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Abstract—The explosive growth of dynamic and heterogeneous
data traffic brings great challenges for 5G and beyond mobile
networks. To enhance the network capacity and reliability, we
propose a learning-based dynamic time-frequency division du-
plexing (D-TFDD) scheme that adaptively allocates the uplink
and downlink time-frequency resources of base stations (BSs) to
meet the asymmetric and heterogeneous traffic demands while
alleviating the inter-cell interference. We formulate the problem
as a decentralized partially observable Markov decision process
(Dec-POMDP) that maximizes the long-term expected sum rate
under the users’ packet dropping ratio constraints. In order to
jointly optimize the global resources in a decentralized manner,
we propose a federated reinforcement learning (RL) algorithm
named federated Wolpertinger deep deterministic policy gradient
(FWDDPG) algorithm. The BSs decide their local time-frequency
configurations through RL algorithms and achieve global training
via exchanging local RL models with their neighbors under a
decentralized federated learning framework. Specifically, to deal
with the large-scale discrete action space of each BS, we adopt a
DDPG-based algorithm to generate actions in a continuous space,
and then utilize Wolpertinger policy to reduce the mapping errors
from continuous action space back to discrete action space. Simula-
tion results demonstrate the superiority of our proposed algorithm
to the benchmark algorithms with respect to system sum rate.

Index Terms—Dynamic TFDD, decentralized partially obser-
vable Markov decision process, federated learning, multi-agent
reinforcement learning, resource allocation.
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I. INTRODUCTION

DRIVEN by the burgeoning demands of various services
coming from smart cities and industries, 5th generation

(5G) and beyond wireless communication systems are facing the
challenges of diverse quality-of-service (QoS) requirements [1],
[2], [3]. The conventional “one-size-fit-all” network infrastruc-
ture may not be able to simultaneously meet the heterogeneous
service requirements. Network slicing has been proposed to
“slice” the mobile infrastructure into multiple logical networks,
which provides flexible network services in a cost-efficient
way [4], [5]. The key problem for network slicing is to dy-
namically and efficiently allocate the computation and com-
munication resources, e.g., computing frequencies [4], transmit
power [6], [7], radio spectrum [8] and transmission time [9], to
meet various and even conflicting QoS demands.

Time division duplexing (TDD), as a typical application of
network slicing, is able to accommodate asymmetric traffic de-
mands in the uplink (UL) and downlink (DL) by allowing the UL
and DL traffic to operate in different subframes [10]. The TDD
system can be mainly classified into two categories: static TDD
(S-TDD) and dynamic TDD (D-TDD). For S-TDD [11], [12],
[13], all base stations (BSs) adopt the same and synchronized
UL and DL subframe configurations, which however may not
be efficient if the traffic demands are dynamic and asymmetric
across the cells. To improve the resource utilization efficiency,
D-TDD is proposed, where BSs can adopt different subframe
configurations. However, D-TDD suffers from additional inter-
cell interference due to the asynchronous transmissions, i.e., the
UL/DL transmissions in a cell may interfere with the DL/UL
transmissions in its neighboring cells [14]. To alleviate the
inter-cell interference, the BSs can be divided into different
clusters [15], where the BSs within each cluster adopt the
same subframe configuration. Another interference alleviation
approach is to adjust the wireless signal transmission strategies,
i.e., interference cancellation [12], [16], power control [17], [18]
and beamforming [17], [19], [20], where the BSs cooperatively
optimize their signal transmission strategies via convex opti-
mization or heuristic algorithms. For this type of approach, the
subframe configuration is usually selected from pre-defined can-
didates, e.g., the seven subframe configurations of 3GPP [21],
without adapting to the real-time traffic demands.

The network traffic demands and channel states are highly
dynamic and unpredicted in D-TDD systems, making it costly
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to design the adaptive subframe configurations by the conven-
tional model-based optimization methods. Advanced model-free
methods such as single-agent reinforcement learning (RL) [22],
[23] and multi-agent reinforcement learning (MARL) [24], [25],
[26] have been recently applied to solve the sequential resource
allocation problems in complex and dynamic wireless networks,
where the agents can learn the policy in a trial-and-error manner.
There are two main types of MARL approaches for designing
the subframe configurations in the D-TDD system: centralized
MARL [24] and decentralized MARL [25], [26]. The subframe
configuration in [24] depends on the coordination of a central-
ized controller. The BSs in [25], [26] independently make local
subframe configuration decisions, while treating other BSs as
part of the environment.

Based on the aforementioned literature, there are two chal-
lenges left unsolved. The first challenge is to design the D-TDD
scheme to meet the heterogeneous QoS demands of different
user equipment (UE) types. In the existing literature, most of
the D-TDD subframe configurations are cell-centric, where each
BS allocates the number of UL/DL subframes depending on
the average UL/DL data traffic inside this cell without further
differentiating the resource demands of the specific UEs. How-
ever, the data traffic patterns and the QoS requirements may
vary significantly for different UE types in a heterogeneous
network, which has been largely overlooked in the existing liter-
ature. To satisfy the user-centric heterogeneous QoS demands,
we propose a learning-based dynamic time-frequency division
duplexing (D-TFDD) framework. The second challenge is to
jointly optimize the resources for local traffic adaptation and
global interference alleviation without collecting the private
states from each BS. In the existing literature, the centralized
MARL subframe configuration requires the states of all BSs,
which may not be easy to implement in practice due to the
curse of dimensionality and privacy issues. Moreover, the de-
centralized MARL subframe configuration may not efficiently
avoid inter-cell interference if the BSs’ learning processes are
independent. To tackle this challenge, inspired by the advantages
of federated learning (FL) [27], [28], we propose a federated
reinforcement learning algorithm to design the dynamic resource
allocation, aiming to meet heterogeneous UE demands while
coordinating the inter-cell interference in a decentralized and
privacy-preserving manner.

In this work, we propose a user-centric learning-based re-
source allocation framework in a heterogeneous cellular network
consisting of multiple BSs, ground UEs (GUEs) and unmanned
aerial vehicles (UAVs), where the BSs adaptively allocate time-
frequency resources to satisfy the heterogeneous QoS demands
characterized by the packet dropping ratio constraints. We sum-
marize the main contributions as follows.
� We propose a learning-based D-TFDD scheme in a het-

erogeneous cellular system with dynamic UL and DL
packet queuing processes. The proposed scheme exploits
the merits of both D-TDD and dynamic frequency divi-
sion duplexing (D-FDD) by jointly allocating the time-
frequency resources. We adopt D-TDD to adapt the BSs’
subframe allocation to the asymmetric UL/DL traffic from
a cell-centric perspective, and utilize D-FDD to cater the

subchannel allocation to the heterogeneous QoS demands
from a user-centric perspective.

� We formulate the dynamic resource allocation problem
under the proposed D-TFDD scheme as a decentralized
partially observable MDP (Dec-POMDP), where each BS
only has partial observation of the network environment.
The BSs adaptively decide the subframe and subchannel
allocations to maximize the long-term expected sum rate
of the network while satisfying the UEs’ packet dropping
ratio constraints.

