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Abstract—With the development of federated learning (FL),
mobile devices (MDs) are able to train their local models with
private data and send them to a central server for aggregation,
thereby preventing leakage of sensitive raw data. In this paper,
we aim to improve the training performance of FL systems in
the context of wireless channels and stochastic energy arrivals of
each MD. To this purpose, we dynamically optimize MDs’ trans-
mission power and training task scheduling. We first model this
dynamic programming problem as a constrained Markov deci-
sion process (CMDP). Due to high dimensions of the proposed
CMDP problem, we propose online stochastic learning methods to
simplify the CMDP and design online algorithms to obtain an effi-
cient policy for all MDs. Since there are long-term constraints in
our CMDP, we utilize a Lagrange multipliers approach to tackle
this issue. Furthermore, we prove the convergence of the proposed
online stochastic learning algorithm. Numerical results indicate
that the proposed algorithms can achieve better performance
than the benchmark algorithms.

Index Terms—Federated learning, Markov decision processes,
stochastic learning, resource allocation, dynamic programming.

I. INTRODUCTION

IN THE last decade, we have witnessed a series of
amazing breakthroughs, such as AlphaGo, machine learn-

ing and artificial intelligence (AI), which have become the
most cutting-edge technology in both academia and industry
communities [1]. Distributed machine learning based on
mobile edge computing (MEC) of the wireless networks is
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also one of the current hot research directions [2]. The sample
data for machine learning can be obtained by collecting mas-
sive amounts of data from mobile devices (MD) distributed in
the wireless network. By training the local data, the training
performance of machine learning can be greatly improved.

Although offloading the local sample data of distributed
MDs for centralized learning significantly improves the
performance of machine learning, this mechanism suffers from
two flaws. First, transmission delays from distributed MDs to
the central cloud via backbone network are extremely large.
Second, the local data often contains the private information
of MDs, and uploading the private information to the central
cloud will lead to the risk of personal privacy leakage. To
cope with these two issues, federated learning (FL) has been
introduced to act as an emerging distributed machine learn-
ing paradigm for MEC networks. In this manner, MDs train
their local data and send their local model updates to a task
publisher iteratively instead of uploading the raw data to a cen-
tral server [3], [4], which brings the following two benefits in
general. First, the communication latency and the energy con-
sumption for computation can be significantly reduced owing
to the fact that MDs are not required to upload huge amounts
of local data for training to an edge server. Second, MDs
upload their local model instead of the raw data to the edge
server, which greatly reduces the risk of personal privacy
information leakage [5].

Despite the aforementioned advantages of FL, there are
still many challenges that have not been solved until now.
Some existing studies [6], [7] adopted an idealized assumption
that all MDs participating in FL are immune to the wire-
less and computation resource constraints. Reference [8] only
focused on a practical Federated-Averaging algorithm for dis-
tributed DNN training and the training performance. Many
studies [9], [10], [11], [12] have been committed to further
reducing the communication overhead by developing compres-
sion methods. However in practice, MDs usually suffer from
energy consumption constraints that may reduce the network
lifetime and training efficiency.

In addition, frequent wireless communication is usually
required for uploading and downloading the model param-
eters, which would increase the communication overhead
and the training latency [13]. Therefore, it is necessary to
design a feasible resource scheduling scheme to improve
the communication and energy efficiency of FL. A num-
ber of existing works have studied the important problems
related to the implementation of FL over wireless networks.
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In [14], two update methods are developed to reduce the
uplink communication costs for FL. In [15], the joint power
and resource allocation is studied for achieving ultra-reliable
low latency communication in vehicular networks. The work
in [16] proposed a new approach to minimize the comput-
ing and transmission delay for FL algorithms. Reference [17]
developed a novel framework that enables the implementa-
tion of FL algorithms over wireless networks and formulated
an optimization problem that jointly considers user selection
and resource allocation for the minimization of FL training
loss. Without taking into account of the energy constraints
and battery dynamics of MDs, [18] formulated a FL over
a wireless networks as a static optimization problem, and
exploited the problem structure to decompose it into three
static convex sub-problems. The work [19] proposed a static
scheduling scheme to efficiently execute distributed learn-
ing tasks in an asynchronous manner while minimizing the
gradient staleness on wireless edge nodes with heteroge-
neous computing and communication capacities. For energy
efficient FL over wireless networks, [20] studied a joint
learning and communication problem with the goal of min-
imizing the total energy consumption of the system under a
latency constraint in FL system. The work in [21] introduced
an energy-efficient strategy for bandwidth allocation under
learning performance constraints. In [22], two optimization
problems concerning the learning performance and the energy
consumption of the workers were formulated and solved for
appropriate local processing and communication parameter
configuration. Reference [23] proposed a novel joint dataset
and computation management scheme that jointly optimizes
the amount of dataset and computation resources to balance
the learning efficiency and energy consumption in FL system.
However, the MEC networks are usually time-varying in the
dynamic process and thus the methods in [18], [19] will
result in considerable performance loss. The work [24], [25]
model the channel and energy dynamically, and exploit the
dynamic scheduling algorithm to obtain the asymptotically
optimal results. Thus, it is of vital importance to develop effi-
cient dynamic resource scheduling schemes to improve the
performance of FL.

In this paper, we utilize constrained Markov decision
processes (CMDP) as a mathematical tool to obtain an optimal
algorithm for dynamic resource scheduling for FL, where each
MD send local model updates trained on their local raw data
iteratively to a common edge server, and the edge server
aggregates the parameters from MDs participating in local
training and broadcasts the aggregated parameters to all the
MDs. In particular, each MD possesses computing units with
computing capability, which can be used for local machine
learning with local raw data. In order to improve the train-
ing performance of FL,1 we propose an efficient stochastic
optimization algorithm for scheduling resources of MDs in
the FL processes by optimizing the size of raw data for local

1In general FL, existing work [26] used the accuracy of the test set to mea-
sure the performance of machine learning after training. Since the quantitative
analysis of the accuracy in the test set is relatively difficult, we use the size of
local dataset accumulated from MDs over iterations to evaluate the accuracy
of the machine learning model [13].

training and the transmit power of MDs to upload the local
model.

Our main contributions are listed as follows.
1) Due to the dynamic nature of wireless network and

battery status of MDs, we consider resource schedul-
ing of FL in dynamic scenarios. Thus, we model the
resource scheduling problem of the FL process as a
CMDP problem, and improve the performance of FL
by optimizing the size of the local training data at the
MD side.

2) Since the state-action space dimension in the CMDP
problem is relatively large and there are a few constraints
in the dynamic problem, we simplify the stochastic
optimization problem by proving an equivalent Bellman
equation and using the Lagrange multipliers method.

3) We use approximate MDP and stochastic learning meth-
ods to analyze the CMDP problem, and design cen-
tralized online algorithms to obtain resource scheduling
policy for all MDs. Besides, we provide effective analy-
sis for the convergence of the online stochastic learning
algorithms.

