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Abstract—Owing to the low communication costs and privacy-
promoting capabilities, federated learning (FL) has become a
promising tool for training effective machine learning models
among distributed clients. However, with the distributed archi-
tecture, low-quality models could be uploaded to the aggregator
server by unreliable clients, leading to a degradation or even a
collapse of training. In this article, we model these unreliable
behaviors of clients and propose a defensive mechanism to mit-
igate such a security risk. Specifically, we first investigate the
impact on the models caused by unreliable clients by deriving a
convergence upper bound on the loss function based on the gradi-
ent descent updates. Our bounds reveal that with a fixed amount
of total computational resources, there exists an optimal number
of local training iterations in terms of convergence performance.
We further design a novel defensive mechanism, named deep
neural network-based secure aggregation (DeepSA). Our exper-
imental results validate our theoretical analysis. In addition, the
effectiveness of DeepSA is verified by comparing with other
state-of-the-art defensive mechanisms.

Index Terms—Convergence bound, defensive mechanism, fed-
erated learning (FL), unreliable clients.

I. INTRODUCTION

MACHINE learning (ML) technologies, e.g., deep learn-
ing, have revolutionized the ways that information is

extracted with ground-breaking successes in various areas.
Meanwhile, owing to the advent of the Internet of Things
(IoT), the number of intelligent applications with edge com-
puting, such as smart manufacturing, intelligent transportation,
and intelligent logistics, is growing exponentially [1]–[5]. As
such, the conventional centralized deep learning is no longer
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capable of efficiently processing the dramatically increased
amount of data from the massive number of IoT devices.
To tackle this challenge, distributed learning frameworks have
emerged, e.g., federated learning (FL), enabling the decoupling
of data provisioning by distributed clients and aggregating ML
models at a centralized server [6]–[8]. Through local train-
ing and central aggregating iteratively, FL does not require
clients to share their sensitive data with the central server,
thereby effectively reducing transmission overheads as well
as promoting clients’ privacy to some extent [9]–[11].

Although the clients’ data are not explicitly exposed in
the original format, it is still possible for adversaries to infer
clients’ private information approximately, especially when the
architecture of the FL model and its parameters are not com-
pletely protected. Moreover, the existence of unreliable clients
may further create security issues in IoT applications. This is
because the server in an FL system has no access to the clients’
data, nor does it have full control of the clients’ behaviors. As
a consequence, a client may deviate from the normal behav-
iors during the course of FL, which is termed an unreliable
client in this work. Unreliable behaviors may be intentional,
e.g., by a malicious attacker disguised as a normal client, or
unintentional, e.g., by a client with hardware and/or software
limitations/defects in IoT. For example, in smart manufactur-
ing scenarios, engines with sensors that have abnormal traffic
and irregular reporting frequency may cause industrial produc-
tion interruption thus resulting in substantial economic losses
for factories [12], [13].

Unreliable clients in FL, for example, may manipulate their
outputs sent to the server and they can dominate the train-
ing process and change the judging boundary of the global
model, or make the global model deviate from the optimal
solution. To model these clients, the work in [14] proposed
that an unreliable client may interfere with the process of FL
by applying limited changes to the uploaded model parame-
ters. The work in [15] proposed a model-replacement method
that demonstrated its efficacy on poisoning models of stan-
dard FL tasks in IoT. In addition, this work also developed
and evaluated a generic constrain-and-scale technique that
incorporates the evasion of the defensive mechanism into the
abnormal clients’ loss function during training. Therefore, how
to design defensive algorithms against abnormal clients in
FL is of considerable interest. In order to detect abnormal
updates in FL, the work of [16] applied the results of client-
side cross-validation for reducing the weights of bad updates
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TABLE I
SUMMARY OF MAIN NOTATION

when performing aggregation, where each update is evaluated
over other clients’ local data. Similarly, the work in [17] also
focused on the weights and they presented a novel aggrega-
tion algorithm with the residual-based reweighting method.
The work in [18] considered the existence of unreliable partici-
pants and utilized auxiliary validation data to compute a utility
score for each participant to reduce the impact of these unre-
liable participants, while the work in [19] directly removed
the corresponding model parameters from the training proce-
dure if the accuracy of the client is lower than a predefined
threshold. The work in [20] proposed a robust aggregation
rule, called adaptive federated averaging, which detects and
discards malicious or bad local updates based on a hidden
Markov model. The work in [21] performed the first system-
atic study of local model poisoning attacks on FL, in which
they formulate attacks as optimization problems and test four
different robust FL methods. However, all of these works lack
theoretical analysis on the performance of FL systems in the
presence of unreliable clients.

It should be noted that the analysis and optimization for the
basic FL system has already been investigated in [22]–[25],
yet there are no analytical results on the security aspects in an
FL system. Therefore, in this work, we first conduct such an
analysis in the context of FL with unreliable clients. We first
introduce a model for unreliable clients in FL systems and
derive convergence bounds. Through our theoretical results,
we find that there exists an optimal local training iteration
that leads to a best system performance within a constraint on
total computing resources. Then, we design a novel defensive
mechanism, referred to as the deep neural network (DNN)-
based secure aggregation (DeepSA), to efficiently reduce the
negative effects caused by unreliable clients.