� We propose a federated reinforcement learning algorithm
named federated Wolpertinger deep deterministic policy
gradient (FWDDPG) to solve the above optimization prob-
lem. The dimensionality of action space for D-TFDD
control at each BS increases substantially as the number
of UEs, subframes and subchannels increases. To deal
with the large-scale discrete action space, we first adopt
a DDPG-based policy at each BS to generate actions in
a continuous space, and then discretize the actions based
on Wolpertinger policy to reduce the mapping errors. For
model aggregation across the BSs, we adopt a peer-to-peer
FL architecture without a centralized server, where the
BSs exchange their neural network parameters with their
one-hop neighbors to avoid privacy leakage and single
point failure.

� Simulation results show that our proposed D-TFDD
scheme outperforms other benchmark TDD schemes, ver-
ifying the advantages of dynamically allocating multi-
domain resources in serving heterogeneous UEs. Further-
more, the proposed algorithm outperforms independent
DDPG (IDDPG) and it is even superior to the central-
ized multi-agent DDPG (MADDPG) by properly adjusting
the Wolpertinger coefficient. The simulation reveals that,
with sufficient system resources, the BSs prefer allocating
more subchannels to the UEs with heavier traffic loads for
throughput enhancement, and adopting similar subframe
configurations across the cells for interference alleviation.
Furthermore, in a resource-constrained regime, the BSs
prioritize meeting local QoS constraints over avoiding
interference.

The rest of this paper is organized as follows. In Section II, we
present the system model of the proposed D-TFDD network. In
Section III, we formulate the dynamic resource optimization
problem as a Dec-POMDP. In Section IV, we propose the
FWDDPG algorithm to obtain the optimal resource allocation
policies. Section V discusses the simulation results. At last,
Section VI concludes the paper.

II. SYSTEM MODEL

We consider a heterogeneous multi-cell network which con-
sists of a set B � {1, 2, . . . , B} of BSs serving a set U �
{UGUE,UUAV} of UEs, where UGUE and UUAV denote the set
of GUEs and UAVs, respectively. We denote Ub as the set of
UEs served by BS b inside cell b.

A time-framed D-TFDD framework is shown in Fig. 1, where
the DL/UL subframe configurations are dynamic across cells and
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Fig. 1. An illustration of proposed D-TFDD framework in time frame T .

time frames. Each time frame is made up of F subframes, and
the length of the subframe is τ . For cell b in time frame T , the
first f b(T ) ∈ {0, 1, . . . , F} number of successive subframes are
used for DL transmissions and the rest of F − f b(T ) number of
successive subframes are used for UL transmissions.

We adopt orthogonal frequency division multiple access
(OFDMA) for multiple access inside each cell, where the set of
orthogonal subchannels is denoted by N � {1, 2, . . . , N} with
the bandwidthW for each subchannel. Assume that the number
of subchannels is not less than the number of UEs served by any
BS, i.e., N ≥ |Ub|, ∀b. Let φnb,u(T ) ∈ {0, 1} denote whether or
not subchannel n is allocated to UE u inside cell b for DL
transmissions, where φnb,u(T ) = 1 denotes the subchannel n is
allocated to UE u for f b(T ) number of successive DL subframes
andφnb,u(T ) = 0means not. Similarly, for UL transmissions, the
subchannel allocation is defined as φnu,b(T ) ∈ {0, 1}. Assume
each subchannel n can serve at most one receiver within a cell
at a time, which can be represented as

∑
u∈Ub φnb,u(T ) ≤ 1 and∑

u∈Ub φnu,b(T ) ≤ 1.
We consider quasi-static fading, where the channel state stays

constant during each time frame for any given subchannel. Let
gntx,rx(T ) denote the channel fading gain from transmitter tx to
receiver rx on subchannel n at time frame T , where tx and rx can
be any UE u ∈ U or any BS b ∈ B. The channel fading gain of
gntx,rx(T ) includes both large-scale and small-scale fading [29].
To compute the large-scale fading, the distance from transmitter
tx to receiver rx is needed. We assume each UAV follows a
pre-defined trajectory inside its associated cell (to fulfill specific
tasks, e.g., surveillance), and the GUEs’ and BSs’ locations are
static. For the ease of analysis, we discretize the flight trajectory
of each UAV by a series of discrete locations, where we assume
its location is static within a time frame T and can be different
across time frames [30], [31]. Here, we adopt three-dimensional
Cartesian coordinate and define the locations of transmitter tx
and receiver rx at time frame T as (Xtx(T ), Ytx(T ), Htx(T ))
and (Xrx(T ), Yrx(T ), Hrx(T )), respectively. Then, the three-
dimensional distance between transmitter tx and receiver rx is

βtx,rx(T ) = ‖(Xtx(T ), Ytx(T ), Htx(T ))

− (Xrx(T ), Yrx(T ), Hrx(T ))‖2, (1)

where ‖ · ‖2 is Euclidean distance. We adopt a general path
loss model ξ(βtx,rx(T )) to consider both line-of-sight (LoS) and
none-line-of-sight (NLoS) links. According to the well known
International Telecommunication Union (ITU) model [32], [33],
the probability of having a LoS link between transmitter tx and
receiver rx is given by

PrLoS (βtx,rx(T ))

=

c4∏
j=0

⎡⎣1− exp

⎛⎝−
[
Htx(T )− (j+0.5)(Htx(T )−Hrx(T ))

c4+1

]2

(
√
2c3)

2

⎞⎠⎤⎦,
(2)

where {c1, c2, c3} are environment-dependent parameters and

c4 = �βtx,rx(T )
√
c1c2

1000 − 1	. The probability of having a NLoS
link between transmitter tx and receiver rx is given by

PrNLoS (βtx,rx(T )) = 1− PrLoS (βtx,rx(T )) . (3)

Then, the general path loss model ξ(βtx,rx(T )) is given by

ξ (βtx,rx(T )) =

{
ALoSβtx,rx(T )

αLoS

, with prob. (2),

ANLoSβtx,rx(T )
αNLoS

, with prob. (3).
(4)

LetALoS andANLoS denote the reference path loss for LoS and
NLoS links, and αLoS and αNLoS denote the path loss exponent
for LoS and NLoS links, respectively. Furthermore, Nakagami-
m small-scale fading is adopted in our model. Let hntx,rx(T )
denote the small-scale fading gain on subchannel n between
transmitter tx and receiver rx at time frameT , and the cumulative
distribution function of hntx,rx(T ) can be obtained as

F(x) Δ
= Pr

[
hntx,rx(T ) ≤ x

]
= 1−

mtx,rx∑
j=0

(mtx,rxx)
j

j!
exp (−mtx,rxx) , (5)

where mtx,rx is the fading parameter. Taking into account both
the large-scale and small-scale fading, the channel fading gain
is thus given by

gntx,rx(T ) = [ξ(βtx,rx(T ))]
−1 hntx,rx(T ). (6)

Consider that a typical UE u is associated with a typical
BS b. Let Pb and Pu denote the transmit power of BS b and
UE u, respectively. Consider a DL receiver UE u is receiving
information from BS b on subchannel n. UE u may suffer from
the BS-to-UE interference from the set of DL cells Bn,DL(t)\b
and UE-to-UE interference from the set of UL cells Bn,UL(t) in
subframe t, where the total interference power received at UE u
is given by

