recently,
a novel dynamic IRS beamforming (DIBF) technique has been
proposed to offer promising DoF thus enabling more flexi-
ble resource allocation in half-duplex and full-duplex wire-
less powered communication networks (WPCNs) [14], [15],
mobile edge computing (MEC) with binary offloading [16],
etc. DIBF proactively develops favorable time-selective chan-
nels by harnessing the unique character of IRSs that the BF
patterns can be tuned multiple times within a given channel
coherence time. Additionally, a good balance between perfor-
mance, associated tuning costs, and signaling overhead can be
achieved by flexibly managing the amount of reconfigurations.
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Fig. 1. An IRS-assisted multi-cluster AirComp system.

In this work, we analyze an IRS-aided AirComp system
comprising of multiple clusters by taking the performance-cost
tradeoff into account. The previous studies concentrated on
the transceiver design in one dedicated time slot (TS) that
aim to minimize the function computation error measured by
the mean square error (MSE). We study in this letter how
to boost the computation capability within a given period
in which the IRS can be configured multiple times. Specif-
ically, clusters are activated in a time-division manner to
eliminate the inter-cluster interference thereby computing het-
erogeneous functions, and we present two types of BF schemes
to unleash the fundamental performance-cost tradeoff. The
cluster-adaptive BF method, where each BF is allocated to
one cluster, is first taken into consideration to provide the
upper bound for comparison. The performance-cost tradeoff
is then explored using the general dynamic IRS BF method,
which is be applied to any number of BF patterns. Simulation
results verify the theoretical findings and show how the IRS
improves multi-cluster AirComp performance. In particular,
it is observed that the proposed DIBF design is sufficient to
acquire near-optimal performance with a minimal computation
rate decrease (less than 6%) by halving the number of BF
patterns, which sheds light on balance the performance-cost
via limiting the number of BF patterns.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As depicted in Fig. 1, the considered multi-cluster AirComp
system composes of a single antenna access point (AP), an IRS
equipped with N passive elements, and K devices. Due to
the different computational requirements, the K devices are
divided into L clusters. Each cluster consists of Kℓ devices
and computes a desired type-ℓ function named fℓ. We denote
Kℓ ≜ {1, . . . ,Kℓ} as the set of devices within ℓ-th cluster,
where Ki ∩ Kj = ∅,∀i ̸= j, i, j ∈ L, L = {1, . . . , L}.
The AP computes heterogeneous functions via AirComp from
each cluster in a time-division manner. Specifically, the AP
computes fℓ with the raw data from all the Kℓ devices in
cluster ℓ. Let sk,ℓ denote one dedicated reading of the device
k in cluster ℓ. The target type-ℓ function computed at AP is
expressed as

fℓ = ϕℓ

(∑
k∈Kℓ

φk(sk,ℓ)
)

, (1)

where φk(·) is the pre-processing function at device k, and
ϕℓ(·) is the post-processing function at the AP. We adopt
the digital AirComp to perform function computation. Specif-
ically, the reading of each device is first processed by
φk(·), then the result is quantized and mapped into a vector,
and finally, it is encoded into a nested lattice codeword
(see [13], [17] for more details). We assume that each symbol
xk of the transmitted signal has been normalized into a mutual

independent symbol with zero mean and unit power. Hence,
the target recovered data at the AP of cluster ℓ when computing
a type-ℓ function is given by yℓ =

∑
k∈Kℓ

xk,ℓ.
The baseband channels from the IRS to AP, from the

device k to IRS, and from the device k to AP are denoted by
gH ∈ C1×N , hr

ℓ,k ∈ CN×1 and hd
ℓ,k ∈ C, respectively. In this

letter, we assume that all the involved channels are perfectly
known [18]. All devices in each cluster transmit concurrently
with the symbol-level synchronization assumed. In a channel
coherence interval Tt, the duration required to compute a
function is further divided into J TSs. In addition, tj , where
Θj is employed in, denotes the time interval for the j-th TS.
Then, tj is divided to L sub-TSs for the function computation
in different clusters. In sub-TS tℓ,j , the recovered signal from
cluster ℓ to compute fℓ is given by