Although the idea of applying CMDP to design dynamic
resource scheduling is not new, we are motivated to address the
resource scheduling issues of resource constraints and dynam-
ics of FL. To achieve high-quality learning performance, a rea-
sonable constrained dynamic scene is essential to the resource
scheduling issues [27], [28], [29]. Previous work has utilized
CMDP as a mathematical model to design effective algorithms
for resource scheduling in wireless networks [13], [30], [31],
which is considered as an effective tool for solving dynamic
and temporal-correlated problems. Inspired by this, we apply
CMDP as the mathematical scene to address the resource
scheduling problem in the FL process. Nevertheless, previous
work still has some shortcomings in solving CMDP prob-
lems. The literature [13] adopted a deep learning algorithm
that allows the edge server to learn and find optimal deci-
sions without any a priori knowledge of network dynamics
in the CMDP. However, reinforcement learning (e.g., Deep
Q-learning [13]) is poorly scalable and requires a lot of com-
puting power and time for training. The literature [30] solved
the CMDP offloading problem by linear programming and
Q-learning method, which have high spatial complexity. The
work [31] developed a threshold-based algorithm to obtain the
optimal delay-power tradeoff efficiently, in which the authors
used the special structure of the mathematical model to solve
the CMDP problem.

The rest of this paper is organized as follows. Section II
describes the system model and dynamic analysis. CMDP-
based dynamic resource scheduling problem is formulated
in Section III. Section IV proposes approximate MDP and
stochastic learning methods to simplify the CMDP problem,
and designs online algorithms to obtain an efficient policy.
Section V presents the simulation results. Finally, Section VI
concludes this paper.

II. SYSTEM MODEL

Consider a wireless synchronous FL system consisting of
an edge server and N MDs as shown in Fig. 1. Each MD
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Fig. 1. The wireless federated learning network.

is equipped with computing and energy harvesting modules.
Having access to a vast range of local data, each MD is able
to train the machine learning model locally using the har-
vested energy from the environment. In most circumstances,
each MD’s local datasets have two cases: independently and
identically distributed (IID) and non-IID. In [29], the authors
investigated how to improve the performance of FL on non-
IID datasets by model-free reinforcement learning method.
However, it is difficult to quantify the performance of non-IID
FL in dynamic processes and the computational complex-
ity of model-free algorithms is typically high. In order to
reduce the computational complexity of scheduling algorithms
in dynamic environments, we adopt IID data samples for local
training in our system model. To improve the model training
efficiency and protect data privacy, the FL technique is adopted
as an iterative model updating process between the edge server
and MDs.

We first briefly introduce the main procedures as follows.
In each learning iteration t, the n-th MD selected by the edge
server for parameter update first selects bn (t) bits of train-
ing data from the local data set, where the size of selected
data is determined by the edge server according to the energy
status of the MD, i.e., the battery energy at the beginning of
this iteration. At the beginning of each iteration, each mobile
device sends its energy status information to the edge server.
Because of the extremely small amount of data (usually sev-
eral bits), the transmission delay and energy consumption of
the energy state are often negligible. Hence, we assume that
the edge server knows the energy status of all MDs in advance
at the beginning of the learning iteration. Then, each MD per-
forms local training and obtains the local model parameters.
Due to the strict synchronous FL setting, MDs receive the most
recent global model from the edge server at the start of each
time slot and must upload the local models to the edge server
on time. Afterwards, the n-th MD who has been selected by
the edge server transmits the parameters to the edge server
in the uplink using the power of Pn (t) according to MDs’
remaining energy and channel state. Finally, the edge server
aggregates the local training parameters from all the partici-
pating MDs and then it broadcasts the updated global training

parameters (e.g., weighted average over the local parameters)
back to all the MDs. At the end of this iteration, each MD
opportunistically harvests energy from the environment and
stores the energy in the rechargeable battery. The above pro-
cess is repeated until the learning model reaches the desired
accuracy level.

In the following subsections, we will explain the above
process in more details. We mainly discuss each learning
iteration in three stages: dynamic energy harvesting, local
model training, model parameter transmission and aggregation.

A. Dynamic Energy Harvesting

We assume that the n-th MD is equipped with a rechargeable
battery with a limited capacity of Emax

n .2 At the beginning
of each iteration t, we denote the n-th MD’s energy state
as E sta

n (t) which is the remaining energy carried from the
previous iteration. According to its energy state, the edge
server decides whether or not to proceed to local model train-
ing and uplink parameters transmission for each MD. We
let E

cop
n (t) denote the n-th MD’s computation energy for

local model training and E com
n (t) denote the communica-

tion energy for parameters transmission, respectively, which
will be discussed in more details in the next two subsections.
Note that each MD’s energy consumption cannot exceed the
energy state in this iteration. At the end of the iteration t,
we consider that each MD is able to harvest energy from
the environment and store the energy in the rechargeable bat-
tery. We denote the energy harvesting process for the n-th
MD by {Earr

n (·) : n ∈ N}, which follows an indepen-
dent stationary Poisson distribution with average arrival rate
E[Earr

n ] = λn [33].
Similar to [34], the energy state of the n-th MD at the

beginning of iteration t + 1 can be updated by the following
recursion, i.e.,

E sta
n (t + 1) = min

{[
E sta
n (t)− �E com

n (t) + E cop
n (t)�]+

+ Earr
n (t),Emax

n

}
, t ≥ 1, (1)

where �·� denotes the ceiling operator, which is similar to an
integer multiple of energy packs in [34], and x+ � max{x , 0}.

B. Local Model Training

At the beginning of each learning iteration t, each MD first
selects bn (t) bits of data samples from the local dataset to
perform a machine learning algorithm, and then it obtains the
local model parameters. Intuitively, the choice of bn depends
on the available energy in its battery.3 The MD can train a
larger size of the training data if it has more sufficient battery
energy in the current iteration. Otherwise, it trains less data or
takes no training for this iteration. We assume it consumes Cn

CPU cycles to train a unit sampled data on the n-th MD. The
CPU frequency, denoted by fn (in CPU cycle/s), is considered
as a measurement of computation capacity of the n-th MD.

2For the ease of analysis, we quantize the battery capacity in to Emax
n +1

uniform levels {0, 1, . . . ,Emax
n } [32].

3Since the size of a single sample is relatively small, we assume that bn (t)
is a continuous variable.
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In iteration t, the processing time of local training on the n-th
MD is given by

τcopn (t) =
bn (t)Cn

fn
. (2)

According to [18], the computation energy E cop
n (t) consumed

by local training of the n-th MD in the iteration t is given by

E cop
n (t) = αbn (t)Cn f

2
n , (3)

where α is the effective capacitance of the computing chipset
for each MD.

C. Model Parameter Transmission and Aggregation

After performing the local training, the MDs then upload
their updated local model parameters back to the edge server.
Let εn (t) denote the upload decision of the n-th MD at the
iteration t, where εn (t) = 1 means the n-th MD is assigned
to a subchannel and is willing to upload parameters to the
edge server through the assigned channel, and εn (t) = 0 indi-
cates that it is not assigned to a subchannel or keeps silent.
Intuitively, a MD is more likely to upload if it has suffi-
cient remaining energy while in a good channel state. For the
uplink transmission, we adopt OFDMA technique, where the
channels are orthogonal cross the different links. We assume
that there are L orthogonal subchannels in the FL system and
each MD can only occupy at most one subchannel. Let hn (t)
denote the uplink channel gain between the n-th MD and the
edge server in the iteration t, where the channel gains of all
subchannels between the server and a single MD are same.

We model the channel gain hn(t) as a discrete-state block
fading, where the channel gain between the n-th MD and edge
server is a discrete random variable with a general distribution
Pr [h̄n ] [31], [35], [36], [37], [38]. We further assume that
hn(t) stays invariant within each iteration and are IID across
different iterations and MDs [31], [35], [36], [37], [38].