Inu (t) =
∑

b′∈Bn,DL(t)\b

∑
u′∈Ub′

φnb,′u′(T )Pb′g
n
b,′u(T )

+
∑

b′∈Bn,UL(t)

∑
u′∈Ub′

φnu,′b′(T )Pu′g
n
u,′u(T ). (7)
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Note that, though we assume the channel fading gains remain
unchanged during a time frame T , the set of interfering cells can
be different across different subframes t due to the dynamic time
and frequency allocation. Therefore, the signal to interference
plus noise ratio (SINR) at the DL receiver UE u in subframe t
on subchannel n is given by

SINRn
b,u(t) =

Pbg
n
b,u(T )

Inu (t) +N0W
, (8)

where N0 is the variance of white Gaussian noise. Consider
that data transmission between any pair of transmitter tx and
receiver rx is successful only if the received SINR is no less
than a pre-defined threshold ςrx. The DL achievable rate at UE
u is expressed as

Rn
b,u(t) = 1

(
SINRn

b,u(t) ≥ ςu
)
τW log2 (1 + ςu) , (9)

where 1(·) is the indicator function that takes the value of 1 if
the event happens and the value of 0 if not. Here, the achievable
rate is measured in bits per subframe. As the UE can operate on
multiple subchannels, the total DL achievable rate Rb,u(t) for
UE u is given by

Rb,u(t) =
∑
n∈N

φnb,u(T )R
n
b,u(t). (10)

Next, we discuss the UL achievable rate at a typical BS b.
Consider a UL receiver BS b that is operating on subchannel n
may receive the co-channel interference from adjacent DL and
UL cells, i.e., the BS-to-BS interference from the set of DL cells
Bn,DL(t) and UE-to-BS interference from the set of UL cells
Bn,UL(t)\b in subframe t, which is expressed as

Inb (t) =
∑

b′∈Bn,DL(t)

∑
u′∈Ub′

φnb,′u′(T )Pb′g
n
b,′b(T )

+
∑

b′∈Bn,UL(t)\b

∑
u′∈Ub′

φnu,′b′(T )Pu′g
n
u,′b(T ). (11)

The SINR and achievable rate at the UL receiver BS b are
respectively given by

SINRn
u,b(t) =

Pug
n
u,b(T )

Inb (t) +N0 W
, (12)

and

Rn
u,b(t) = 1

(
SINRn

u,b(t) ≥ ςb
)
τW log2 (1 + ςb) . (13)

Therefore, for UEu, the total UL achievable rateRu,b(t) is given
by

Ru,b(t) =
∑
n∈N

φnu,b(T )R
n
u,b(t). (14)

Each UE u maintains a local UL queue and a DL queue at
the BS side. At the beginning of time frame T (before the data
transmission), let Q̂DL

u (T ) and Q̂UL
u (T ) respectively denote the

DL and UL queue lengths of UE u, which are the sizes of the
remaining packets in the DL and UL buffers.

For UE u in time frame T , the amount of DL received packets
at UE u during f b(T ) successive DL subframes is defined as

ψDL
u (T ) = min

⎧⎨⎩Q̂DL
u (T ),

TF+fb(T )∑
t=TF+1

Rb,u(t)

⎫⎬⎭ . (15)

where ψDL
u (T ) cannot exceed the amount of packets in the

current DL queue Q̂DL
u (T ). Similarly, the amount of UL received

packets at BS b from UE u during the remaining F − f b(T )
subframes is given by

ψUL
u (T ) = min

⎧⎨⎩Q̂UL
u (T ),

(T+1)F∑
t=TF+1+fb(T )

Ru,b(t)

⎫⎬⎭ , (16)

where ψUL
u (T ) cannot exceed the amount of packets in the

current UL queue Q̂UL
u (T ).

For any UEu, we consider that UL and DL packets arrive at the
end of each time frame T . Consider that the sizes of UL packets
DUL

u (T ) and DL packets DDL
u (T ) follow Poisson processes of

P(λUL
u ) and P(λDL

u ), respectively, where λUL
u and λDL

u are the
average UL and DL packet sizes of UE u, respectively.

Therefore, we can deduce that the DL queue length for UE u
at the beginning of time frame T + 1 evolves as

Q̂DL
u (T + 1) = Q̂DL

u (T )− ψDL
u (T ) +DDL

u (T ), (17)

where DL buffer at the BS is assumed to be sufficiently large.
Similarly, the UL queue length for UE u evolves as

Q̂UL
u (T + 1)

= min
{
Q̂max

u , Q̂UL
u (T )− ψUL

u (T ) +DUL
u (T )

}
, (18)

where Q̂max
u is UL data buffer size at UE u. Once the UL queue

length exceeds the buffer size Q̂max
u , the newly arrived packets

will be dropped.
To characterize the reliability of UL transmission, we denote

du(T ) as the dropping ratio of UE u estimated at the end of time
frame T , which is the ratio of total dropped data to total arrived
data over the most recent T − Γ time frames, i.e.,

du(T ) = 1−
∑T

l=Γ+1 ψ
UL
u (l) + Q̂UL

u (T + 1)− Q̂UL
u (Γ + 1)∑T

l=Γ+1D
UL
u (l)

,

(19)

where Γ = max[0, T − Λ], and Λ is the window size that re-
moves the effect of the earlier history.

We consider that each BS can offerE different types of slices,
where each slice provides a customized service for the UEs with
similar QoS requirements. Taking slice e ∈ {1, . . . , E} as an
example, the set of UEs accessing slice e is defined as Ue, and
the maximum tolerable dropping ratio for each UE in this slice
is dmax

e . The packet dropping ratio constraint is given by

du(T ) ≤ dmax
e . (20)

Our target is to jointly optimize the subframe and subchannel
allocation for maximizing the long-term sum rate under the UEs’
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packet dropping ratio constraints, i.e.,

max
{φn

b,u(T ),φn
u,b(T ),fb(T ),∀b,∀T}

Ψ∑
T=0

U∑
u=1

[
ψDL
u (T ) + ψUL

u (T )
]
,

s.t. du(T ) ≤ dmax
e , ∀u, ∀T, (21)

where Ψ is the total number of time frames.

III. DECENTRALIZED PARTIALLY OBSERVABLE MDP FOR

D-TFDD NETWORKS

All the BSs coordinate to control the inter-cell interference
and serve UEs in a decentralized way. Each BS independently
makes the resource allocation decisions based on its local ob-
servations, with the aim of maximizing the long-term expected
sum rate while satisfying the local QoS requirements of its
serving UEs. We model this cooperative multi-agent task as a
Dec-POMDP.

State: Denote the joint state space of all BSs by S = ⊗Sb,
∀b ∈ B, with ⊗ as the Cartesian product, where Sb is the set
of states of BS b. Considering that each BS only has partial
observations of the network due to privacy issues. We denote
the state of BS b by

sb(T ) =
{(

Q̂UL
u (T ), Q̂DL

u (T )
)∣∣∣u ∈ Ub

}
, (22)

which includes the current UL and DL queue lengths of all UEs
served by this BS. The joint state of the network is denoted by
s(T ) = ⊗sb(T ) ∈ S .