The major contributions of this article can be summarized
as follows.

1) We involve unreliable clients in FL, in which model
parameters will be scaled down and corrupted by noise
before uploading. Further, we derive an upper bound on
the loss function in FL systems with a given level of
computational resources. Our bound reveals that there
exists an optimal number of local training epochs to
achieve the best convergence performance.

2) We propose a novel defensive mechanism, i.e.,
DNN-based DeepSA, which can detect abnormal

models, and then alleviates the negative impact by
removing them from the aggregation.

3) We conduct extensive experiments on the proposed
model with the multilayer perceptron (MLP) model and
real-life datasets. Our experimental results are shown to
be consistent with the theoretical ones. Also, compared
with other existing defensive algorithms, the proposed
one can improve the FL model performance effectively.

The remainder of this article is organized as follows.
Section II introduces the background of FL. Section III details
the system models. In Section IV, we analyze the convergence
bound of the FL system with unreliable clients. Section V
proposes the DeepSA algorithm to address the unreliable
problem, and the experimental results are shown in Section VI.
Finally, we conclude this article in Section VIII. In addition,
a summary of notation is listed in Table I.

II. PRELIMINARIES FOR FEDERATED LEARNING

In this section, we will introduce the basic concepts of
FL. As a kind of distributed training frameworks [7], FL can
promote user privacy by its unique distributed learning mech-
anism. In FL, all clients share the same learning objective and
model structure, where a central server sends the current global
model parameters w to all clients Ci ∀i ∈ M � {1, 2, . . . , M},
in each communication round. Then, all clients update local
models based on the shared global model and local data set
Di. After local training, all local models will be uploaded to
the server by clients, and then aggregated by the server as the
current global model, which is expressed as

w(kτ) =
∑

i∈M
piw

(kτ)
i (1)

where w(kτ)
i is the uploaded model of the ith client at the kth

communication round, w(kτ) is the global model after aggrega-
tion at the kth communication round, τ is the number of local
training epochs, and pi = |Di|/|D| is the aggregating weight
based on the size of Di, where D =∑i∈M ∪Di and | · | repre-
sents the cardinality of a set, respectively. At the server side,
the goal is to learn a model over data that resides at the M
associated clients. Formally, this FL task can be expressed as

w∗ = arg min
w

∑

i∈M
piFi(w) (2)

where F(w) = ∑i∈M piFi(w) and Fi(·) is the local objective
function of the ith client.

In addition, the FL in this article adopts the optimization
method of gradient descent. In order to capture the divergence
between the gradient of a local and global loss function, the
gradient divergence is defined as follows [24].

Definition 1: For any i ∈ M and w, an upper bound on
‖∇Fi(w) − ∇F(w)‖ is defined as δi, i.e.,

‖∇Fi(w) − ∇F(w)‖ ≤ δi. (3)

We also define δ � [(
∑

i∈M |Di|δi)/|D|]. If the size of each
local data set is same, we know that δ = (1/M)

∑M
i=1 δi.

This divergence is governed by how the data is distributed
at different clients.
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III. SYSTEM MODELS

In FL, unreliable model updates might exist in a wire-
less transmission environment. Thus, these flawed uploads
will impair the effectiveness of the global model, mislead-
ing the updated AI model away from optimality. To be more
specific, abnormal behaviors generally can be classified into
two categories: 1) intentional and 2) unintentional. Intentional
adversary clients, also regarded as malicious clients, usually
aim to sabotage the system performance or even destroy the
learned model. For example, the values of the uploaded param-
eters may be scaled down or even completely reversed. In
contrast, unintentional behaviors could happen without any
particular purpose, for example, a noisy version of parameters
could be uploaded to the server. In this article, we propose to
model both types of abnormal clients.

We consider an FL system consisting of a single central
server and M clients, as shown in Fig. 1. We assume that each
client may upload unreliable models throughout the whole
training process.

A. Adversary Model

Each client is assumed to have a local model with the same
structure, and corresponding model parameters uploaded for
each epoch are of the same format. The shared model is guided
by these parameter vectors to the optimal value. Then, we
denote by ŵ(kτ)

i the local model of the ith unreliable client,
and express as

ŵ(kτ)
i = αw(kτ)

i + n(kτ)
i (4)

where α ∈ [−1, 1] denotes the scaling factor and n denotes the
additive noise and is assumed to follow a Gaussian distribu-
tion with N(0, σ 2). Equation (4) can well capture the abnormal
behaviors as the scalar is used to model the malicious clients
and the random noise denotes the undesirable perturbation on
the uploaded models. For example, when α = −1, it means
an adversarial client will completely reverse the uploaded
parameters on purpose, and can be recognized as a malicious
behavior. Due to the aggregation process in (1), we have

w̄(kτ) =
∑

i∈M

pi

[
(1 − pU)w(kτ)

i + pUŵi
(kτ)
]

(5)

where pU denotes the probability of the unreliable behavior.1

IV. CONVERGENCE ANALYSIS

In this section, we will propose a theoretical analysis on
the convergence of the FL system considering the existence
of abnormal behaviors. For the purpose of facilitating the
analysis, we make the following assumptions on the loss
function.