If the n-th MD is allowed to upload (εn (t) = 1), it will
transmit the local model parameters to the edge server with
power Pn(t) (Pn(t) > 0) in the uplink. Otherwise, the n-th
MD keeps silent (Pn(t) = 0). We assume that the size of the
local training parameters of all MDs is the same, which is
denoted by M.4 The uplink transmission rate for the n-th MD
is given by

Rn (t) = εn (t)W log2

(
1 +

Pn (t)hn(t)

σ2

)
, (4)

where W is the bandwidth of subchannel between each
MD and the server, and σ2 is the power of the additive
white Gaussian noise. Moreover, the corresponding uplink
transmission time is expressed as

τcomn (t) =
εn (t)M

Rn (t)
. (5)

The energy consumption of parameter uploading for the n-th
MD can be expressed as

E com
n (t) = Pn (t)τ

com
n (t) =

εn (t)Pn (t)M

Rn (t)
. (6)

4We assume all MDs have the same structures of the local network model
and bit precision (typically floating point precision) of the local network
parameters, respectively.

Upon receiving the local updated parameters from the MDs,
the edge server aggregates them into global parameters and
then broadcasts them to all MDs through a downlink broadcast
channel. Assume that the bandwidth of the broadcast channel
is sufficiently wide and the transmit power of the edge server
is much higher than that of the MDs. Therefore, we ignore the
downlink transmission time without much loss of generality.

III. CONSTRAINED MARKOV DECISION PROCESS

In this section, we design and analyze the joint scheduling
problem of computing and communication resources in the
FL network. In the FL system, sequential decisions on local
training and parameter transmission needs to be made for each
iteration. From (1), we know that the remaining energy at
the MD sides are correlated among adjacent iterations. We
therefore formulate the joint computing and communication
resource scheduling problem as a CMDP to maximize the long
term system reward under energy and delay constraints. We
assume that our dynamic model is not oriented to a single FL
tasks by taking T → ∞.

A. The Composition of CMDP

At the beginning of each iteration, each MD uploads its
current local channel state and battery energy state to the
edge server. Therefore, the edge server obtains global status
information to take appropriate actions for all MDs. Once the
decisions are made, the edge server will download the policy
to each MD. Due to the extremely small size of data for state
information and action decisions, we can ignore the delay and
the energy for the transmission of the local states and the pol-
icy in the FL network. The CMDP formulation consists of the
following components:

• State: We define the global state S(t) of the all MDs
in the iteration t as S(t) = [h(t),E sta(t)], which is
composed of the current global channel state h(t) =
[h1(t), . . . , hN (t)] and the current global remaining bat-
tery energy state E sta(t) = [E sta

1 (t), . . . ,E sta
N (t)].

• Action: Let us denote the global action A(t) of all
MDs in the iteration t by A(t) = [b(t), ε(t),P(t)],
which consists of the number of bits of training data
b(t) = [b1(t), . . . , bN (t)], the upload decision ε(t) =
[ε1(t), . . . , εN (t)] and the transmit power P(t) =
[P1(t), . . . ,PN (t)].

• Transition probability: According to the dynamic energy
queue given in (1), the global remaining energy E sta(t)
under action A(t) is a controlled Markov chain with the
transition probability of

Pr
[
E sta(t + 1)|E sta(t),A(t)

]

=
∏
n

Pr
[
Earr
n (t) = E sta

n (t + 1)

−[
E sta
n (t)− �E com

n (t) + E cop
n (t)�]+

]
. (7)

Since the energy queue dynamic is affected by both the
training energy and communication energy, it is con-
trolled by the actions A(t) = [b(t), ε(t),P(t)]. The
global state transition probability is also Markovian,
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which is given by

Pr[S(t + 1)|S(t),A(t))]

= Pr[h(t + 1)|S(t),A(t))]

× Pr
[
E sta(t + 1)|S(t),A(t)

)]

= Pr[h(t + 1)] Pr
[
E sta(t + 1)|S(t),A(t)

)]
, (8)

where the second equation is due to the IID property of
wireless channel state, that is, the channel state is not a
controlled variable.

• Reward: The model accuracy of the FL is difficult to
quantify, and does not promise a closed-form. In most
circumstances, one observes that the accuracy of FL train-
ing increases with the total size of local training data at
each MD [13], [39]. Hence, we define the reward of the
n-th MD by the product of its local training data size and
its upload decision, i.e.,

∑N
n=1 bn (t)εn (t). If the MD is

unable to upload the training parameters (εn (t) = 0),
then its reward in the current iteration is 0.

We assume that each training iteration is synchronized
across the MDs with the duration of τ . The total time for
training and transmission should not exceed the duration of a
iteration, i.e.,

τcomn (t) + τcopn (t) ≤ τ. (9)

Moreover, the energy used for local training and upload-
ing should not exceed the remaining energy E sta

n (t) at the
beginning of the iteration t, which is described by the energy
causality constraint of

�E com
n (t) + E cop

n (t)� ≤ E sta
n (t). (10)

From (9) and (10), we see that there is a tradeoff between the
computing and communication phases due to limited time and
battery energy in each training iteration. According to (3), if
the number of training data bits bn increases, the computing
energy consumption will increase, which leaves less energy for
the communication phase. In the meanwhile, according to (2),
by increasing the training bits number bn , the local training
time will increase, which leaves less time for communication.
Due to the above tradeoff, each MD needs to allocate time
and energy wisely between the computing and communication
phases. For example, the probability that the total remaining
energy E sta

n (t) at the n-th MD equals 0 can not exceed the
energy outage probability constraint Proutn , i.e.,

Pr [E sta
n (t) = 0] ≤ Proutn . (11)

Here, E sta
n (t) = 0 does not mean that the MD is com-

pletely powered off. We adopt a dedicated battery to sup-
port the energy harvesting circuit and the control signaling
in each training iteration. The dedicated battery stores the
energy that arrives at random in each iteration, and provides
energy for information feedback, local training and parameter
updates during the FL process. We thus assume that the MDs
can exhaust its battery before the next recharge cycle [40].
Furthermore, we assume the subchannels occupied by the MDs
in the current iteration cannot exceed the total number of
subchannels L in the system, i.e.,

N∑
n=1

εn (t) ≤ L. (12)

Due to the randomness of states in each iteration and the
correlation of states across these iterations, the edge server
needs to make sequential decisions on bn , εn and Pn along
the time horizon. Without much loss of generality, we for-
mulate the problem as an infinite horizon CMDP, resulting in
the stationary policies which do not change with time. The
definition of stationary control policy is given as follows.

Definition 1 (Stationary Control Policy): A stationary con-
trol policy is a mapping S → A from the state space to the
action space S , which is given by Ω(S) = A ∈ A, ∀S ∈ S.
Hence, we denote the control policy of the all MD by Ω(S ) =
(b, ε,P). Let Ω be the stationary feasible control policy which
should satisfy constraints (9), (10), (11) and (12).

B. Constrained Markov Decision Process Problem

The formulation of CMDP is given in Problem 1. The aim is to
find theefficientcontrolpolicy thatmaximizes the total long-term
average utility of all MDs under the energy outage constraints,
the transmission power constraints, the delay constraints, the
energy causality constraints and the subchannel constraints.