Action: Denote the action space of BS b by Ab and the joint
action space of all BSs by A = ⊗Ab, ∀b ∈ B. Let ab(T ) ∈ Ab

represent the action of BS b in time frame T . Each BS’s action is
to decide the number of DL subframesf b(T ), the DL subchannel
allocation φnb,u(T ) and UL subchannel allocation φnu,b(T ), i.e.,

ab(T ) =
{(
f b(T ),

{
φnb,u(T )

}
n∈N ,{

φnu,b(T )
}
n∈N

)∣∣∣u ∈ Ub
}
. (23)

Remark 1: We derive the size of action space for BS b as
follows. Take the UL subchannel allocation for BS b as an
example. Let J denote the number of UEs that are allocated
with at least one UL subchannels in this cell and ηj denote the
non-zero number of UL subchannels allocated to the j-th UE in
this UE set. For each time frame, the UL subchannel allocation
action has NumUL number of possible choices, i.e.,

NumUL = NumDL =

|Ub|∑
J=0

N−J+1∑
η1=1

N−J+2−η1∑
η2=1

· · ·

N−∑J−1
j=1 ηj∑

ηJ=1

CJ
|Ub|C

η1

N Cη2

N−η1
· · ·CηJ

N−∑J−1
j=1 ηj

, (24)

which is related to the total number of subchannels N and UEs
|Ub| served by BS b. First, BS b selects J ∈ {0, . . . , |Ub|} out of
|Ub| UEs for subchannel assignment, which has CJ

|Ub| number
of choices. Then, BS b sequentially assigns the subchannels to
these J UEs, where the j-th UE can select from the remaining

N −∑j−1
j′=1 ηj′ subchannels and has Cηj

N −
∑j−1

j′=1 ηj′ number
of choices. We further denote the number of possible choices
of DL subchannel allocation action by NumDL and can easily
deduce that NumDL = NumUL. Moreover, for each time frame,
since the BS allocates the first f b(T ) successive subframes for
DL transmission, the subframe configuration action has F + 1
number of possible choices. Therefore, the size of the action
space |Ab| is given by∣∣Ab

∣∣ = NumUL × NumDL × (F + 1) , (25)

which increases rapidly with the number of subchannel N , the
number of UE |Ub| and the number of subframe F .1

Define policy of BS b as a function mapping from the state
space to action space, which is expressed as a conditional
probability density function of

πb
(
ab(T )

∣∣sb(T ))
= Pr

(
Ab(T ) = ab(T )

∣∣Sb(T ) = sb(T )
)
, (26)

where Sb(T ) and Ab(T ) denote the state and action of BS
b in time frame T that have not yet been observed or taken,
and sb(T ) and ab(T ) represent the observed state and executed
action, respectively. We denote the policy profile of the BSs by
π = [π1, . . . , πB ].

Transition probability: The joint action a(T ) = ⊗ab(T ) ∈
A causes the state transition of all BSs in time frame T . The
transition probability ρ of the entire network environment that
moves from state s(T ) to state s(T + 1) after taking joint action
a(T ) is assumed to be unknown by the BSs.

Reward: Each BS receives an immediate reward rb(T ) when
action ab(T ) is executed in state sb(T ), i.e.,

rb(T ) =
∑
u∈Ub

[
ψDL
u (T ) + ψUL

u (T ) −1 (du(T ) > dmax
e )�] ,

(27)
where ψDL

u (T ) is the DL rate given in (15), ψUL
u (T ) is the UL

rate given in (16), and� is a positive constant that penalizes the
violation of the QoS requirements. We assume that each BS can
only observe its own reward as the reward is private information.

Due to the correlated queue dynamics and inter-cell inter-
ference, action ab(T ) affects not only the achievable rate and
dropping ratio of BS b, but also that of other BSs in the subse-
quent time frames. We characterize the long-term sum-reward
of all BSs in the cooperative system by V (T ), i.e.,

V (T ) =

Ψ∑
l=T

B∑
b=1

γl−T rb(l), (28)

where γ ∈ [0, 1] is the discount factor that reflects the effect of
future rewards.

Based on the above discussions, we define Dec-POMDP as a
five-tuple of ({Sb}b∈B, {Ab}b∈B, ρ, {rb}b∈B, γ). However, it is
difficult to know the exact value of V (T ), due to the randomness
of future states and actions. More specifically, the future states
depend on the transition probability ρ, and the future actions

1For example, when N = 5, |Ub| = 3 and F = 10, we have |Ab| =
11534336.
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depend on the joint policy π. Given joint action A(T ) = a(T )
is taken at joint state S(T ) = s(T ), we define the conditional
expectation of the long-term sum-reward of all BSs under joint
policy π as

Qπ (s(T ),a(T ))

= ES(T+1),A(T+1),...[V (T ) |S(T ) = s(T ),A(T ) = a(T ) ],
(29)

which is also defined as the state-action value function. The
objective of the BSs is to find the optimal joint policy π∗ =
[π1∗, . . . , πB∗] that maximizes the state-action value function in
(29), i.e.,

π∗ = argmax
π

Qπ (s(T ),a(T )) , ∀s(T ), ∀a(T ). (30)

IV. FEDERATED REINFORCEMENT LEARNING BASED

RESOURCE ALLOCATION ALGORITHM

To solve the above resource allocation problem, there are
two challenges to be addressed. The first challenge is to handle
the large-scale discrete action space. As shown in Remark 1,
the dimensionality of action space for BS b is high when the
numbers of subchannels, subframes and UEs are large. The
conventional value-based RL algorithms, e.g., deep Q network,
may suffer from a long training convergence time and is even not
tractable due to the curse of dimensionality. The policy-based
algorithms, e.g., DDPG, can deal with continuous action space
and achieve good convergence [34], [35]. To deal with the
dimensionality of the large-scale discrete action space, we first
adopt a DDPG-based algorithm to generate actions for each BS
in the continuous action space, and then discretize the actions
based on Wolpertinger policy [36] to reduce the action mapping
errors. Moreover, the second challenge is to jointly optimize the
sum-reward in a decentralized manner. The conventional MARL
algorithms with centralized training, i.e., MADDPG [37], suffer
from the threats of privacy leakage since each BS is required
to upload its local private information (e.g., states, actions and
rewards) to the centralized controller for joint model training.
To jointly optimize training among BSs, we propose a federated
reinforcement learning algorithm named FWDDPG, where each
BS performs local model training in a decentralized manner and
updates the local model parameters by aggregating the param-
eters received from its one-hop neighbors. The architecture of
our proposed algorithm is shown in Fig. 2 and the details will
be described in the following subsections.

A. Action Generation Based on Wolpertinger Policy

We adopt an actor-critic based algorithm with a deterministic
policy, i.e., DDPG, to deal with the high dimensional action
space, where the policy maps from state to a deterministic action
instead of a probability distribution over the actions. However,
the actions generated by the deterministic policy are continuous
and may not be within the action space of Ab. To solve this
problem, we further discretize the output of the actor network
and adopt the Wolpertinger policy for mapping error reduction,

Fig. 2. The architecture of the proposed FWDDPG algorithm.

which can be divided into two phases: action generation and
action refinement.