Assumption 1: We assume that the following conditions are
satisfied for all i ∀i ∈ M.

1) Fi(w) is convex.
2) All model parameters satisfy ‖w‖ ≤ �.

1We assume a same value of pU for all clients in this work. Different
unreliable probabilities for different clients maybe out of the scope, and can
be our future work.

Fig. 1. FL training framework with unreliable clients.

3) Fi(w) is ρ-Lipschitz, i.e., ‖Fi(w)−Fi(w′)‖ ≤ ρ‖w−w′‖,
for any w, w′.

4) Fi(w) is β-smooth, i.e., ‖∇Fi(w) − ∇Fi(w′)‖ ≤ β‖w −
w′‖, for any w, w′.

5) η ≤ 1
β

, where η is the step size.
6) ‖F(wt) − F(w∗)‖ ≥ ε, for all w during FL training.
We also assume that the clients participating in the training

hold the same amount of data, i.e., pi = (1/M). In general,
these assumptions with some restrictions for the convenience
of theoretical derivation can be satisfied.

A. Convergence Analysis

In this section, we evaluate the performance of FL under
abnormal behaviors by an upper bound on the difference
between E{F(w̄(T))} and F(w∗), where w̄(T) is the final global
parameters of the FL system containing M potential unreliable
clients and w∗ is the optimal model parameters that minimizes
F(w).

Theorem 1: For some ε > 0 and � > 0, when the clients in
the FL system behave unreliably with probability pU, the con-
vergence upper bound with a fixed total number of iterations
T is given by

E

{
F
(

w̄(T)
)}

− F
(
w∗)

≤ 1

T

(
ωη
(

1 − βη
2

)
− ρ

(
φ(τ)+ pU

M

[
(1−α)M�+ 2

√
Mσ
π

])

τε2

) (6)

where φ(τ) = (δ/β)((ηβ+1)τ −1)−ηδτ , ϕ = ω(1−[βη/2]),
and ω � mink [1/(‖w(kτ) − w∗‖2)].

Proof: See Appendix A.
The upper bound given by Theorem 1 demonstrates the con-

vergence result of the FL system with unreliable clients. A
lower bound means that the value of the system loss function
converges closer to the optimal one.

B. Discussion of the Convergence Bound

In this section, we will provide several key observations
about the convergence bound.

Proposition 1: If there is no unreliable client, the conver-
gence bound of FL increases, which also means a worse
system performance, as the local epochs τ increases. Since
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other parameters are basically fixed, the influence of τ on this
theoretical value is the most noteworthy.

Proof: When pU = 0, the convergence upper bound can
be expressed as 1/T(ωη(1 − [βη/2]) − [(ρ(φ(τ)))/(τε2)]). It
is evident that [(ρ(φ(τ)))/(τε2)] increases with a larger τ and
leads to a larger bound.

Proposition 2: When the probability of unreliable behav-
iors pU is larger, the convergence performance becomes worse.
However, when this percentage is fixed, the performance of the
system will improve with the number of total clients M.

Proof: Considering the analytical part in the con-
vergence bound related to M, we find the value
(pU/M)[(1 − α)M� + [(2

√
Mσ)/π ]] decreases with the

increase of M when pU is fixed, thus, the convergence bound
becomes smaller.

We note that when the total number of iterations T is con-
stant, the local training iterations τ should be as small as
possible if there is no unreliable client. This is because when
τ = 1, the FL system based on distributed gradient descent
is equivalent to a centralized training model [24]. However,
in an unreliable circumstance, there exists an optimal value
of τ ∈ [1, T] (T is an integer multiple of τ ) to have the
optimal convergence performance. Therefore, we can make
the following proposition.

Proposition 3: Under the unreliable behaviors of clients
with a fixed T , the convergence upper bound is a convex
function of the number of local epochs τ , if we treat τ as
a continuous variable.

Proof: See Appendix B.
From Proposition 3, we can see that there exists an optimal

τ which can minimize the value of the loss function to obtain
a satisfactory learning performance.

V. DEFENSIVE MECHANISM DESIGN

In this section, we will use a crafted DNN to detect the
existence of unreliable clients. Current defensive mechanisms,
such as Secprobe [18] and Krum [26], usually need an online
testing data set to adjust the aggregation weight. The testing
data set is either from clients, which may pose privacy issue,
or using a public one that may affect the accuracy. Thus, in
this work, we consider training an offline detector to recog-
nize the abnormal clients. A basic binary anomaly detection
technique using DNN operates in two steps. First, the DNN is
trained on the normal training data to learn all normal labels.
Second, each test instance is provided as an input to the DNN.
If the DNN accepts the test input, it is labeled as normal and
if the network rejects a test input, it is an anomaly. Therefore,
we propose the DeepSA algorithm based on a crafted DNN in
a one-class setting. The main implemental process is operated
in the server with a new functional module. To complete this
module, the detector is pretrained before FL with several nor-
mal parameter inputs, and these parameters can be obtained
from clients or a public data set. Once the pretraining process
ends, this module can be used for anomaly detection.