Problem 1 (CMDP Problem):

max
Ω

U(Ω) = lim
T→∞

1

T

T∑
t=1

E
Ω

[
N∑

n=1

bn (t) · εn (t)
]

(13)

s. t. Pr [E sta
n (t) = 0] ≤ Proutn , (13a)

0 ≤ Pn (t) ≤ Pmax
n , (13b)

εn (t) ∈ {0, 1}, (9), (10) and (12), ∀n,

where the expectation E
Ω[·] is taken with respect to the steady-

state distribution induced by the control policy Ω, and Pmax
n is

the maximum transmission power of the n-th MD. Besides, the
constraint (13a) can be redescribed as a long-term description
of the energy outage probability constraint, i.e.,

lim
T→∞

1

T

T∑
t=1

E
Ω[1[E sta

n (t) = 0]
] ≤ Proutn , (14)

where 1[ · ] is an indicator function that takes on a value of
1 when the battery energy is exhausted at the n-th MD. The
objective function (13) in Problem 1 is the long-term aver-
age total utility of all MDs under the control policy Ω. In the
following analysis, we will use D(t) to denote the feasible
region of all short-term constraints in Problem 1 for con-
venience of expression. In order to deal with the long-term
constraints (13a) in Problem 1, we use the Lagrangian dual-
ity method to take the constraints of the CMDP problem into
account by augmenting the objective function with a weighted
sum of the constraint functions, which is given by

L(Ω, γ ) = lim
T→∞

1

T

T∑
t=1

E
Ω[g(S(t),Ω, γ )], (15)

g(S(t),Ω, γ )

=

N∑
n=1

(
bn (t)εn (t)− γn1[E sta

n (t) = 0]
)
+ γn Proutn . (16)
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The corresponding Lagrange dual function G(γ ) is given by

G(γ ) = max
Ω

lim
T→∞

1

T

T∑
t=1

E
Ω[g(S(t),Ω, γ )]. (17)

There exists Lagrange multipliers γ 
 0 such that Ω∗ max-
imizes the Lagrange function L(Ω, γ ). And we can get the
following problem.

Problem 2 (Lagrange Dual Problem):

L∗ = min
γ

max
Ω

L(Ω, γ ) (18)

s. t. γ 
 0, Ω ∈ D(t), ∀t .
According to [41], there exists an optimal control policy Ω∗
and a series of non-negative Lagrangian multipliers γ ∗ such
that Ω∗ maximizes the Lagrange function L(Ω∗, γ ∗), and the
inequality condition holds:

L(Ω, γ ∗) ≤ L(Ω∗, γ ∗) ≤ L(Ω∗, γ ), ∀Ω, ∀γ 
 0, (19)

where Ω∗ and γ ∗ are the original optimal solution and the
dual optimal solution, respectively. Problem 1 can be regarded
as an infinite-dimensional linear programming problem with
the feasible region D(t), which is a special type of convex
problem. Thus, the duality gap between the original optimal
and the dual optimal is 0. The original optimal solution is
obtained by solving the dual problem.

Generally, Bellman equation is a necessary condition for
a dynamic programming to be optimized. Given Lagrange
multipliers γ , the classical infinite-horizon CMDP problem
Problem 1 can be solved by the Bellman equation [36]. Thus,
we can obtain the following equation,

G(γ ) + V (S(t)) = max
Ω

⎧
⎨
⎩g(S(t),Ω, γ )

+
∑

S(t+1)

Pr(S(t + 1)|S(t),Ω)V (S(t + 1))

⎫
⎬
⎭, ∀S(t),

(20)

where V(S(t)) is the value function representing the average
utility obtained by the control policy Ω from each global state
[h(t),E sta(t)]. According to (8), we know that the channel
states possess independent statistical characteristics, which is
not affected by the control policy. We can further simplify
the Bellman equation by taking the expectation of (20) on the
global channel state h(t).

Lemma 1 (Equivalent Bellman Equation): Given a series
of Lagrange multipliers γ , the objective function (15) can be
solved by the equivalent Bellman equation as follows:

G(γ ) + V (E sta(t)) = max
Ω(E sta)

{
g
(
E sta(t),Ω(E sta)

)

+
∑

E sta(t+1)

Pr
(
E sta(t + 1)|E sta(t),

× Ω(E sta)
)
V (E sta(t + 1))

}

∀E sta(t), t > 0, (21)

where the expectation of the value function V (h(t),E sta(t))
is

V (E sta(t)) = Eh(t)[V (h(t),E sta(t))]. (22)

Similarly, by taking the expectation over the channel state, we
have

g
(
E sta(t),Ω(E sta)

)
= Eh(t)

[
g(h(t),E sta(t),Ω, γ )

]
, (23)

Pr(E sta(t + 1)|E sta(t),Ω(E sta))

= Eh(t)

[
Pr(E sta(t + 1)|h(t),E sta(t),Ω(E sta)

]
. (24)

Moreover, Ω(E sta) = {Ω(h(t),E sta(t))|∀h(t)} is a policy
set under a given global energy state E sta(t) for all possible
channel states.

From the equivalent Bellman equation (21), we notice that
the equation is composed by a series of linear equations, where
the dimensions of these equations depend on the number of
value functions V (E sta(t)). Hence, for any global energy
state E sta(t) and the global channel state h(t), the optimized
control policy Ω∗ in (15) can be obtained by maximizing the
right-hand side of (21).

IV. APPROXIMATE MARKOV DECISION PROCESS AND

STOCHASTIC LEARNING

In this section, we use approximate MDP and stochas-
tic learning methods to analyze and simplify the resource
scheduling problem, and design online algorithms to obtain
the resource scheduling policy for the FL system.

A. Approximate Markov Decision Process

According to (21), the global energy state value function
V (E sta(t)) is unknown, which holds a great difficulty for
solving the control policy in the FL system. Due to the exis-
tence of the huge state-action space, we are unable to get the
value function with the conventional value iteration method.
However, we can obtain the value function and develop a
solution of Problem 1 by the value approximation and online
stochastic learning. Assumed that we have obtained the value
function V (E sta(t)) through value approximation and online
stochastic learning. Thus, the MDP problem can be solved as
follow.

Problem 3: For a given value function V (E sta(t)), find
the optimized action Ω∗(E sta(t)), which is satisfied to the
Equivalent Bellman’s equation in (21). The optimized control
policy can be rewritten as

Ω∗(E sta(t))

= arg max
Ω(E sta(t))

Eh(t)

{
g(S(t),Ω(E sta(t)), γ )

+
∑

E sta(t+1)

Pr
(
E sta(t + 1)|h(t),E sta(t),

Ω(E sta(t))
)
V (E sta(t + 1))

}
,

s.t. 0 ≤ Pn(t) ≤ Pmax
n ,

εn (t) ∈ {0, 1},
(9), (10) and (12), ∀n. (25)

Given the global state value function V (E sta(t)) and the
realization of the global channel state h, the Problem 3 then
becomes a static optimization problem.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 09,2022 at 10:57:14 UTC from IEEE Xplore.  Restrictions apply. 