Action generation: Given state sb(T ), the actor network of BS
b generates a proto-action âb(T ) based on deterministic policy
μ̂, i.e.,

âb(T ) = μ̂
(
sb(T ); θb(T )

)
, (31)

where θb(T ) is the neural network parameter to approximate
policy μ̂ of BS b. However, âb(T ) is continuous and may not be
a valid action in the discrete action set Ab. Therefore, we map
âb(T ) to the elements of Ab, i.e.,

Ab
k(T ) = δbk

(
âb(T )

)
=

k
argmin
ab(T )∈Ab

∥∥ab(T )− âb(T )
∥∥
2
, (32)

where δbk(â
b(T )) is the k-nearest-neighbor (k-NN) mapping

function to return the k actions in Ab that are closest to âb(T )
by Euclidean distance.

Action refinement: We select the best action out of k candidate
actions generated by (32). The parameterized state-action value
function of BS b is defined as Q(sb(T ),ab(T );ωb(T )), where
ωb(T ) is the critic neural network parameter. To avoid picking
an action with a low Q-value, we adopt Wolpertinger policy, i.e.,

μ
(
sb(T ); θb(T ), ωb(T )

)
= argmax

ab(T )∈Ab
k(T )

Q
(
sb(T ),ab(T );ωb(T )

)
= ab(T ), (33)

to refine the output of the critic network by selecting the action
with the highest Q-value among the k-NN actions. The Wolper-
tinger policy’s algorithm is given in Algorithm 1.

Remark 2: Note that the size k of the generated action set is
task specific. There is a tradeoff between policy quality and
computational cost. The policy quality can be evaluated by
the difference between the highest Q-value achieved over all
possible actions and the expected highest Q-value achieved by
these k closest actions [36]. It can be deduced that the policy
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Algorithm 1: Wolpertinger Policy for BS b.

1: Observe state sb(T ) from environment.
2: Receive proto-action within continuous action space

based on the actor network: âb(T ) = μ̂(sb(T ); θb(T )).
3: Retrieve a set of k approximately closest actions to

âb(T ): Ab
k(T ) = δbk(â

b(T )).
4: Compute the action with the highest Q-value:

ab(T ) = μ(sb(T ); θb(T ), ωb(T )).

quality increases with k. Moreover, the additional computational
complexity for Wolpertinger policy grows linearly with k, where
the details will be discussed in Remark 3 in the next subsection.

B. The Local WDDPG Policy Training

In this subsection, we will discuss the training process of the
actor and critic networks for WDDPG algorithm. We consider
the model-free scenario with no prior distribution of the network
environment, and adopt the conventional random strategies for
initialization, i.e., randomly initialize critic and actor networks
with parameters ωb(0) and θb(0), ∀b ∈ B, respectively.

In our proposed algorithm, we adopt off-policy, which in-
volves two different policies of behavioral and target policies.
We adopt Wolpertinger policy with Ornstein Uhlenbeck (OU)
noise as the behavioral policy to encourage exploration, and
use Wolpertinger policy without noise as the target policy. The
learning data generated by behavioral policy is defined as a
4-element tuple (sb(T ),ab(T ), rb(T ), sb(T + 1)) and is stored
in the replay buffer (RB). The target policy uses the samples
stored in the RB to update itself. With the experience replay and
target networks, we next introduce the actor and critic network
training processes.

Actor network training: We define the target func-
tion of the actor network as the expectation of the pa-
rameterized state-action value function, i.e., J(θb(T )) =
ESb(T )[Q(Sb(T ), μ(Sb(T ); θb(T ), ωb(T ));ωb(T ))]. The ex-
pectation is taken over all possible values of unobserved state
Sb(T ) in time frame T to remove the state randomness. To

approximate the expectation over Sb(T ), we take a minibatch
of I transitions from RB, where the i-th transition is denoted by
(sb(i),ab(i), rb(i), sb(i+ 1)). We aim to find the optimal θb(T )
that maximizes J(θb(T )) by adopting a deterministic policy
gradient method, where the gradient ∇θbJ(θb(T )) can be de-
rived in (34) shown at the bottom of this page. However, as the ac-
tion ab(i) = μ(sb(i); θb(i), ωb(T )) executed by BS b is discrete,
the parameter θb(T ) of the actor network can not be directly
updated via deterministic policy gradient method. Therefore, we
use the continuous proto-action âb(i) = μ̂(sb(i); θb(T )) instead
to derive the gradient of∇θbJ(θb(T )) as given by (35), shown at
the bottom of this page. Accordingly, the parameter θb(T + 1)
is updated by

θb (T + 1)← θb(T ) + βb∇θbJ
(
θb(T )

)
, (36)

where βb is the learning rate of actor network.
Critic network training: We adopt temporal-difference

(TD) learning to update ωb(T ). With the transition
(sb(i),ab(i), rb(i), sb(i+ 1)) sampled from RB, the
estimated value called TD target is given by rb(i) +
γQ(sb(i+ 1), μ(sb(i+ 1); θb(T ), ωb(T ));ωb(T )) and the
output of the current critic network can be given by
Q(sb(i),ab(i);ωb(T )). Note that bootstrapping occurs if
we use the current critic network parameter ωb(T ) for
both the TD calculation and updating, which may cause
a non-uniform overestimation of the optimal state-action
value function. To avoid the bootstrapping and reduce the
overestimation, we introduce the target actor and critic
networks that are copied from the original actor and critic
networks. Accordingly, the parameterized state-action value
function of the target critic network of BS b is denoted
by Q̃(sb(i+ 1), μ̃(sb(i+ 1); θ̃b(T ), ω̃b(T )); ω̃b(T )), where
μ̃(sb(i+ 1); θ̃b(T ), ω̃b(T )) is the target Wolpertinger
policy, and θ̃b(T ) and ω̃b(T ) respectively denote the
parameters of the target actor and critic networks. The
TD target with respect to the target networks is given by
rb(i) + γQ̃(sb(i+ 1), μ̃(sb(i+ 1); θ̃b(T ), ω̃b(T )); ω̃b(T )).
The loss function and its gradient are given by (37) and (38),
shown at the bottom of this page, respectively. The parameter

∇θbJ
(
θb(T )

)
=

1

I

∑
i

∇θbQ
(
sb(i), μ

(
sb(i); θb(T ), ωb(T )

)
;ωb(T )

)
. (34)

∇θbJ
(
θb(T )

) ≈ 1

I

∑
i

(∇θb μ̂
(
sb(i); θb(T )

) ·∇âbQ
(
sb(i), âb(i);ωb(T )

∣∣âb(i) = μ̂
(
sb(i); θb(T )

)))
. (35)

Loss
(
ωb(T )

)
=

1

2I

∑
i

[
Q

(
sb(i),ab(i);ωb(T )

)− rb(i)− γQ̃(
sb (i+ 1) , μ̃

(
sb (i+ 1) ; θ̃b(T ), ω̃b(T )

)
; ω̃b(T )

)]2
.