In FL, the set of local models received by the server at the
kth communication round can be expressed as

o(k) �
{

w(kτ)
1 , w(kτ)

2 , . . . , w(kτ)
i , . . . , w(kτ)

U

}
. (7)

Fig. 2. Architecture of the DNN-based detector.

We use a DNN-based anomaly detector, denoted by D, which
can be viewed as a classifier to assign a label (normal or
abnormal). Typically, the outputs produced by this detector, are
one of the following two types: 1) Scores: scoring techniques
assign a detecting score to each instance, which is utilized
to analyze the possibility of unreliable clients and 2) Labels:
techniques in this category assign a label (benign or mali-
cious) to each test instance. In our DNN-based detector, we
define the detecting result of a test instance (or observation)
by z(k) = [z(k)

1 , z(k)
2 , . . . , z(k)

U ] ∈ {0, 1}U . If zi = 0, it represents
that w(kτ)

i is the unreliable model. Therefore, the detecting
process can be given by

z(k) = D
(

o(k), o(k−1), . . . , o(1)
)

(8)

where D is the detector and we assume that whole sets of
local models (from 1st to kth communication round) can be
utilized as the input of this detector.

In detail, the server will receive the observations o(k) at
the kth communication round, and try to identify these abnor-
mal models in them. For a normal client, there should be
a certain level of correlation among its uploaded parameters
in consecutive communication rounds. However, manipulation
of parameters by anomaly clients may break this correlation,
hence, the previous observations can also assist in detect-
ing abnormal models. Therefore, in order to enhance this
difference, we use an input reshaping approach to ensure
the shift-invariance property for our detector, which can be
expressed as

Od =

⎡

⎢⎢⎢⎢⎢⎢⎣

w(kτ)
1 w((k−1)τ )

1 . . . w((k−d)τ )
1

w(kτ)
2 w((k−1)τ )

2 . . . w((k−d)τ )
2

...
...

. . .
...

w(kτ)
U−1 w((k−1)τ )

U−1 . . . w((k−d)τ )
U−1

w(kτ)
U w((k−1)τ )

U . . . w((k−d)τ )
U

⎤

⎥⎥⎥⎥⎥⎥⎦
(9)

where d is the depth of the observation. The input Od is shaped
as a multidimensional vector (U ×1×d × sw), where sw is the
size of the standard uploaded model. With this input design,
we will introduce the construction of our DNN-based detector.

As shown in Fig. 2, the DNN detector consists of two par-
allel pipelines and achieves an output with the XOR operator.
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Algorithm 1 Secure Aggregation on the Server Side

Input: The observation of all uploaded models with d depth Od ,
the well trained DNN based detector D

Output: The global model w(kτ)

1: Wait for clients to upload their weights until there are M clients’
models ok =

{
w(kτ)

1 , w(kτ)
2 , . . . , w(kτ)

i , . . . , w(kτ)
M

}

2: Update the input Od with the fresh uploaded models ok

3: Obtain the detecting results with the DNN based detector D as
zk = D

(
Od
)

4: Average the benign models and obtain w(kτ) =∑M
i=1 zipiw

(kτ)
i

5: Send the new averaged model w(kτ) to all clients
6: return w(kτ)

The input is Ok and the output is the symbol zk. Using the
fully connected layers and sufficient training, we can iden-
tify the intentional behaviors, such as the scaling operation on
the parameters. In addition, for the randomized parameters,
the convolutional layer can be more useful since the correla-
tion between the noised and normal parameters is expected to
be low. In the convolutional layer, we use zero padding with
stride size B, and set the filter size to B × l, where l is the
depth of the filter. This setting is based on the observation
that each subvector is strongly correlated with 2B neighboring
subvectors due to the structure of uploaded models.

After introducing this crafted DNN-based detector, we
present our proposed defence algorithm as shown in
Algorithm 1. As discussed above, the existence of abnormal
clients indicates that the parameters uploaded by them may
be disruptive, and it may reduce the accuracy of the global
model. To mitigate their effect on the model accuracy, we
remove the malicious models in this communication rounds
using our DNN-based detector.

Algorithm 1 gives the pseudocode of secure aggregation
on the server side. The server first waits for the local model
from each client. When all the clients finish uploading their
models to the server, these models are utilized to update the
input Od with the fresh uploaded models. Then, the server can
obtain the detecting results with the DNN-based detector and
average the benign models. For the whole system, reducing
the number of clients is equivalent to reducing the amount
of training data, which will reduce the generalization of the
global model. However, compared with the damage brought
by unreliable clients, these losses are acceptable. In addition,
considering that even a reliable client may upload a model with
poor quality, the decision result of the DNN detector will only
take effect in the current round of communication.

VI. EXPERIMENTAL RESULTS

In this section, we first evaluate the performance of the
analytical results with unreliable clients and verify the effec-
tiveness with the experimental results. Then, we demonstrate
the effectiveness of the proposed defensive mechanism by
comparing with other algorithms.2

2Related codes can be found in the following link:
https://github.com/JJisbug/UnreliableClientsinFL.