1916 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 4, DECEMBER 2022

B. Stochastic Learning

By the feature-based method, the energy state value func-
tion V (E sta) can be approximated by a linear form of the
state value function of the n-th MD Vn (E

sta
n ). The global

energy state value function V (E sta) and a series of Lagrange
multipliers γ will be updated according to the current energy
state and channel state information. Then, the proposed linear
approximation architecture for the global energy state value
function V (E sta

n ) is given by

V (E sta) = V
(
E sta
1 , . . . ,E sta

n , . . . ,E sta
N

)

≈
N∑

n=1

∑
l∈Qn

Vn(l)I
[
E sta
n = l

]
= W TF (E sta),

(26)

where Qn means energy state set of the n-th MD, that is
Qn = {0, 1, 2, . . . ,Emax

n }. The parameter vector W and the
feature F (E sta) can be elaborated as

W =
[
V1(0), . . . ,V1(E

max
1 ), . . . ,VN (0), . . . ,VN (Emax

N )
]T

,

(27)

F (E sta) =
[
I [E sta

1 = 0], . . . , I [E sta
1 = Emax

1 ],

· · · I [E sta
N = 0], . . . , I [E sta

N = Emax
N ]

]T
. (28)

Thus, we can calculate the global energy state value function
by the linear form of all MDs. The value function of global
energy state E sta = {E sta

1 , . . . ,E sta
N } can be expressed as

V
(
E sta

)
≈

N∑
n=1

Vn
(
E sta
n

)
, E sta

n ∈ Qn . (29)

The global energy state value function V (E sta) is the same as
the cardinality of the global energy state E = [E1, . . . ,EN ],
and its number is

∏N
n=1(E

max
n + 1). However, the number

of the linear approximation energy state value function of
all MDs is

∑N
n=1(E

max
n + 1). Through linear approxima-

tion architecture, we exploit the state value function of each
MD Vn(E

sta
n ) with a small state space to represent the global

energy state value function V (E sta) with huge state space.
According to Lemma 1 and the linear approximation, we

can obtain the following equations, i.e.,

Eh

⎧
⎨

⎩

∑

Esta(t+1)

Pr
(
E sta(t + 1)|h(t),E sta(t) ,

Ω(h(t),E sta(t))
)
V (E sta(t + 1))

⎫
⎬

⎭

= Eh

⎧
⎨

⎩

∑

Esta(t+1)

(
N∏

n=1

Pr
(
E sta
n |h(t),E sta(t),

Ω(h(t),E sta(t))
) N∑

n=1

Vn (E
sta
n (t + 1))

)}

= Eh

⎧
⎨

⎩

N∑

n=1

∑

Esta
n (t+1)∈Qn

Pr
(
E sta
n (t + 1)|h(t),E sta(t),

Ω(h(t),E sta(t))
)
Vn (E

sta
n (t + 1))

⎫
⎬

⎭

= Eh

⎧
⎨

⎩

N∑

n=1

∑

An (t)

Pr(An (t))Vn (E
sta
n (An (t),Ωn (S(t))))

⎫
⎬

⎭
, (30)

where the post-action energy state of the n-th MD
E sta
n (An (t),Ωn (S(t))) can be defined as

E sta
n (An (t),Ωn (S(t)))

= min

{[
E sta
n (t)− ⌈E com

n (t) + E cop
n (t)

⌉]+
+ An (t),E

max
n

}
.

(31)

The equation (30) holds due to the state transition probabil-
ity in (7) and the state update in (31). Thus, we can get the
following optimized policy by (30),

Ω∗(E(t)) = arg max
Ω(E(t))

Eh

⎧
⎨
⎩g(S(t),Ω(S(t)), γ )

+

N∑
n=1

∑

An (t)

Pr(An (t))Vn (E
sta
n (An (t),Ωn (S(t))))

⎫
⎬
⎭.

(32)

According to the linear value approximation structure (29)
and (32), the control policy problem can be re-written as the
following problem.

Problem 4 (Approximate Control Policy Problem):

max
Ω∗ Eh

⎧
⎨
⎩g(S(t),Ω(S(t)), γ )

+

N∑
n=1

∑

An (t)

Pr(An (t))Vn (E
sta
n (An (t),Ωn (S(t))))

⎫
⎬
⎭,

s.t. 0 ≤ Pn (t) ≤ Pmax
n ,

εn (t) ∈ {0, 1},
(9), (10) and (12), ∀n. (33)

Since E sta
n (An (t),Ωn (S(t))) represents the update of the

local energy state, we need to calculate the objective function
of (33) for each local energy state, and derive the objective
function over all local energy states. To solve (33), we expand
V (E sta

n (An (t),Ωn (S(t)))) in (33) using Taylor expansion as
follows [42], [43]:

V (E sta
n (An (t),Ωn (S(t)))) = V (E sta

n (t))

+ (An(t)− �E com
n (t) + E cop

n (t)�)V ′(E sta
n (t)), (34)

where

V ′(E sta
n (t)) =

[
V (E sta

n (t) + 1)− V (E sta
n (t)− 1)

]
/2. (35)

The optimization objective in (33) can be expressed as follow,

max
Ω

Eh{g(S(t),Ω(S(t), γ )

+
N∑

n=1

∑

An (t)

Pr(An (t))
(
V (E sta

n (t)) + (An (t)

− �E com
n (t) + E cop

n (t)�)V ′(E sta
n (t))

)}
, (36)

where (36) is a static mixed variable optimization problem, in
which b and P are continuous variables, while ε are discrete
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variables. Besides, the ceiling operator �·� is difficult to han-
dle, which brings great difficulties to the optimization problem.
In order to solve the problem caused by the ceiling operator
�·�, we introduce a series of auxiliary variables ΔEn (t), ∀n to
simplify the optimization problem. The optimization problem
can be further described as follows:

max
b,ε,P

g(S(t),Ω(t), γ ) +

N∑
n=1

∑

An (t)

Pr(An (t))

×(An (t)−ΔEn (t))V
′(En (t))

s.t. (9) and (12),

E com
n (t) + E cop

n (t)−ΔEn (t) ≤ 0,

ΔEn (t) ∈ {0, 1, 2, . . . ,En (t)},
εn (t) ∈ {0, 1},
0 ≤ Pn (t) ≤ Pmax

n , ∀n, (37)

where the auxiliary variable is

ΔEn (t) = �E com
n (t) + E cop

n (t)�
=

⌈
αbn (t)Cn f

2
n +

εn (t)Pn (t)d

Rn,s(t)

⌉
. (38)

Note that the constraints (12) describes the subchannel con-
straints of all MDs, we ignore the constraints for the time
being to simplify the optimization problem. Given a typical
MD n, we can obtain the following optimization problem by
further analysis and simplification of (36), i.e.,

max
bn ,εn ,Pn

ΔEn (t)− E com
n (t)

αCn f 2n
εn (t)−ΔEn (t)V

′(En (t)),

s.t. T com
n (t) + T cop

n (t) ≤ τ,

ΔEn (t) ∈ {0, 1, 2, . . . ,En (t)},
εn (t) ∈ {0, 1},
0 ≤ Pn (t) ≤ Pmax

n , ∀n. (39)

From (39), we can draw the following conclusion obviously:
if ΔEn (t) ≤ E th

n (t), then Pn (t) = 0 and εn (t) = 0, in
which E th

n (t) means the threshold energy of the n-th MD at
the current iteration, and it can be expressed as

E th
n (t) =

τσ2

hn(t)

(
2

M
W τ − 1

)
. (40)

When ΔEn (t) ≤ E th
n , the energy consumed by the n-th MD at

the current iteration is insufficient to support uploading model
parameters to the edge server within the iteration duration τ .