(37)

∇ωbLoss
(
ωb(T )

)
=

1

I

∑
i

[(
Q

(
sb(i),ab(i);ωb(T )

)− rb(i)− γQ̃(
sb (i+ 1) , μ̃

(
sb (i+ 1) ; θ̃b(T ), ω̃b(T )

)
; ω̃b(T )

))
·∇ωbQ

(
sb(i),ab(i);ωb(T )

) ]
(38)
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ωb(T + 1) can be updated by

ωb (T + 1)← ωb(T ) + β̄b∇ωbLoss
(
ωb(T )

)
, (39)

where β̄b is the learning rate of the critic network. Moreover,
the target critic and actor networks are updated every step with
a small step size to confirm soft updating, i.e.,

ω̃b (T + 1)← κωb (T + 1) + (1− κ) ω̃b(T ) (40)

and

θ̃b (T + 1)← κθb (T + 1) + (1− κ) θ̃b(T ), (41)

where κ is the update step size.
Remark 3: The computational complexity of WDDPG pri-

marily depends on the actor and critic network architectures. Let
Ha and Hc denote the total numbers of hidden layers of actor
and critic networks. The h-th hidden layer for actor network and
critic network involves ζa,h and ζc,h numbers of neurons, respec-
tively. Recall that |Ub| denotes the number of UEs served by BS
b. For the actor network, the number of neurons in the input layer
depends on the dimension of the state, and the number of neurons
in the output layer depends on the dimension of the action. Since
the state of BS b is defined as the current UL and DL queue
lengths of its serving UEs, there are 2|Ub| neurons in the input
layer. And there are 3 neurons in the output layer corresponding
to the three types of actions i.e., the number of DL subframe,
DL and UL subchannel allocations. Accordingly, the number of
weights in the input layer, the h-th (2 ≤ h ≤ Ha − 1) hidden
layer and the last hidden layer can be computed as 2|Ub|ζa,1,
ζa,h−1ζa,h and 3ζa,Ha

, respectively. For the critic network, the
number of neurons in the input layer is the dimension of the state
and action, i.e., 2|Ub|+ 3, and there is 1 neuron in the output
layer. Then the numbers of weights in the input layer, the h-th
(2 ≤ h ≤ Hc − 1) hidden layer and the last hidden layer can be
computed as (2|Ub|+ 3)ζc,1, ζc,h−1ζc,h and ζc,Hc

, respectively.
The computational complexity of BS b in backward propaga-
tion training is given by O(ιBP[2|Ub|ζa,1 +

∑Ha

2 ζa,h−1ζa,h +

3ζa,Ha
+ (2|Ub|+ 3)×ζc,1 +

∑Hc

2 ζc,h−1ζc,h + ζc,Hc
]), where

ιBP denotes the computational complexity for training a single
weight in backward propagation. The computational complexity
for training a single weight in forward propagation is simi-
lar to that in backward propagation. Here, we focus on the
additional computational complexity caused by the Wolper-
tinger policy in forward propagation training, which is given
by O(ιAPk[(2|Ub|+ 3)ζc,1 +

∑Hc

2 ζc,h−1ζc,h + ζc,Hc
]), where

ιAP is the computational complexity of training a single weight
in forward propagation.

C. Global Policy Training With Federated Learning

Our objective is to find the optimal joint policy π∗ that
maximizes the global state-action value function in (30). The
challenge is to maximize social welfare in a decentralized man-
ner with local observations. If each BS independently adopts
WDDPG algorithm, there is no communication overhead, but it
suffers from low cooperation efficiency and can only adapt its
resource allocation to the local traffic instead of the network.
Due to the lack of global state information, it is difficult for

the BSs to mitigate inter-cell interference among themselves.
In order to alleviate inter-cell interference, it is necessary for
the BSs to share local information with each other for joint
model training. Although some conventional algorithms, e.g.,
MADDPG, can jointly train the critic networks at the centralized
controller, each BS is required to upload its local states, actions,
and rewards to the controller, which may cause privacy leakage
issues and introduce high communication overhead. To protect
privacy of the agents, we adopt a decentralized FL framework for
joint model training among the BSs [38], [39], where each BS
exchanges the local critic network parameters with its one-hop
neighbors in every � time frames. This enables the decentral-
ized BSs to update their local critic network parameters to
improve the global resource allocation efficiency with relatively
low communication overhead. Note that our proposed scheme
can indirectly exchange parameter information with multi-hop
neighbors due to the propagation effect across multiple rounds
of parameter update.

We consider the D-TFDD network topology as a undirected
graph model G = (B, �), where B is the set of BS nodes and �
represents the set of edges. An edge (b, b′) ∈ �means that BS b′

is the one-hop neighbor of BS b. Let Υb = {b ∈ B : (b, b′) ∈ �}
be the set of one-hop neighbors of BS b, where |Υb| and |Υb′ | are
the numbers of neighbors of BS b and b′, respectively. Due to the
differences in training capabilities and network connections of
each neighboring BS b′, it is wise for BS b to weight the model
parameters received from its one-hop neighbors differently ac-
cording to their influences. We denote the weighting matrix by
Z = [zb,′b]B×B , where zb,′b weights the parameter sent from BS
b′ to BS b. By adopting Metropolis weights [40] in our model,
we have

zb,′b =

{
1

1+max{|Υb|,|Υb′ |} , ∀ (b, b′) ∈ �,
1−∑

b′′∈Υb(T ) zb,′′b, b = b,′ ∀b ∈ B. (42)

For every � time frames, each BS exchanges parameter ω̂b(T )
with its one-hop neighbors for global model training, where
ω̂b(T ) = ωb(T ) + β̄b∇ωbLoss(ωb(T )). And then, each BS b
aggregates the received parameters ω̂b′(T ) from its one-hop
neighbors based on the Metropolis weights and updates the
parameter of the critic network in time frame T + 1. For the rest
of the time frames, BS b directly uses its local parameter ω̂b(T )
to update its critic network. Therefore, the parameter update of
the critic network can be expressed as{

ωb (T + 1)←∑B
b′=1 zb,b′ ω̂

b′(T ), if T%� = 0,
ωb (T + 1)← ω̂b(T ), otherwise.

(43)

We summarize the proposed FWDDPG algorithm in Algo-
rithm 2 and Fig. 3.