ŷℓ,j = aℓ,j

( ∑
k∈Kℓ

he
ℓ,j,kbℓ,j,kxℓ,j,k + zℓ

)
=
∑

k∈Kℓ

xℓ,j,k+
∑

k∈Kℓ

(
aℓ,jh

e
ℓ,j,kbℓ,j,k−1

)
xℓ,j,k+aℓ,jzℓ, (2)

where bℓ,j,k, aℓ,j ∈ C are the transmitter and the receiver
scalars, respectively. Besides, he

ℓ,j,k = hd
ℓ,k + gH

ℓ Θjh
r
ℓ,k =

hd
ℓ,k + vH

j diag(gH
ℓ )hr

ℓ,k denotes the composite device-AP
channel coefficient of device k in cluster ℓ, where Θj =
diag(eȷθj,1 , . . . , eȷθj,N ) denotes the phase shift matrix of IRS,
in which θj,n ∈ [0, 2π),∀n ∈ N denotes the phase shift on the
incident signal of n-th element [19], vj = [vj,1, . . . , vj,N ]H

with vj,n = eȷθn , and zℓ ∈ C ∼ CN (0, σ2
ℓ ) denotes the

additional white Gaussian noise.
The landmark work in [17] established the fundamentals

of compute-and-forward strategy from the information theory
perspective. Accordingly, the subsequent work [13] proposed
the computation rate of AirComp, defined as the achieved
number of computed function values per channel use (in
num/Hz), which can be expressed as

rc
ℓ,j =

1
mℓ + log2 Kℓ

log+
2

(
1

MSE(ŷℓ,j , yℓ,j)

)
, (3)

with mℓ being the number of the optimal quantization bits
for the type-ℓ function computation, Kℓ being the number
of involved devices, and log+

2 (·) ≜ max{log2(·), 0}. It can
be observed from (3) that the computation rate maximization
problem can be equivalently transformed into the MSE mini-
mization problem. By adopting the uniform-forcing transceiver
proposed in [10], the solution to the MSE minimization
problem is

aℓ,j=
1

√
ηℓ,j

, bℓ,j,k=
√

ηℓ,j

(he
ℓ,j,k)H

|he
ℓ,j,k|2

, ηℓ,j=P0 min
k
|he

ℓ,j,k|2, (4)

where P0 denotes the maximum allowed transmit power. Sim-
ilarly, for the case when devices are energy-limited, we have
ηℓ,j = mink(pℓ,j,k|he

ℓ,j,k|2), where pℓ,j,k is the allocated
power of device k for current transmission. The corresponding
computation rate of cluster ℓ under BF pattern Θj is given by

rc
ℓ,j =

1
mℓ + log2 Kℓ

log+
2

(
mink(pℓ,j,k|he

ℓ,j,k|2)
σ2

ℓ

)
. (5)
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Fig. 2. Transmission protocol of the multi-cluster AirComp with DIBF.

As shown in Fig. 2, the two proposed IRS BF schemes
depend on how the IRS sets its BF during the time interval,
and are specified as follows.

A. Cluster-Adaptive IRS BF
Each cluster is mapped with a unique IRS BF pattern as well

as the TSs in the cluster-adaptive BF scheme, which provide
the performance upper bound, i.e., arbitrary BF schemes
with J > K cannot further improve the performance [14].
Accordingly, the computation rate maximization problem is
given by

