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Abstract— To efficiently exploit the massive amounts of raw
data that are increasingly being generated in mobile edge
networks, federated learning (FL) has emerged as a promising
distributed learning technique by collaboratively training a
shared learning model on edge devices. The number of resource
blocks when using traditional orthogonal transmission strategies
for FL linearly scales with the number of participating devices,
which conflicts with the scarcity of communication resources.
To tackle this issue, over-the-air computation (AirComp) has
emerged recently which leverages the inherent superposition
property of wireless channels to perform one-shot model
aggregation. However, the aggregation accuracy in AirComp
suffers from the unfavorable wireless propagation environment.
In this paper, we consider the use of intelligent reflecting
surfaces (IRSs) to mitigate this problem and improve FL
performance with AirComp. Specifically, a novel performance-
oriented long-term design scheme that integrated design multiple
communication rounds to minimize the optimality gap of the loss
function is proposed. We first analyze the convergence behavior of
the FL procedure with the absence of channel fading and noise.
Based on the obtained optimality gap which characterizes the
impact of channel fading and noise in different communication
rounds on the ultimate performance of FL, we propose both
online and offline schemes to tackle the resulting design problem.
Simulation results demonstrate that such a long-term design
strategy can achieve higher test accuracy than the conventional

Manuscript received 27 October 2022; revised 1 April 2023 and 22 May
2023; accepted 31 May 2023. Date of publication 7 June 2023; date of
current version 18 September 2023. The work of Qingqing Wu was supported
by Sichuan Science and Technology Program (Grant 2023YFH0092) and
Guangdong Science and Technology Program (Grant 2022A0505050011). The
work of Wen Chen was supported by National Key Project 2020YFB1807700,
NSFC 62071296, Shanghai 22JC1404000, 20JC1416502, and PKX2021-D02.
The work of Celimuge Wu was supported in part by the ROIS NII Open
Collaborative Research 23S0601, and in part by JSPS KAKENHI grant
number 21H03424. The work of H. Vincent Poor was supported by U.S.
National Science Foundation under Grant CNS-2128448. The associate editor
coordinating the review of this article and approving it for publication was
J. Zhang. (Corresponding author: Qingqing Wu.)

Yapeng Zhao is with the State Key Laboratory of Internet of Things for
Smart City, University of Macau, Macau, China, and also with the Department
of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China (e-mail: yc17435@connect.um.edu.mo).

Qingqing Wu and Wen Chen are with the Department of Electronic
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
qingqingwu@sjtu.edu.cn; wenchen@sjtu.edu.cn).

Celimuge Wu is with the Meta-Networking Research Center, The University
of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan (e-mail:
celimuge@uec.ac.jp).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
poor@princeton.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3283799.

Digital Object Identifier 10.1109/TCOMM.2023.3283799

isolated design approach in FL. Both the theoretical analysis
and numerical results exhibit a “later-is-better” principle, which
demonstrates the later rounds in the FL procedure are more
sensitive to aggregation error, and hence more resources are
required over time.

Index Terms— Intelligent reflecting surface, over-the-air com-
putation, federated learning, Lyapunov framework, transceiver
design, passive beamforming.

I. INTRODUCTION

RECENT years have witnessed a significant increase in
artificial intelligence (AI) applications, such as image

recognition and natural language processing. Moreover, some
delay-sensitive applications of AI like autonomous driving,
require timely processing of real-time data. Conventional
approaches require a data center to collect all the raw data
for centralized model training. However, collecting massive
amounts of data from distributed devices incurs high latency
and very high energy and bandwidth cost [1], [2], [3].
Furthermore, the computation resources of edge devices are
wasted in such a centralized model, and potential privacy
violations exist since local data is collected and processed at
the central server. This has thus motivated the migration of AI
applications from the center of networks to the network edge,
where implicit knowledge can be locally distilled to provide
timely and economical intelligence as well as improved
privacy. Chief among techniques for edge AI is federated
learning (FL), in which local model parameters or gradients
are exchanged instead of raw data [4], [5].

Since the training procedure in a state-of-the-art deep neural
network (DNN) may involve millions of parameters [4],
uplink communication overhead incurred during the iterative
model update process becomes a critical bottleneck for
FL given the limited communication bandwidth in practice.
To address this issue, there has been considerable interest
in communication-efficient uploading strategies for FL [6].
Conventionally, edge devices are orthogonally scheduled to
upload their local model parameters/gradients, and the edge
server sequentially decodes the received signals. However,
the radio resources required in such orthogonal multiple
access (OMA) protocols scale significantly with the number
of participating devices and the model dimension. Therefore,
different strategies have been proposed to alleviate this
communication overhead, e.g., device sampling based on
the network topology [7], model sparsification through the
time correlations [8], and gradient quantization via lossy
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compression [9], [10]. However, all of these schemes sacrifice
performance in order to deal with the limited communication
resources. As an alternative, the recently aroused over-the-air
computation (AirComp) technique has shown its efficiency
in the one-shot aggregation of simultaneously transmitted
local model parameters/gradients as compared to OMA
protocols [11]. AirComp essentially turns the air into a
computer by leveraging the inherent waveform superposition
property of wireless channels. Particularly, it allows all the
participating devices in FL to access all the radio resources
simultaneously instead of only a fraction of them as in
conventional OMA schemes. Moreover, its capability for one-
shot function computation has been validated in a series of
works, such as the foundational study from an information
theoretic perspective [12], [13], performance analysis for
various systems from the signal processing perspective [14],
[15], and prototype validation in practical implementation [16].