A. Experimental Settings

1) Data Set: In our experimental results, we use four
benchmark data sets for different tasks.

1) MNIST and Fashion-MNIST data sets, which both have
70K digit images of size 28 × 28, are split into 60K
training and 10K test samples.

2) The CIFAR-10 data set, which consists of 60K color
images in ten object classes, such as deer, airplane, and
dog with 6000 images included per class, is split into
50K training and 10K test samples.

3) The Adult data set, which has around 32K tabular sam-
ples and each sample has 14 attributes, is split into 20K
training and 12K test samples.

We consider the data as being independent identically dis-
tributed (i.i.d.), i.e., clients in the FL system possess the same
amount of data from training sets randomly and independently.

2) Parameter Settings: We use the MLP as the training
model to construct the FL system, and each client locally com-
putes stochastic gradient descent (SGD) updates on each data
set, and then aggregate updates to train a globally shared clas-
sifier. We conduct three cases for the unreliable client to verify
the analytical results as follows.

1) Case I: α = −1 and σ = 0.1, in which an unreliable
client uploads a completely inverse parameter with small
noise.

2) Case II: α = 0.8 and σ = 0.5, in which a large noise is
added.

3) Case III: α = 0.5 and σ = 0.3, in which the parameter
is scaling half with a medium noise.

In addition, we set the total number of clients M = 50 and the
total learning iterations T(kτ) = 300. We run each experiment
for 20 times and record the average results. If a client uploads
unreliable parameters in all communication rounds, then this
scenario can be treated as a special case in which we assume
that there are certain percentages of unreliable clients, and
other clients will upload reliable parameters during the whole
training process.

3) Comparing Defensive Mechanisms: To show the effec-
tiveness of the proposed defensive mechanisms, we provide
the following defensive mechanisms.

1) Krum [26]: The aggregated parameters are chosen
according to the minimum geometric gradient rule.

2) Secprobe [18]: The aggregated parameters are chosen
according to the testing accuracy.

3) Pearson [27]: The aggregated weights are adjusted by
the Pearson correlation.

B. Theoretical Results

In Fig. 3, we show the experimental results of loss function
value as a function of τ with pU = 0.1 under the unreliable
environment. In order to be close to reality [the local train-
ing epoch (τ ) and communication rounds (k) of clients are
not too small], the range of τ is set to [10, 100]. We can
observe that the theoretical bounds are convex functions and
close to the real results for the three cases and four data sets,
which are consistent with Theorem 1 and Proposition 3. The
reason behind this phenomenon is that a large local epochs
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Fig. 3. Comparison of the loss function value between the theoretical
and experimental results. (a) MNIST data set. (b) Fashion-MNIST data set.
(c) Cifar-10 data set. (d) Adult data set.

τ will decrease the times of uploading unreliable parameters,
while a small τ incurs much unreliability in the parameters
uploaded by all clients. In addition, with a smaller value of
added noise, the learning performance will get fewer negative
influences.

C. Experimental Results With Unreliable Behavior

In this section, we show the classification accuracy based
on the FL system with different probabilities of unreliable
clients in Fig. 4. We take case I as the abnormal client for
MNIST and Fashion-MNIST data sets, case II for the Cifar-
10 data set, and case III for the Adult data set, respectively.
In order to show different conditions, we also set the prob-
ability of unreliable clients pU to 0.05, 0.1, 0.2, and 0.4,
respectively. From these figures, we find that when there is no
abnormal client (pU = 0), the system performance decreases
with the increase of the local iteration τ , which is consistent
with Proposition 1. However, when the uploading environ-
ment is unreliable, we can note that there exists an optimal
number of local iterations τ in terms of system performance,
which is in line with Proposition 3. We can also note that
the optimal number of local training iterations increases with
the probability of abnormal clients. The intuition is that more
communication rounds will produce a larger damage to the
FL system, but more communication rounds also bring a better
performance for a normal FL system. In addition, we find that,
with an increasing probability of unreliable probability, the
system performance shows a descending trend, and a system
with relatively high probability, i.e., pU > 50%, may fall to
converge.

In Fig. 5, we show the loss function value under different
numbers of total clients that we set M to 50, 100, 150, 200,
and 250. In Fig. 5(a), we use case I, in Fig. 5(b) and (c), we
use case II, and in Fig. 5(d), we use case III, respectively.

Fig. 4. Classification accuracy of local iterations with a certain probability
of unreliable behavior. (a) MNIST data set. (b) Fashion-MNIST data set.
(c) Cifar-10 data set. (d) Adult data set.

Fig. 5. Loss function value with different number of total clients. (a) MNIST
data set. (b) Fashion-MNIST data set. (c) Cifar-10 data set. (d) Adult data
set.

We can note that the system has a better performance with
a smaller unreliable probability (pU), and the loss function
value in both figures keeps decreasing with the number of
total clients, which is consistent with Proposition 2.