(P1) : max
{tℓ},{vℓ},
{pℓ,k}

L∑
ℓ=1

wℓtℓ
mℓ+log2 Kℓ

log+
2

(
mink(pℓ,k|he

ℓ,k|2)
σ2

ℓ

)
(6a)

s.t. tℓ ≥ 0, pℓ,k ≥ 0, ∀ℓ, k, (6b)∑L

ℓ=1
tℓ ≤ Tt, (6c)

tℓpℓ,k ≤ Emax, ∀ℓ, k, (6d)
|vℓ,n| = 1, ∀ℓ, n, (6e)

where wℓ denotes the weight of cluster ℓ. Since the weight
wℓ, quantization bit mℓ, and the number of devices Kℓ of
each cluster do not affect the scheme design, we set that
wℓ = 1, mℓ = m̃, Kℓ = K̃,∀ℓ. Note that (P1) is generally a
non-convex optimization problem with non-convex norm-one
constraint (6e) and the coupled variables in (6a) and (6d).

B. Dynamic IRS BF
For the proposed general framework that the BF at IRS can

be reconfigured J times during Tt, the clusters can flexibly
choose one or multiple BF patterns for computation. The
corresponding problem is formulated as

(P2) : max
{tℓ,j},{vj},
{pℓ,j,k}

∑L

ℓ=1

∑J

j=1
wℓtℓ,jr

c
ℓ,j (7a)

s.t. tℓ,j ≥ 0, pℓ,j,k ≥ 0, ∀ℓ, j, k, (7b)∑L

ℓ=1

∑J

j=1
tℓ,j ≤ Tt, (7c)∑J

j=1
tℓ,jpℓ,j,k ≤ Emax, ∀ℓ, k, (7d)

|vj,n| = 1, ∀j, n. (7e)

Similar to (P1), we assume that wℓ = 1, mℓ = m̃, Kℓ =
K̃, ∀ℓ. Note that (P2) is still non-convex since there exist
highly-coupled variables in both (7a) and (7d), and con-
straint (7e) is generally non-convex.

III. PROPOSED ALGORITHMS

A. Proposed Algorithm for (P1)
(P1) is shown as a maximin problem, which can be con-

verted to a traditional maximization problem by intuitively

introducing the auxiliary variables to substitute the inner
minimization part. Then, multiple techniques can be adopted,
such as alternating optimization. However it is still inefficient
and may suffer from performance loss. In this section, by ana-
lyzing the inherent properties of (P1), we propose an efficient
algorithm correspondingly.

Proposition 1: The optimal solution of (P1) satisfies,

mink(p∗ℓ,k|he
ℓ,k|2) = Emax/tℓ mink |he

ℓ,k|2, ∀ℓ. (8)

Proof: Suppose that S∗ =
{
{t∗ℓ}, {v∗ℓ}, {p∗ℓ,k}

}
achieves

the optimal solution to (P1), we have p∗ℓ,k ≤ Emax/t∗ℓ , ∀ℓ, k.
The maximum allowed transmit power for the devices in
cluster ℓ becomes P0 = Emax/t∗ℓ , ∀ℓ. By combing it with (4),
Proposition 1 is obtained. ■

Inspired by Proposition 1, we introduce the auxiliary
variables {Γℓ,j} that satisfy mink |he

ℓ,k|2 ≥ Γℓ,j , ∀ℓ and
reformulate (P1) as

max
{tℓ},{vℓ},
{Γℓ}

∑L

ℓ=1

tℓ

m̃ + log2 K̃
log+

2

(
EmaxΓℓ

tℓσ2
ℓ

)
(9a)

s.t. |he
ℓ,k|2 ≥ Γℓ, ∀ℓ, k, (9b)

(6b), (6c), (6e). (9c)

Note that the objective function is jointly concave with tℓ
and Γℓ. Let vH

ℓ = [vH
ℓ 1] and qk = [diag(gH

ℓ )hr
ℓ,k hd

ℓ,k]T.
Exploiting the matrix lifting technique, i.e., define Vℓ =
vℓv

H
ℓ ,Qℓ,k = qℓ,kqH

ℓ,k, we have |he
ℓ,k|2 = Tr(VℓQℓ,k).