Due to the first constraint of (39), we obtain the upper bound
of energy consumption by the n-th MD, that is,

ΔEn (t) ≤ (τ − T com
n (t))αf 3n + T com

n (t)Pn (t). (41)

When 1
αCn f 2n

− V ′(En (t)) ≤ 0, the energy consumption
ΔEn (t) is 0 obviously. Correspondingly, the transmission
power Pn(t) of the n-th MD, the transmission decision εn (t)
of the n-th MD and the batch size of local training data bn (t)
are all 0. When 1

αCn f 2n
− V ′(En (t)) > 0 and ΔEn (t) >

E th
n (t), since the value of Pn (t) is related to the value of

ΔEn (t) and ΔEn (t) ≤ (τ −T com
n (t))αf 3n +T com

n (t)Pn (t),

the energy consumption ΔEn (t) of the n-th MD takes the
maximum value, i.e.,

ΔEn (t) =

(
τ − M

Rn,s (t)

)
αf 3n +

M

Rn,s(t)
Pn (t). (42)

Since Pn(t) ∈ (0,Pmax
n ] and ΔEn (t) increases monoton-

ically as Pn (t) increases, there is a maximum value of
ΔEmax

n (t) as a function of Pn(t), which can be expressed
as

ΔEmax
n (t) =

(
τ − M

Rmax
n,s (t)

)
αf 3n +

M

Rmax
n,s (t)

Pmax
n . (43)

Thus, when ΔEn (t) > ΔEmax
n (t), the transmission power

Pn(t) is Pmax
n , εn (t) = 1 and the batch size bn (t) for local

training can be expressed as

bn (t) =
ΔEmax

n (t)− E com
n,max(t)

αCn f 2n
, (44)

E com
n,max(t) =

MPmax
n

W log2

(
1 +

Pmax
n hn (t)

σ2

) . (45)

Then for E th
n (t) < ΔEn (t) ≤ ΔEmax

n (t), according to
the relationship between ΔEn (t) and Pn (t), we can express
Pn(t) by ΔEn (t), which is given by

Pn (t) =

lambertW

(
Bn (t)
Zn (t)

e
Cn (t)
Zn (t)

)

Bn (t)
Zn (t)

hn(t)
− σ2

hn (t)
,

Bn (t) = − M

hn(t)
,

Cn (t) =
W (ΔEn (t)− αf 3n τ)

ln 2
lnσ2 − Mσ2

hn(t)
− αf 3nM ,

Zn (t) =
W (ΔEn (t)− αf 3n τ)

ln 2
. (46)

And εn (t) = 1, lambertW means Lambert W Function, which
is the inverse function of f (w) = w · exp(w). And it is a
special function that cannot be represented by an expression.
From this, we get the objective function of the variable of ΔEn

by substituting Pn(t) into the objective function in (39),

Fn(t) = max
ΔEn (t)

1

αCn f 2n
(min{ΔEn (t),ΔEmax

n (t)}

− dPn (ΔEn (t))

Rn,s(ΔEn (t))

)
εn (t)−ΔEn (V

′
n (En (t))

s.t. ΔEn (t) ∈
{
0, 1, . . . ,min

{
E sta
n (t), �ΔEmax

n (t)�}}.
(47)

By searching in the {0, 1, . . . ,min{En (t), �Emax
n (t)�}},

we can find the optimized energy consumption value ΔÊn (t)
of the n-th MD for the maximum value of the objective func-
tion in (47). For convenience, we assume 0/0 = 0 for the
term of dPn (ΔEn (t))

Rn,s(ΔEn (t))
in this paper. Recalling the subchan-

nel constraint (12) that we ignored earlier, we now analyze
it. According to (47), we get the optimized objective func-
tion Fn(t) of each MD. According to (12), we know that
wireless communication resources in our system are limited.
To ensure the performance of FL, MDs with low training
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Algorithm 1: The Pseudocode of the Proposed Static
Mixed Variable Optimization Problem

Input: input E sta(t),h(t), fn ,Pmax
n ,V ′

n (t), ∀n;
Output: output result P∗(t), b∗(t), ε∗(t);

1 for The n-th MD, n ∈ 1, . . . ,N do
2 Calculate threshold energy E th

n (t) and the maximum
energy consumption ΔEmax

n (t) for computation and
communication in the t-th iterartion;

3 for ΔEn (t) ∈ {0, 1, . . . ,min{En (t), �ΔEmax
n (t)�}}

do
4 if ΔEn (t) ≤ E th

n (t) then
5 Pn (t) = 0, bn (t) = 0, εn (t) = 0;
6 else if E th

n (t) < ΔEn (t) ≤ ΔEmax
n (t) then

7 The solution of Pn (t) and bn (t) can refer to
(46) and εn (t) = 1;

8 else
9 Pn (t) = Pmax

n , the solution of bn (t) can
refer to (44), εn (t) = 1;

10 end if
11 Substituting the values of Pn(t) and εn (t) into

the objective function (39) ;

12 By searching in the
{0, 1, . . . ,min{En (t), �ΔEmax

n (t)�}}, the optimized
energy consumption value ΔÊn (t) of the n-th MD
for the maximum value of the objective function in
(47) can be found, and P̂n (t), b̂n (t), ε̂n (t) can be
calculated.

13 if ‖ ε̂ ‖1≤ L then
14 The global optimized solution is equal to the solution

obtained by the respective MD, i.e., P∗(t) = P̂(t),
b∗(t) = b̂(t).

15 else
16 The edge server will select L MDs with the largest

Fn(t) for FL training. If the n-th MD is selected by
the server, then P∗

n (t) = P̂n (t), ε
∗
n (t) = ε̂n (t) and

b∗n (t) = b̂n (t), otherwise P∗
n (t) = 0, ε∗n (t) = 0 and

b∗n (t) = 0.
17 end if

performance are not scheduled to upload their local models
for global model aggregation, whereas the limited bandwidth
can be assigned to mobile devices with superior local training
performance. Specifically, if ‖ε̂‖1 ≤ L, the global optimized
solution is equal to the solution obtained by the respective MD,
i.e., P∗

n (t) = P̂n (t), b
∗
n (t) = b̂n (t). Then, when ‖ε̂‖1 > L,

the edge server will select L MDs with the largest Fn(t) for
FL training. If the n-th MD is selected by the edge server
to upload parameters, then P∗

n (t) = P̂n (t), ε
∗
n (t) = ε̂n (t)

and b∗n (t) = b̂n (t), otherwise P∗
n (t) = 0, ε∗n (t) = 0

and b∗n (t) = 0. Algorithm 1 reports the pseudocode of the
proposed static mixed variable optimization problem.

In the previous section, we assumed that the state value
function V (E sta) has been given. However, we need to know
the state value function of each MD accurately so that we can
make efficient control decisions. We utilize stochastic learning

Algorithm 2: The Specific Flow of the Stochastic
Learning

1 Initialize the respective energy state value function
vectors V 0 and the Lagrange multipliers vectors γ 0 of
all MDs;

2 Based on the observed local states, a series of parameters
and the local energy value functions V t of each MD, the
control action can be calculated by Algorithm 1 at the
beginning of the iteration t ;

3 Based on the observed local states, the control actions
and the instantaneous rewards of the system, the energy
state value function V t+1 and Lagrange multipliers
vectors γ t+1 can be updated by (48), (49) and (50);

4 If ‖ V t+1 −V t ‖< δv and ‖ γ t+1 − γ t ‖< δγ , stop;
otherwise, set t = t + 1 and go back to step 2.

and distributed online algorithm to estimate the value function
V (E sta) and the Lagrange multipliers γ based on the current
state. The updates of the value function V at the end of the
iteration t can be given by (48) and (49).