D. Performance of the Proposed DeepSA Algorithm

In this section, we conduct experiments on our proposed
DeepSA-based federated training against various percentages
of unreliable clients. We use ReLU as the activation func-
tions for the hidden layers: y = ReLU(x) = max(x, 0), where
x ∈ R is the input, and y is the output of the activation func-
tion. To map the output to the interval between (0, 1), we
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Fig. 6. Successful detecting rate with a trained DNN detector under a
federated model against different probabilities of unreliable clients pU .

TABLE II
CLASSIFICATION ACCURACY COMPARISON IN THE MNIST/FASHION

MNIST DATA SET WITH DIFFERENT UNRELIABLE PROBABILITIES

choose the sigmoid function as the activation function for the
output layer: y = sigmoid(x) = [1/(1 + e−x)]. In Fig. 6, we
show the detecting results with a stable scalar α = 0.8 and
various noises. From this figure, we can observe that with
a larger standard deviation σ , the trained DNN-based detec-
tor will perform better in identifying these unreliable clients.
This is because with a larger standard deviation, a more obvi-
ous difference of parameters from neighboring communication
rounds will be recognized by the trained detector. Moreover,
it can be noted that when σ > 0.22, this detector will have
an excellent performance, which can guarantee no errors, i.e.,
the detecting rate is 1. We can also find that if pU is larger,
the successful detecting rate will decrease which means that
it is more difficult for detectors to identify.

Fig. 7 show the comparison results between the proposed
DeepSA algorithm and others, in which we set pU = 0.2
and unreliable behaviors consider cases I–III. In addition, in
Tables II and III, we consider a more practical scenario in
which clients may behave unreliably with different probabili-
ties. In detail, we assume that there are 100 clients which are
divided into four equal-size groups. The probabilities of unre-
liable behaviors for the four groups are set to 0.1, 0.2, 0.3, and
0.4, respectively. It is obvious that with our proposed DeepSA
algorithm, the federated training process performs better in
most cases. The reason is that the similarity-based detection
algorithms (Secprobe and Pearson) can only handle the noise
perturbation behavior, and Krum loses its performance due to
the limited number of participants, while the proposed algo-
rithm has a high detecting rate which enhances the learning
performance.

Fig. 7. Classification accuracy comparison between the proposed Deep-
SA algorithm and others. (a) MNIST data set. (b) Fashion-MNIST data set.
(c) Cifar-10 data set. (d) Adult data set.

TABLE III
CLASSIFICATION ACCURACY COMPARISON IN THE CIFAR-10/ADULT

DATA SET WITH DIFFERENT UNRELIABLE PROBABILITIES

In addition, the proposed defensive mechanism is applied
to four real-world data sets, i.e., Sports,3 UAV Detection,4

Energy,5 and Space Shuttle,6 which have been collected from
real-life sensors [28], [29], and the descriptions of these data
sets are listed as follows.

1) Sports: This data set comprises motion sensor data of
19 daily and sports activities each performed by eight
subjects in their own style for 5 min, and we evaluate
the performance by the accuracy of a 19-class classifier.

2) UAV Detection: This data set consists of 55 attributes
in which each data row represents an encrypted WiFi
traffic record. The output shows the current traffic is
from a UAV or not.

3) Energy: This data set consists of assessing the heating
load and cooling load requirements of buildings (i.e.,
energy efficiency) as a function of building parameters
with eight attributes, and aims to predict each of two
responses.

3https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
4https://archive.ics.uci.edu/ml/datasets/Unmanned+Aerial+Vehicle+

%28UAV%29+Intrusion+Detection
5https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
6https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Fig. 8. Classification accuracy comparison between the proposed Deep-
SA algorithm and others. (a) Sports data set. (b) UAV Detection data set.
(c) Energy data set. (d) Space Shuttle data set.

4) Space Shuttle: This shuttle data set contains nine
attributes and 58 000 numerical instances with an 80%
default accuracy.

In Fig. 8, we verify the proposed defensive algorithm under
cases I–III of unreliable clients. As can be found in this
figure, although some algorithms may have a slightly better
or equal performance than the proposed algorithm, Deep-SA
outperforms other algorithms in most cases. For example,
in the Sports data set, although DeepSA has not achieved
the top performance in case III (68% versus 69%), it has a
performance gain in other cases (4% in case I and 4.5% in
case II, respectively).

VII. RELATED WORKS

In this section, we investigate different adversarial models
in FL and defensive mechanisms, which are active areas of
research.

A. Adversarial Models in Federated Learning

The security of ML has attracted heated attention
recently [30], [31]. Although the data are not explicitly
exposed in the original format in distributed learning frame-
works, e.g., FL [10], different types of adversarial models
against distributed ML algorithms have been designed and
analyzed including poisoning attacks (e.g., [21] and [32])
and privacy attacks (e.g., [33]–[35]). For example, poisoning
attackers can control part of clients and manipulate the out-
puts sent to the server, which can mislead the global model
deviate to the designed direction [21]. Baruch et al. [14]
proposed a novel attacking method that a malicious oppo-
nent may interfere with the learning process by apply-
ing limited changes to the uploaded models. In addition,
Bhagoji et al. [32] explored the adversarial of model poison-
ing attacks on FL, which supported by a single, noncolluding

malicious client where the adversarial objective is to make
the global model misclassify a set of chosen inputs with high
confidence.