Besides, we convert the rank-one constraint of {Vℓ} to a
difference-of-convex form and add it to objective function as

max
{tℓ},{Vℓ},
{Γℓ}

L∑
ℓ=1

tℓ log+
2

(
EmaxΓℓ

tℓσ2
ℓ

)
m̃ + log2 K̃

− 1
2ρ

L∑
ℓ=1

(Tr(Vℓ)−∥Vℓ∥2)

(10a)
s.t. Tr(VℓQℓ,k) ≥ Γℓ, ∀ℓ, k, (10b)

Vℓ ⪰ 0, ∀ℓ, (10c)
(6b), (6c), (10d)

where ρ > 0 is the penalty factor, and ∥Vℓ∥2 denotes the
spectral norm of Vℓ. The factor ρ is harnessed to penalize
the violation of the rank-one constraint. For any given ρ

and any given point V(i)
ℓ in the i-th iteration, by linearizing

Tr(Vℓ)−∥Vℓ∥2 to Tr((I − λ(V(i)
ℓ )λH(V(i)

ℓ ))Vℓ) via the
successive convex approximation (SCA) technique,1 problem
(10) is converted to a convex optimization problem. Hence,
by decreasing the value of ρ and updating V(i)

ℓ in each
iteration, the convergence of proposed algorithm for (P1) can
be finally reached [15].

B. Proposed Algorithms for (P2)

For (P2), we first reveal the following proposition to
simplify the original problem and then propose an efficient
algorithm.

Proposition 2: The optimal solution of (P2) satisfies

min
k

(p∗ℓ,j,k|he
ℓ,j,k|2) = eℓ,j/t∗ℓ,j min

k
|he

ℓ,j,k|2, ∀ℓ, (11)

1λH(·) is the eigenvector corresponding to the biggest eigenvalue.
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where eℓ,j denotes the maximum energy of the devices in
cluster ℓ allocated for IRS BF pattern j, which satisfies∑J

j=1 eℓ,j ≤ Emax, ∀ℓ.
Proof: Suppose that S∗ =

{
{t∗ℓ,j}, {v∗j}, {p∗ℓ,j,k}

}
achieves the optimal solution to (P2), we have p∗ℓ,j,kt∗ℓ,j ≤
eℓ,j , ∀ℓ, j, k. The maximum allowed transmit power for the
devices in cluster ℓ under BF pattern v∗j becomes P0 =
eℓ,j/t∗ℓ,j , ∀ℓ. By combing it with (4), Proposition 2 is
obtained. ■

According to Proposition 2, (P2) can be reformulated as

max
{tℓ,j},{vj},
{eℓ,j}

∑L

ℓ=1

∑J

j=1

tℓ,j log+
2

(
eℓ,j mink |he

ℓ,j,k|
2

tℓ,jσ2
ℓ

)
m̃ + log2 K̃

(12a)

s.t.
∑J

j=1
eℓ,j ≤ Emax, (12b)

(7b), (7c), (7e). (12c)

By introducing the auxiliary variables {γℓ,j} that satisfy
mink |he

ℓ,j,k|2 ≥ γℓ,j , ∀ℓ, we have

max
{tℓ,j},{γℓ,j},
{eℓ,j},{vj}

∑L

ℓ=1

∑J

j=1

tℓ,j log+
2

(
eℓ,jγℓ,j

tℓ,jσ2
ℓ

)
m̃ + log2 K̃

(13a)

s.t. |he
ℓ,j,k|2 ≥ γℓ,j , ∀ℓ, j, k (13b)

(7b), (7c), (7e), (12b). (13c)

Introducing variables Sℓ,j = eℓ,jγℓ,j , ∀ℓ, j, yields

max
{tℓ,j},{γℓ,j},

{Sℓ,j},{eℓ,j},{vj}

∑L

ℓ=1

∑J

j=1

tℓ,j log+
2

(
Sℓ,j

tℓ,jσ2
ℓ

)
m̃ + log2 K̃

(14a)

s.t. Sℓ,j ≤ eℓ,jγℓ,j , ∀ℓ, j, (14b)
(7b), (7c), (7e), (12b), (13b). (14c)

Since the objective value can always be increased by raising
Sℓ,j until the constraint (14b) becomes active, it can be seen
that the constraint (14b) is satisfied with equality for the
optimal solution to problem (14).