V t+1
n (l) =

{
(1− εtv )V

t
n (l) + εtvΔV t+1

n (l) if l = E t+1
n

V t
n (l) if l = E t+1

n ,

(48)

ΔV t+1
n (l) = bn (t)εn (t)− γtn1[l = 0]

+
∑
An

{
Pr(An )(V

t
n (l(ΔE t+1

n ,An ))− V t
n (l(An )))

}
. (49)

Moreover, the Lagrange multipliers updates at each MD are
given by

γt+1
n = [γtn + εtγ(1[E

t+1
n = 0]− Prthn )]+. (50)

In the above equations, ({εtv}, {εtγ}) are the sequences of
iteration size, which satisfy

∞∑
t=0

εtv = ∞, εtv > 0, lim
t→∞ εtv = 0,

∞∑
t=0

εtγ = ∞, εγv > 0, lim
t→∞ εγv = 0,

∞∑
t=0

[
(εtv )

2 + (εtγ)
2
]
< ∞, and lim

t→∞
εtγ
εtv

= 0. (51)

The specific process of stochastic learning can refer to
Algorithm 2.

C. Convergence Analysis

We need to provide effective analysis for the convergence
of the online stochastic learning algorithm, which is shown in
Algorithm 2. From the previous section, we notice that there
are two different step size sequences {εtv} and {εtγ} in the
stochastic learning process, which are used for the update of
state value functions of MDs and Lagrange multipliers, respec-
tively. Since the update of the Lagrangian multipliers γ and
the update of the value function V occur simultaneously and
εtγ = o(εtv ), we can obtain γt+1 − γt = o(εtv ). Therefore,
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we consider that the Lagrangian multipliers does not change
when the state value function is updated. Therefore, we assume
that the Lagrangian multipliers γ t keep static when the value
functions of the mobile devices are updated in (48).

The relationship between the global value function vector
V and the parameter vector W can be expressed as

V = MW and W = M †V , (52)

in which M ∈ R
|IS |×

∑N
n=1(E

max
n +1) with the kth row (k =

1, 2, . . . , |IS |) equals to F (Ek ), Ek is the kth global energy
state and |IS | is the cardinality of the system state. In addition,
M † ∈ R

∑N
n=1(E

max
n +1)×|IS | means the mapping matrix from

V to W, which is the inverse mapping of the first equation
of (52). We then have the following convergence lemma on
the local state value function for each MD in the stochastic
learning.

Lemma 2: (Convergence of State Value Function of Each
MD): The convergence performance of the state value function
can be described as follows.

1) The update of the state value function vector converge
almost surely for any given initial parameter vector W 0

and Lagrange multipliers γ, which can be expressed as

lim
t→∞W t (γ) = W∞(γ). (53)

2) The local steady-state value function vector W∞ satis-
fies the vector form of the following steady equivalent
Bellman equation,

θI +W∞(γ) = M †T (γ,MW∞(γ)), (54)

where I is a
∑N

n=1(E
max
n +1)×1 vector whose elements

are all equal to 1, T represents a function mapping,
which can be defined as,

T (γ,V ) = max
Ω

{g(γ,Ω) +P(Ω)V }, (55)

where g(γ,Ω) is a
∑N

n=1(E
max
n +1)×1 vector of func-

tion g(E ,Ω(E )), which is defined in (21). P(Ω) is the
matrix form of transition probability Pr(E t+1|E t ,Ω)
defined in (21).

Proof: Following [43], we briefly proof the Lemma. Since
we consider the stochastic channels, where the channel gain
varies across the interval, it is easy to see that each state will
be updated comparably often in the asynchronous learning
algorithm. Quoting the conclusion from [43], the convergence
properties of the asynchronous and synchronous updates are
the same. Therefore, we just consider the convergence of
related synchronous version for simplicity. According to the
definition of parameter vector W and the bounded per-MD
value function Vn , it is clearly that the update on the per-MD
value function vector is equivalent to the update on the param-
eter vector and to prove the convergence of the Lemma is
equivalent to prove the convergence of update on the parameter
vector W. The detailed proof can refer to [43].

Due to εtγ = o(εtv ), the ratio of step sizes between state
value function and Lagrange multipliers can be expressed as
εtγ/ε

t
v → 0 during the Lagrange multipliers update in (50), and

the updates of the local state value function are much faster

than the Lagrange multipliers. Thus, the Lagrange multipliers
can be consider as quasi-invariant during the update of the
local state value functions of each MD, and the update of the
Lagrange multipliers will trigger another update process of
the local state value function of each MD. According to [44],
we can obtain that limt→∞ ||V t

n − V∞
n (γt )|| = 0, in which

V∞
n (γt ) means the converged local state value function of nth

MD with Lagrange multipliers γt . Therefore, the update of the
local state value function can be considered as almost constant
during the Lagrange multipliers’ update. Then, we need to
prove the convergence lemma of the Lagrange multipliers.

Lemma 3 (Convergence of the Lagrange multipliers): The
iteration on the Lagrange multipliers γ converges almost
surely to the set of minimum of G(γ ) in (17). Supposing that
the Lagrange multipliers converge to γ ∗, then γ ∗ satisfies the
average energy outage constraint in (11).

Proof: Quoting to [45, Lemma 4.2], −G(γ ) is a con-
cave and continuously differentiable except at finitely many
points where both right and left derivatives exist. Thus,
G(γ ) is a convex function of γ. Since the energy con-
sumption policy of each MD is discrete, we can obtain
that Ω∗(γ) = Ω∗(γ + Δγ), i.e., ∇γ = (Ω∗(γ + Δγ) −
Ω∗(γ))/Δγ = 0. Thus, ∂G(γt )/∂γt can be expressed
as ∂G(γt )/∂γt = E

Ω∗(γt ){PrEn −1[En (t) = 0]}, where
Ω∗(γt ) = argmaxΩG(γt ). By the standard stochastic
approximation theorem [46], the dynamics of the Lagrange
multipliers update can be represented by ordinary differential
equation (ODE). According to [47], we know that the ODE
equals to ∂G(γt )/∂γt . Thus, the aforementioned ODE will
converge to ∂G(γt )/∂γt = 0, i.e., the average energy outage
constraints are satisfied.

According to Lemmas 2 and 3, the iteration on local state
value function and the Lagrange multipliers in Algorithm 2
will converge. Next, we analyze the complexity, optimality
and implementation of the stochastic learning algorithm. The
proposed algorithm has a simple structure with a compu-
tational complexity of O(

∑N
n=1(E

max
n + 1)), which grows

linearly with the energy state space of all MDs. Since
we obtained the value function by the value approxima-
tion and online stochastic learning, the proposed algorithm
is a low-complexity suboptimal algorithm and the following
simulations will verify the effectiveness of the proposed algo-
rithm. Moreover, each MD only transmits its own energy state
information to the server, and the server broadcasts the con-
trol policy to all MDs. Compared to the traditional FL model
parameters, the signaling overhead of the proposed algorithm
is quite small (even negligible). Hence, the proposed algorithm
is easy to implement on the edge server.

Remark 1 (Convergence Analysis of FL): According to
existing work [6], we provide the convergence analysis on
the FL of the proposed algorithm by some adjustments. More
details are shown as follows.

Proof: For theoretical analysis, the assumptions of the local
loss function are listed as below:

Assumption 1 We assume the following for the n-th MD:
1) The local loss function Fn(w) of the n-th MD is convex.
2) Fn(w) is ρ-Lipschitz, i.e., ||Fn (w)−Fn(w

′)|| ≤ ρ||w−
w ′|| for any w, w ′.
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TABLE I
PARAMETERS IN SIMULATIONS

3) Fn (w) is β-smooth, i.e., ||∇Fn (w) − ∇Fn (w
′)|| ≤

β||w − w ′|| for any w, w ′.
We also define the following metric to capture the diver-
gence between the gradient of a local loss function of the
n-th MD and the gradient of the global loss function, which
is a gradient-weighted aggregation of the local loss functions
of all MDs.