B. Defensive Mechanisms

With the development of adversarial models in FL, how
to design an effective defensive mechanism to defeat these
malicious clients has become crucial. For detecting poisoned
updates in the collaborative learning [16], the results of client-
side cross-validation were applied for adjusting the weights of
the updates when performing aggregation, where each update
is evaluated over other clients’ local data. A similar approach
based on Pearson similarity is proposed in [27]. In addition,
Zhao et al. [18], [36] considered the existence of unreliable
clients in Fl and used the auxiliary validation data to com-
pute a utility score for each participant, thus reducing the
negative impact of these unreliable participants. The work
in [26] proposed a novel poisoning defensive method in Fl.
In detail, for each client, the server will calculate the sum
of the Euclidean distances to the models of other clients,
and select the one with the minimum sum. However, the
mentioned defensive algorithms all need an online detection
process while the access to the auxiliary data set may leak
privacy.

VIII. CONCLUSION

In this work, we have introduced a new threat model
of adversary clients for FL systems. By deriving a conver-
gence bound on the loss function of the trained FL model,
we have seen that there exists an optimal number of local
training iterations to achieve the best performance with a
fixed total amount of computing resources. Furthermore, we
have designed a novel defensive algorithm using the DNN
detection technique, termed DeepSA, which can automatically
detect unreliable models and remove them from the aggre-
gation process. Extensive experimental results have validated
our analysis and the effectiveness of the proposed DeepSA
algorithm.

APPENDIX A
PROOF OF THEOREM 1

When we consider the unreliable behavior and (5), we have

w̄(kτ) = 1

M

∑

i∈M

[
(1 − pU)wi + pUŵi

]
. (10)

Then, according to Assumption 1, the difference between
F(w̄(kτ)) and F(w(kτ)) can be expressed as

F
(

w̄(kτ)
)

− F
(

w(kτ)
)

≤ ρ

∥∥∥w̄(kτ) − w(kτ)
∥∥∥

= ρ

M

∥∥∥∥∥
∑

i∈M

pU
(
ŵi − wi

)
∥∥∥∥∥

= ρ

M

∥∥∥∥∥
∑

i∈M

pU[(α − 1)wi + ni]

∥∥∥∥∥
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Fig. 9. Auxiliary parameter vector in FL.

≤ ρpU

M

[
E

∥∥∥∥∥
∑

i∈M

(α − 1)wi

∥∥∥∥∥

+ E

∥∥∥∥∥
∑

i∈M

ni

∥∥∥∥∥

]

≤ ρpU

M

[
(1 − α)M� + 2

√
Mσ

π

]
(11)

where ‖‖ denotes the L2 norm function, and � is an upper
bound of all model parameters, respectively. For simplicity,
we omit the superscript (kτ ) of wi and ni.

We define v(t)
[k] as an auxiliary parameter vector, which

follows a centralized gradient decent:

v(t)
[k] = v(t−1)

[k] − η∇F
(

v(t−1)
[k]

)
. (12)

The notation [k] defines the interval [(k − 1)τ, kτ ] for k =
1, 2, . . . , K, and the auxiliary parameter vector v(t)

[k] only works

in this interval. We denote by v(kτ)
[k] and v(kτ)

[k+1] the two dif-
ferent auxiliary vectors before and after the kth aggregation,
respectively, which can be seen in Fig. 9. At the beginning
of the interval [k], v(t)

[k] will not inherit the last result of the
previous interval but is equivalent to the global parameter after
kth aggregation, i.e., v(kτ)

[k+1] � w(kτ).
Using the upper bound in [24], we know that

F
(

w(kτ)
)

− F
(

v(kτ)
[k]

)
≤ ρφ(τ) (13)

where k is the index of the aggregation, and φ(τ) =
(δ/β)((ηβ + 1)τ − 1) − ηδτ .

Combining (11) with (13), we can obtain

F
(

w̄(kτ)
)

− F
(

v(kτ)
[k]

)

≤ ρφ(τ) + ρpU

M

[
(1 − α)M� + 2

√
Mσ

π

]

= ρ

{
φ(τ) + pU

M

[
(1 − α)M� + 2

√
Mσ

π

]}
= ρ� (14)

where φ(τ)+[pU/M][(1 − α)M� + [(2
√

Mσ)/π ]] is denoted
by �. Then, we define θ

(t)
[k] = F(v(t)

[k]) − F(w∗) for an

interval [k], where k is fixed, t is defined between (k − 1)τ ≤
t ≤ kτ . According to Assumption 1 and [24], we have

θ
(t)
[k] > ε (15)

and

1

θ
(T)
[k]

− 1

θ
(0)
[1]

≥
K−1∑

k=1

(
1

θ
(kτ)
[k+1]

− 1

θ
(kτ)
[k]

)

+ Tωη

(
1 − βη

2

)
. (16)

According to the definition of v(kτ)
[k+1], we have

v(kτ)
[k+1] = w̄(kτ). (17)

Then, we have

1

θ
(kτ)
[k+1]

− 1

θ
(kτ)
[k]

= θ
(kτ)
[k] − θ

(kτ)
[k+1]