Observing that the objective function of problem (14) is
show as a concave function with respect to the variables Sℓ,j

and tℓ,j , but the constraints (7e), (13b), and (14b) are still
non-convex. First, we convert (14b) into

Sℓ,j ≤
(
(eℓ,j + γℓ,j)2 − (e2

ℓ,j + γ2
ℓ,j)
)
/2, ∀ℓ, j, (15)

and then apply SCA technique to transform it to(
(e(i)

ℓ,j + γ
(i)
ℓ,j)

2 + 2(e(i)
ℓ,j + γ

(i)
ℓ,j)(eℓ,j + γℓ,j − e

(i)
ℓ,j − γ

(i)
ℓ,j)

− (e2
ℓ,j + γ2

ℓ,j)
)
/2, (16)

where {e(i)
ℓ,j , γ

(i)
ℓ,j} is the given local point. Second, we convert

(13b) to |vH
j qk|2 ≥ γℓ,j , ∀ℓ, j, k, and linearize it as

2ℜ{(v(i)
j )HQℓ,j,kvj} − (v(i)

j )HQℓ,j,kv
(i)
j ≥ γℓ,j , (17)

in which v
(i)
j is the given point in iteration i. Further-

more, problem (14) is approximated as a convex optimization
problem by loosening (7e) to |vj,n| ≤ 1, ∀j, n which
can be addressed by the standard solvers, the corresponding
unit-modulus BF patterns are then obtained by subtracting the
phases.

The proposed algorithm for tackling the dynamic IRS BF
scheme is shown as solving a series of convex problems.
Specifically, problem (14) has five kinds of variables, the last
of which has dimension JN , and the others are LJ . Hence,
the corresponding computational complexity is given by
O
(
IiterJ

3.5(4L + N)3.5
)

via the interior-point method [20],
in which Iiter stands for the quantity of iterations required to
attain convergence. Note that the amount of constraints and
optimization variables scale linearly with the number of par-
ticipated clusters L and BF patterns J , it can be observed that
the related computational complexity is extraordinarily large.

Remark 1: By analyzing (P2), we can observe that the opti-
mal association between IRS BF patterns {Θj} and clusters
is binary [14], i.e., each cluster only needs to select one BF
pattern to compute the function.

Low-complexity algorithm for (P2): Inspired by Remark 1
and the cluster-adaptive BF scheme, we can propose an effi-
cient low-complexity algorithm. We assume that each cluster
is assigned with a specific BF as the cluster-adaptive scheme
presented in Section III-A.The clusters are then arranged in
descending order by their respective computation rates. Each
of the first J− 1 clusters is given with a dedicated BF pattern
and the remaining L−J +1 clusters are assumed to employ the
same BF pattern ΘJ . Finally, we jointly optimize the time allo-
cation and ΘJ . By relaxing the norm-one constraints of IRS
BF, the computational complexity of the first phase is given
by O(LN3.5) [20]. The maximum computation complexity
of the sorting algorithm is given by O(L2). With given IRS
BF, we have ηℓ = Emax/tℓ|he

ℓ,min|2, 1 ≤ ℓ ≤ J − 1 where
|he

ℓ,min|2 = mink |he
ℓ,k|2. Reformulate the problem as (13), the

remaining variables to be optimized is vJ , {tℓ}, {γℓ}, where
the dimensions are given by N, L, L − J + 1, respectively.
By linearizing the non-convex constraint respect to {γℓ} via
SCA technique and relaxing the norm-one constraint, the
problem can be converted to a convex one. Hence, the overall
computational complexity of this low-complexity algorithm is
given by O(LN3.5 + L2 + Iiter(2L− J + N + 1)3.5) [20].