Remark 4: The computational complexity of the peer-to-peer
FL architecture depends on the aggregation of critic network
parameters from one-hop neighbors. For BS b, the critic net-
work parameters of itself and its one-hop neighbors need to be
multiplied by their respective weights and then summed up as the
new critic network parameters for global training. We therefore
can deduce that the computational complexity of the peer-to-
peer FL architecture isO(�[∑B

b=1(2|Υb(T )|+ 1)]), where � is
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Fig. 3. The framework of the proposed FWDDPG algorithm.

the number of rounds for global training, and the number of
additions and multiplications are |Υb(T )| and |Υb(T )|+ 1 for
BS b, respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

For simulations, we consider a D-TFDD network covers a
square area of 3 km×3 km. Without loss of generality, we
consider ten BSs with the height of 10 m serves 30 active
UEs (including GUEs and UAVs), where each BS serves three
UEs in its serving area with 5 subchannels and 10 subframes.
The transmit power of BSs and UEs are 24 dBm and 23 dBm,
respectively. The noise power at BSs, GUEs and UAVs are−91
dBm,−95 dBm and−99 dBm, respectively [21] [41]. As for the
channel modeling, we set the ITU model factors {c1, c2, c3} as
{0.3, 500, 20} and the fading parameter mtx,rx = 1 according
to [32]. The parameters of the path loss model are listed in
Table I according to [21] and [32]. The SINR threshold of
UEs and BSs are set as 0 dB and −3 dB, respectively, and the
bandwidth of each subchannel is 10 MHz. The duration of each
subframe is 1 ms. In the following discussions, we assume GUEs
and UAVs are with slice types 1 and 2, respectively. Unless
otherwise specified, the slice model parameters are given as
follows. The maximum dropping ratio for GUEs and UAVs are
set as dmax

1 = 0.3 and dmax
2 = 0.1, respectively. The average

UL and DL packet sizes for GUEs are λUL
1 = 150 KB and

λDL
1 = 200 KB, and those for UAVs are λUL

2 = 50 KB and
λDL
2 = 80KB, respectively. The buffer sizes for GUEs and UAVs

are Q̂max
1 = 250 KB and Q̂max

2 = 150 KB, respectively.
The total number of training epochs is 1000 and the number

of steps for each epoch is 300. We adopt two hidden layers
for both actor and critic networks, where the first hidden layer
has 60 neurons and the second hidden layer has 50 neurons.
We train the neural networks by Adam optimizer, where we set
the learning rates for the actor and critic networks as 0.0001
and 0.001, respectively. For each time frame, a mini-batch of

Fig. 4. Long-term expected sum-reward of all BSs for different types of TDD
schemes.

300 experiences are randomly sampled every time from RB that
is capable of storing 1000000 past experiences. We update the
target critic or actor network by step size τ = 0.001. We set
the discount factor γ = 0.99. Unless otherwise specified, we
adopt k = 120 as the default size of the actions generated by
Wolpertinger policy.

In Fig. 4, we plot the long-term expected sum-reward of the
BSs over 1000 training epochs. By adopting the proposed FWD-
DPG algorithm, we compare our D-TFDD scheme with other
benchmark TDD schemes, i.e., S-TFDD, myopic D-TFDD and
D-TDD. For our proposed D-TFDD scheme, both the subframe
and subchannel allocations are adaptive to the UEs’ dynamic
traffic demands, aiming to maximize the long-term expected
sum-reward of all BSs. For static-TFDD (S-TFDD) scheme, all
the BSs adopt the same subframe and subchannel configurations,
which are pre-defined and non-adaptive throughout time. For
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Algorithm 2: FWDDPG Based Resource Allocation Algo-
rithm.

1: Randomly initialize critic and actor networks with
parameters ωb(0) and θb(0), ∀b ∈ B.

2: Initialize target critic and actor networks
ω̃b(0)← ωb(0), θ̃b(0)← θb(0), ∀b ∈ B.

3: Initialize the k-NN mapping function δbk using
elements of Ab, ∀b ∈ B.

4: Initialize RB.
5: Initialize the number of subchannels N , the number of

subframes F , the number of BSs B and the number of
UEs |Ub| served by BS b.

6: for Epoch = 1, 2, . . . do
7: Initialize the global state s(0).
8: for T = 0, 1, 2, . . . do
9: for b = 1 to B do

10: Observe local state sb(T ).
11: Generate local action based on the Wolpertinger

policy: ab(T ) = μ(sb(T ); θb(T ), ωb(T )).
12: end for
13: Execute joint action a(T ) = (a1(T ), . . . ,aB(T )).
14: for b = 1 to B do
15: Observe reward rb(T ) and new state sb(T + 1).
16: Store transition

(sb(T ),ab(T ), rb(T ), sb(T + 1)) in RB.
17: Randomly sample a minibatch of I transitions

from RB.
18: Update the critic by minimizing the loss in (37),

then update ω̂b(T )← ωb(T ).
19: Update the actor using the sampled gradient

according to (35), then update
θb(T + 1)← θb(T ).

20: Update critic network according to (43).
21: Update the target networks:

ω̃b(T + 1)← κωb(T + 1) + (1− κ)ω̃b(T ),
θ̃b(T + 1)← κθb(T + 1) + (1− κ)θ̃b(T ).

22: end for
23: end for
24: end for

myopic D-TFDD scheme, the subframe and subchannel config-
urations are adaptive to the UEs’ dynamic demands in the current
time frame only without considering the future rewards. For D-
TDD scheme, only the subframe configuration is adaptive to the
dynamic traffic demands, aiming at maximizing the long-term
expected sum-reward of all BSs, while the subchannel allocation
is pre-determined and does not change across time. In Fig. 4, the
performance of S-TFDD scheme does not change much over
time and is worse than the dynamic schemes since it is not
adaptive to the dynamic UE demands. We notice that there are
slight jitters along the curve, which is due to the randomness of
the channel gains and packet arrivals, although these effects are
almost averaged out over the long-term accumulation. We also
see that our proposed D-TFDD scheme outperforms all other
benchmark schemes. It has better performance than myopic

TABLE I
THE PARAMETERS OF PATH LOSS MODEL

Fig. 5. Long-term expected sum-reward of all BSs for D-TFDD scheme under
different MARL algorithms.

D-TFDD scheme since it considers not only the short-term
but also the long-term sum-reward. Furthermore, it takes into
account both the dynamic subframe and subchannel allocations
and is therefore better than D-TDD scheme.

Fig. 5 depicts the long-term expected sum-reward of the pro-
posed FWDDPG algorithm and compares it with two benchmark
algorithms, i.e., MADDPG [37] and IDDPG. For MADDPG
algorithm, the centralized training and decentralized execution
framework is adopted, where the BSs upload the local states,
actions and rewards to the centralized controller to jointly
train the critic network to maximize the long-term expected
sum-reward of all BSs in the network. For IDDPG algorithm,
each BS trains its DDPG algorithm with local states in a non-
cooperative manner, aiming to maximize its local long-term
expected reward [25], [26]. In Fig. 5, we see that the sum-reward
increases with the number of training epochs, which means all
the algorithms can learn from interacting with the environment.
Moreover, we see that IDDPG algorithm performs the worst
among the three algorithms since the BSs are not cooperative.
Next, we compare the performance of the proposed FWDDPG
algorithm with MADDPG algorithm. First, we observe that
MADDPG algorithm outperforms FWDDPG algorithm with
k = 1. This is because MADDPG jointly trains the critic net-
works with the centralized controller, which is more efficient
than the decentralized approaches. For k = 1, only the discrete
action that is closest to the continuous action is selected for
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Fig. 6. QoS satisfaction probability in the D-TFDD network versus various
Wolpertinger coefficients k.

execution, where the proposed algorithm is equivalent to that
without Wolpertinger policy. However, this disadvantage can
be compensated by adjusting the coefficient k in the proposed
FWDDPG algorithm. For example, for k = 120, we see that the
performance of FWDDPG algorithm exceeds that of MADDPG
algorithm. Intuitively, this is because a larger k can help include
more candidates of valid actions, which increases the chance of
selecting a better policy with a higher Q-value, though it may
be at the cost of slower convergence speed.