For any n and w, we define δn as an upper bound of
||∇Fn (w) − ∇Fn (w

′)|| ≤ δn . And we also define δ(t) �
∑N

n=1 bn (t)δn∑N
n=1 bn (t)

.

Following [6], after T global aggregations, when the learn-
ing rate η < 1

β , we have the bound between the global loss

function F (wT ) after T global aggregations and the optimal
global loss function F (w∗),

F (wT )− F (w∗)

≤ 1

2ηϕT
+

√
1

4η2ϕ2T 2
+

ρH ∗(�)
ηϕ�

+ ρH ∗(�), (56)

where ϕ = ω(1 − βη
2 ), ω = mint

1
||w t−1−w∗|| , H ∗(�) =

maxt
δ(t)
β ((ηβ+1)	− 1)− ηδ(t)� and � is the same number

of local gradient descent for all MDs.

V. SIMULATION AND DISCUSSION

In this section, we evaluate the performance of the proposed
algorithm with extensive simulations.5 Considering all MDs
are randomly distributed in a fixed region. We set the band-
width of channel between each MD and the edge server as
0.1 MHz. The number of CPU cycles C for each MD to per-
form local model training of unit data sampling takes range
from 1010 cycle/unit to 1.9∗1010 cycle/unit. The simulation
parameters are detailed in Table I.

5The source code used in the numerical evaluations detailed in this
manuscript is available online at https://github.com/chushunfeng/code_TCCN.

Fig. 2. The long-term average utility U (MB) v.s. the mean arrive rate λ (J)
of the random new arrived energy with Emax = 6 J.

We compare our proposed online stochastic learning algo-
rithm with three other benchmark algorithms. One is the
CSI-based MDP algorithm, where the edge server takes cor-
responding decisions based on the channel state only at the
current iteration so as to optimize the average utility of all
MDs. The second benchmark algorithm is a myopic method,
which only considers the current utility. For myopic method,
the edge server never considers long-term utilities. The last
benchmark algorithm is a random resource scheduling method,
where the edge server takes random actions in the feasi-
ble regions. The performance of the proposed algorithm is
evaluated by averaging over 5000 experiments.

Fig. 2 illustrates the long-term average utility U v.s. the
mean arrival rate λ of the random new arrived energy with
Emax = 6 J. It can be observed that the performance of
the proposed online stochastic learning algorithm outperforms
other benchmark algorithms for all the investigated average
arrival rate λ. When the value of the mean arrival rate λ is
relatively small, the performance of online learning is close to
that of benchmark algorithms, especially the CSI-based MDP
algorithm. The reason is twofold. First, small λ will result
in a limited energy level in the battery of the MD. Due to
insufficient battery energy, the MDs are constrained within a
small action space compared with those with sufficient battery
power. The second reason is that a large amount of battery
energy is used for uploading local parameters. When the bat-
tery energy of MD is insufficient, the energy for local training
of FL is small, which leads to small long-term average util-
ity. In contrast, when the battery level is high, MD’s actions
will become diverse, and more energy will be used for local
training in FL process.

Fig. 3 illustrates the long-term average utility U v.s. the
maximum battery capacity Emax of MD. We observe that the
long-term average utility U increases approximately linearly
as the maximum battery capacity Emax of MD increases in
all algorithms, Fig. 4 shows the impact of the number of CPU
cycles for MD to perform local training of unit data sam-
pling C on the long-term average utility U . It is obvious that
the long-term average utility decreases with the number of
CPU cycles for unit training data sampling C. In addition, as
the number of CPU cycles for unit training data sampling C
continues to increase, the performance gaps among different
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Fig. 3. The long-term average utility U (MB) v.s. the maximum battery
capacity Emax (J) of the MD.

Fig. 4. The long-term average utility U (MB) v.s. the number of CPU cycles
for MD to perform local model training of unit data sampling C (cyc/MB).

Fig. 5. The long-term average utility (MB) U v.s. the computation capacity
f (Hz) of MD.

algorithms also decrease. Fig. 5 depicts the long-term average
utility U versus the computation capacity f of MD. Intuitively,
the MDs with more computing capacity will lead to a higher
long-term average utility U . However, the opposite is true, it is
caused by (3) and the limited energy of MD in each iteration.
In other words, a more powerful computing capacity requires
more computing energy. Due to the limited amounts of energy
available to MDs in each iteration, MDs can only reduce the
size of sampled data used for local training.

Fig. 6 describes the relationship among the wireless chan-
nel state, the energy state of MD and the optimal transmit

Fig. 6. The transmission power (W) v.s. the wireless channel state and the
energy state of MD.

Fig. 7. Convergence property of the proposed online stochastic learning
algorithm.

power policy. In our simulation settings, H1 represents the
worst channel state, while H5 represents the best channel state
in our system. From the figure, we can see that the MD avoids
data transmission to save battery energy when the MD is in a
very poor channel state (H1). In addition, we find that for a
given channel state, the optimal transmit power monotonously
increases with the energy state of the MD.

Fig. 7 illustrates the convergence property of the proposed
distributed online learning algorithm. It can be seen that the
online stochastic algorithm converges quite fast and after 1500
iterations, the values are close to the final converged results.
Moreover, it is clear that the value functions quickly approach
the final converged results when the number of iterations
grows.

In Figs. 8 and 9, we show how the FL accuracy and the
loss value changes as the number of iterations varies on
FashionMNIST data. From Figs. 8 and 9, we can see that
our proposed algorithm is significantly better than the base-
line algorithms, and its convergence speed is also significantly
faster than the baseline algorithms. Furthermore, our proposed
approach has less volatility than the benchmark algorithms due
to the larger amount of training data of MDs. Figs. 10 and 11
show how the FL accuracy and the loss value changes with
the number of iterations on Cifar-10 data. We can also see
that, the proposed FL algorithm can achieve up to 5% gains
in terms of the accuracy compared with the baseline algo-
rithms. Furthermore, the loss value of our proposed scheme is
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Fig. 8. The FL accuracy v.s. number of iterations on FashionMNIST data.

Fig. 9. The FL loss value v.s. number of iterations on FashionMNIST data.

Fig. 10. The FL accuracy v.s. number of iterations on Cifar-10 data.

also reduced by more than 10% compared with the benchmark
algorithms. As seen from Fig. 8 to 10, the random algorithm
that randomly selects local data for training has lowest learn-
ing performance and speed, as well as poor stability owing to
huge fluctuations compared with other algorithms.

VI. CONCLUSION

In this paper, we study a CMDP problem of FL with a
MEC sever, where the MDs send local model updates trained
on their local sensitive data iteratively to the edge server, and
then the edge server aggregates the parameters from MDs

Fig. 11. The FL loss value v.s. number of iterations on Cifar-10 data.

and broadcasts the aggregated parameters to MDs. We first
model the resource scheduling problem in the synchronous
FL process as a CMDP problem, and we use the size of
the training samples as the performance of FL for analysis.
Due to the coupling between iterations and the complexity
of the state-action space, we cannot directly solve the CMDP
problem. Thus, we analyze the problem by equivalent Bellman
equations and use approximate MDP and stochastic learning
methods to simplify the CMDP problem so as to approximate
the state value function. Then, we design static algorithm to
obtain the static policy for each MD based the approximate
state value function. Finally, we provide theoretical analysis
for the convergence of the online stochastic learning algo-
rithm. The simulation results show that the performance of
the stochastic leaning outperforms other benchmark schemes.
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