IV. SIMULATION RESULTS

The AP and the IRS are located at (0, 0, 10) meter (m) and
(10, 0, 10) m, respectively. The placement of each device is
random within a radius of 10 m that centered at (10, 10, 0) m.
The path-loss exponents of the AP-devices channels are set
to 3.3, whereas the path-loss exponents for the AP-IRS and
IRS-devices channels are set to 2.3. Additionally, the signal
attenuation at a reference distance of 1 m is set as 30 dB.
Unless otherwise stated, other parameters are set as: Kℓ =
K̃ = 5, ∀ℓ, L = 5, Emax = 0.01 J, σ2

z = −80 dBm, and Tt =
0.1 s. For comparison, we consider the following schemes: 1)
Upper bound: relaxing the rank-one constraint in problem
(10), which serves as a performance upper bound; 2) Cluster-
adaptive BF: the approach in Section III-A to solve (P1); 3)
Dynamic BF: the approach in Section III-B to solve (P2);
4) Low-complexity algorithm: the proposed low-complexity
algorithm for (P2).

In Fig. 3, we analyze the system performance versus the
number of IRS elements N . It can be seen that the dynamic
IRS BF designs in the case of L = J can perform almost as
well as the special case with cluster-adaptive BF and nearly
as the upper bound. Additionally, it can be seen that the
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Fig. 3. Computation rate versus the number of IRS elements N .

Fig. 4. Computation rate versus the number of IRS BF patterns J .

low-complexity algorithm is capable of achieving the same
performance as the joint optimization strategy. This shows
both the applicability of the proposed DIBF design. In compar-
ison to the cases that BFs are randomly given and without IRS,
it is observed that the proposed algorithms can greatly enhance
computation rate, with the performance gap widening as the
number of IRS elements N rises. Besides, the computation rate
of IRS-assisted AirComp with optimized IRS phase monoton-
ically increases with respect to the number of IRS elements N
since more elements can reflect more captured signal energy.

As shown in Fig. 4, we depict the computation rate versus
the number of available BF patterns J . It can be seen that
the low-complexity algorithm for DIBF can achieve similar
performance as the previous proposed joint optimization
algorithm, making it more desirable in practical. In addition,
one can see that the dynamic IRS BF scheme’s performance
improvement progressively reaches saturation as J rises.
Employing a total of J = 7 (J = 4) BF patterns is virtually
able to attain the maximum performance for L = 10 (L = 5),
and adding J further only results in a marginal performance
enhancement. It is further noted that the proposed DIBF
design can achieve nearly optimal computation rate with a
negligible performance loss (less than 6%) with only half
the number of the maximum BF patterns, demonstrating its
potential to meet the performance-cost tradeoff by managing
the number of BF patterns.

V. CONCLUSION

In this letter, we study the IRS-aided multi-cluster AirComp
system and proposed two types of IRS BF schemes, which
struck a balance between the system performance and cost.
By jointly optimizing the time allocation for various clusters,
the phase shifts at IRS, and the power allocation at devices,
the sum computation rate maximization problems for the two

scenarios were addressed. We proposed both general and low-
complexity algorithms to tackle the optimization problem with
any number of IRS BF patterns, and thus provided consid-
erable flexibility in balancing between the performance gain
of DIBF and its consequent system cost. Numerical results
demonstrated that IRS can significantly improve the function
computation performance, and presented the performance-cost
tradeoff for IRS-aided AirComp. In particular, the dynamic
IRS BF scheme was validated to be a cost-efficient strat-
egy to achieve close-to-optimal performance with only half
number of IRS BF patterns, and the proposed low-complexity
algorithm can achieve satisfactory performance compared to
the generic design.
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