In Fig. 6, we plot the QoS satisfaction probability (the prob-
ability that the packet dropping ratio constraint is satisfied) in
the D-TFDD network against the Wolpertinger coefficient k. On
the one hand, we can see that the QoS satisfaction probability
increases with k. This is because the policy quality improves as k
increases, which is consistent with Remark 2. On the other hand,
the computational complexity of WDDPG algorithm increases
linearly with k according to Remark 3. We therefore can deduce
that there exists an optimal value of k that balances the policy
quality and computational complexity. Furthermore, we observe
that the QoS satisfaction probability is increased by introducing
the sliding window in (19). If no sliding window is adopted,
the premature experiences from the very first time frame will
be included in the dropping ratio, which therefore reduces
the QoS satisfaction probability. By using the sliding window,
we can remove the effects of earlier history and thus improve
the system performance.

Furthermore, Fig. 7 shows the influence of window size Λ
on the QoS satisfaction probability. We can see that the QoS
satisfaction probability first increases and then decreases with
the window size. When the window size is small, it means that
only the latest samples are taken into the estimation of dropping
ratio. The small number of samples leads to inaccurate represen-
tation of rewards, resulting in a low QoS satisfaction probability.
When the window size increases, the increasing number of
samples enhances the estimation accuracy of the dropping ratio
and thus improves the QoS satisfaction probability. As window
size further increases, more samples from the early history are
included, which reduces QoS satisfaction probability.

Fig. 7. QoS satisfaction probability versus various window sizes Λ.

Fig. 8. Long-term expected sum-reward of all BSs versus various average UL
packet sizes (λDL

1 = λUL
1 + 50 KB, λDL

2 = λUL
1 − 70 KB, λUL

2 = λUL
1 − 100

KB).

Fig. 8 plots the influence of the average packet size and QoS
constraint (i.e., maximum tolerable dropping ratio) on the long-
term expected sum-reward of all BSs in the D-TFDD network.
When the QoS constraint is not tight (e.g., dmax

1 = {0.30, 0.35},
dmax
2 = {0.10, 0.12}), the sum-reward first increases and then

decreases with the average packet size. As the average packet
size increases, the sum-reward first increases owning to the
improvement in the sum rate. However, with the further increase
of the average packet size, the sum-reward decreases due to the
violation of the QoS constraints. Furthermore, when the QoS
constraint is tight, the sum-reward decreases directly with the
average packet size because the QoS requirement is not met.

In Figs. 9 and 10, we discuss the optimal policy for sub-
channel and subframe allocations. Without loss of generality,
we consider a network composed of two BSs as a special
case, where each BS allocates 5 subframes and 4 subchannels
between two UEs. In Fig. 9, we study the effect of maximum
tolerable dropping ratio and average packet arrival rate on the UL
subchannel allocation policy, where the results can be extended
to DL subchannel allocation. Next, we increase dmax

1 and λUL
1

to see the impact on the subchannel allocation ratio. On the one
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Fig. 9. The ratio of average subchannels allocated to GUEs and UAVs (λUL
2 =

50 KB, dmax
2 = 0.1).

Fig. 10. The ratio of average UL subframes allocated to BS 1 and BS 2 (λDL
1 =

200 KB, λUL
2 = 50 KB, λDL

2 = 80 KB, dmax
2 = 0.1).

hand, when the average packet arrival rate λUL
1 is relatively small

(e.g., λUL
1 ≤ 150 KB), the number of subchannels allocated to

GUE increases with λUL
1 . In this case, the QoS constraint of GUE

is easily satisfied and thus the BS allocates more bandwidth
resources to GUE to increase its rate. On the other hand, when
dmax
1 is relatively tight and λUL

1 is relatively large (e.g., dmax
1 =

{0.1, 0.2}, λUL
1 > 150 KB; dmax

1 = 0.4, λUL
1 ≥ 200 KB), the

number of subchannels allocated to GUE decreases with λUL
1 .

In this case, it is difficult to satisfy the QoS constraint of GUE
with heavy traffic load, thus the BS allocates more subchannels
to UAV that has lighter data traffic. From the above discussions,
we can see that the subchannel allocation needs to balance
throughput and QoS constraints. When the bandwidth resources
are sufficient, the BS prefers to allocate more sunchannels to the
UEs with heavier data traffic loads for throughput enhancement.
Otherwise, it allocates fewer subchannels to those UEs whose
QoS constraints are difficult to satisfy.

In Fig. 10, we further study the impact of the maximum
tolerable dropping ratio and average packet arrival rate on the
subframe allocation policy. To illustrate the asymmetric data
traffic across the cells, we consider BS 1 serves two GUEs and
BS 2 serves two UAVs, respectively. When the QoS constraint
of dmax

1 is relatively tight (e.g., dmax
1 = {0.1, 0.2}), the number

of UL subframes for BS 1 rapidly increases with the average UL
packet size λUL

1 . For a large value of λUL
1 , we can see that the

subframe allocation is unbalanced between the two BSs in order
to meet the heavier UL data traffic demands for GUEs. Moreover,
when dmax

1 is relatively large (e.g., dmax
1 = {0.4, 0.5}), two

BSs have similar subframe configurations, which is to reduce
inter-cell interference by controlling the number of unaligned
subframes. From the above discussions, we can see that the sub-
frame configuration needs to balance local traffic adaptation and
inter-cell interference control. When the resources are sufficient,
the BSs prefer to reduce the number of unaligned subframes for
inter-cell interference control. In a resource-limited regime, each
BS gives more priority to satisfying the local QoS constraints
rather than interference avoidance.

VI. CONCLUSION

In this paper, we proposed a user-centric D-TFDD scheme
that fully utilizes both the time-domain and frequency-domain
resources to meet the heterogeneous UEs’ dynamic traffic de-
mands while alleviating inter-cell interference. Due to the lim-
ited observation space of the BSs, we formulated the D-TFDD
control problem as a Dec-POMDP that maximizes the long-term
expected sum rate of the network subject to the UEs’ packet
dropping ratio constraints. We proposed a federated reinforce-
ment learning algorithm to solve this problem, where the BSs de-
cide their local time-frequency configurations based on WDDPG
algorithm and jointly update the global policy by exchanging the
critic network parameters through FL architecture. Simulation
results show that the proposed learning-based D-TFDD scheme
is superior to other benchmark TDD schemes, and the proposed
FWDDPG algorithm outperforms IDDPG and MADDPG al-
gorithms by choosing the proper Wolpertinger coefficient. Our
simulation results also reveal that, when the time-frequency
resources are sufficient, the BS allocates more subchannels
to the UEs with heavier traffic demands to improve the local
data rate and adopts similar subframe configurations across
the cells to mitigate inter-cell interference. In addition, in the
resource-limited regime, the BS gives more priority to meeting
local QoS constraints than to avoiding inter-cell interference.
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