θ
(kτ)
[k] θ

(kτ)
[k+1]

=
F
(

v(kτ)
[k]

)
− F

(
v(kτ)

[k+1]

)

θ
(kτ)
[k] θ

(kτ)
[k+1]

=
F
(

v(kτ)
[k]

)
− F

(
w̄(kτ)

)

θ
(kτ)
[k] θ

(kτ)
[k+1]

≥ −ρ�

ε2
. (18)

Combining (16) with (18), we have

1

θ
(T)
[k]

− 1

θ
(0)
[1]

≥ −ρ(K − 1)�

ε2
+ Tωη

(
1 − βη

2

)
. (19)

When k = K, according to Assumption 1, we can obtain

F
(

ŵ(T)
)

− F
(
w∗) ≥ ε. (20)

Therefore, (20) can be expressed as

1

F
(
w̄(T)

)− F(w∗)
− 1

θ
(T)
[K]

= θ
(T)
[K] + F(w∗) − F

(
w̄(T)

)

(
F(w̄(T)) − F(w∗)

)
θ

(T)
[K]

=
F
(

v(T)
[k]

)
− F

(
w̄(T)

)

(
F
(
w̄(T)

)− F(w∗)
)
θ

(T)
[K]

≥ −ρ�

ε2
. (21)

Summing up (19) and (21), we have

1

F
(
w̄(T)

)− F(w∗)
− 1

θ
(0)
[1]

= Tωη

(
1 − βη

2

)
− ρK�

ε2

(a)= T

(
ωη

(
1 − βη

2

)
− ρ�

τε2

)
(22)

where step (a) is obtained by T = Kτ .
Note that θ

(0)
[1] > 0, the above inequality can be simplified as

1

F
(
ŵ(T)

)− F(w∗)
≥ T

(
ωη(1 − βη

2
) − ρ�

τε2

)
. (23)

According to the definition, we know that w∗ is the optimal
model parameters minimizing F(w). Hence, F(ŵ(T)

[k] ) ≥ F(w∗)
and this inequality can be true when the right-hand side of
the inequality is less than 0. Note that when the upper bound

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 09,2021 at 05:07:38 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: FEDERATED LEARNING WITH UNRELIABLE CLIENTS: PERFORMANCE ANALYSIS AND MECHANISM DESIGN 17317

on the parameter � or the unreliable pU or the additive noise
power σ is big enough,

T

⎛

⎝ωη

(
1 − βη

2

)
−

ρ
(
φ(τ) + pU

M

[
(1 − α)M� + 2

√
Mσ
π

])

τε2

⎞

⎠

will less than zero. In this case, although the inequality (23)
is true or not true it will make no any sense. This can be
interpreted as that the system will crash when the learning
circumstance is unacceptable. Similarly, when local train-
ing epoch τ continues to increase without limitation, the
right-hand side of this inequality will be smaller than zero.
Therefore, for ease of analysis, we assume that there are cer-
tain limits on �, pU , σ , and τ . In other words, we assume
that T(ωη(1 − [βη/2]) − [ρ�/τε2]) > 0. Then, taking the
reciprocal of the above inequality yields

F
(

ŵ(T)
)

− F
(
w∗)

≤ 1

T

(
ωη
(

1 − βη
2

)
− ρ

(
φ(τ)+ pU

M

[
(1−α)M�+ 2

√
Mσ
π

])

τε2

) . (24)

This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

First, we define H(τ ) as

H(τ ) � φ(τ) + ∇
τ

(25)

where φ(τ) = (δ/β)((ηβ + 1)τ − 1) − ηδτ and ∇ =
(pU/M)[(1 − α)M� + [(2

√
Mσ)/π ]] > 0, respectively.

With a slight abuse of τ , we consider continuous values of
τ > 1, and then have

H′(τ ) = − ∇
τ 2

+ δ(ηβ + 1)τ (ln(ηβ + 1)τ − 1) + δ

βτ 2
(26)

and

H′′(τ ) = δ

βτ 4

(
τ 3(ηβ + 1)τ ln2(ηβ + 1)

−2τ(ηβ + 1)τ
(
ln(ηβ + 1)τ − 1

)− 2τ
)

+ 2∇
τ 3

= δ

βτ 3

(
(ηβ + 1)τ

((
ln(ηβ + 1)τ − 1

)2 + 1
)

− 2
)

+ 2∇
τ 3

. (27)

We then define f (x) as

f (x) � x
(
(ln x − 1)2 + 1

)
− 2 (28)

then, the derivative of f (x) can be expressed as

f ′(x) = (ln x − 1)2 + 2(ln x − 1) + 1

= (ln x − 1 + 1)2

= ln2 x ≥ 0. (29)

Note that (ηβ + 1)τ ≥ 1 since τ ≥ 1, ηβ ≥ 0, we can know
that

f (ηβ + 1)τ ≥ f (1) = 0. (30)

Combining (27), (28), and (30), we have

H′′(τ ) ≥ 0. (31)

Therefore, under the unreliable behaviors of clients with a
fixed T , the convergence upper bound is a convex function of
the number of local epochs τ . This completes the proof.
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