AirComp empowered FL systems have been compre-
hensively investigated recently, including how to accelerate
the convergence of FL under tight resources constraints
(e.g., communication and computation resources) [17] or
reduce resources consumption while maintaining satisfactory
learning performance [18]. Specifically, there have been
two main lines of research in existing works: one is
system optimization from the communication perspective
including device scheduling [19], transceiver design [20], and
parameter/gradient compressing [21], the other is the inherent
design of hyperparameters in the learning procedure, such
as the learning rate [22] and batch size [23]. For example,
the authors in [19] proposed a two-step framework for joint
device scheduling and receive beamformer design to improve
the test accuracy. The local learning rate at edge devices
was optimized in [22] to combat the distortion induced by
fading channels. Although AirComp has been envisioned and
further validated to be a promising scalable model aggregation
solution in FL, a crucial defect obstructs its implementation
in practice. Specifically, the devices whose channels are
deeply faded dominate the aggregation error in AirComp-
based FL [14], [15]. This is because the one-shot aggregation
demands that the signals transmitted by different devices be
equally superimposed at the receiver, and thus the remaining
devices with better channel conditions have to reduce their
transmit power in order to perform signal alignment at the
receiver. To this end, the strength of the obtained signal is
diminished, and the aggregation accuracy is more sensitive
to the inherent noise. Therefore, the unfavorable propagation
environment inevitably limits the performance of AirComp-
based FL. Fortunately, intelligent reflecting surfaces (IRSs),
a promising technology for the beyond fifth-generation (B5G)
and the future sixth-generation (6G) network, has shown its
potential to overcome this detrimental effect [24], [25], [26].
By intelligently tuning signal reflections via a large number
of low-cost passive reflecting elements, IRSs are capable
of dynamically altering wireless channels to enable precise
model aggregation, thus enhancing the FL performance.
Recent works have demonstrated the effectiveness of IRSs
in improving the performance of AirComp-based FL, e.g.,
weak channels were enhanced by IRSs to involve more

devices in collaborative model training while sustaining
precise aggregation thus accelerating the model convergence
in [19], [27], and [28]. Besides, IRS was utilized to flexibly
adjust the decoding order of heterogeneous data to serve both
the FL and non-orthogonal multiple access (NOMA) users on
the same time-frequency resource in [29] and minimize the
energy consumption of engaged devices in [30].

However, the communication system design in the existing
literature has not been tailored to the inherent characteristics
of FL. The existing system design schemes in AirComp-
based FL mainly focused on the isolated system design
in each communication round [19], [28]. In fact, FL is a
long-term process consisting of many progressive learning
rounds that collaboratively determine the ultimate learning
performance [31], [32]. Different learning rounds may have
varying significance toward the convergence rate and the final
model accuracy due to this intrinsic nature. Hence, resources
need to be balanced among different iterations in FL by
analyzing the collective impact of successive communication
rounds on the ultimate performance. The isolated resource
allocation strategy in the existing works equally treats each
learning round, which inevitably results in performance loss.

In this paper, we consider an AirComp-based FL system,
in which an IRS is employed to configure a favorable
wireless channel to provide precise model aggregation in
each iteration. For the first time, we propose a performance-
oriented long-term design approach to fully unleash the
available communication resources, thus obtaining higher
test accuracy. The first step toward resource allocation
across different learning rounds is to evaluate the impact of
resources on the overall learning accuracy and convergence.
To this end, we characterize the optimality gap of the loss
function in arbitrary communication rounds, which unveils
the relationship between communication accuracy in each
communication round and ultimate learning performance.
Accordingly, a long-term system design scheme is proposed
to minimize the optimality gap via integrated design over
multiple communication rounds. Different from existing works
that focused on the isolated design in each communication
round, it is interesting to find that such an integrated approach
exhibits a later-is-better principle, which confirms that the
later rounds in the FL procedure are more sensitive to the
aggregation error, and hence more resources are required over
time. The main contributions of this paper can be summarized
as follows.
• We derive the general optimality gap of the loss

function, which characterizes the impact of gradient
aggregation errors in different communication rounds
on the convergence performance of AirComp-based FL.
From the obtained optimality gap, it is observed that
within a finite number of communication rounds, the
aggregation errors in later rounds have a greater impact
on the optimality gap than those in earlier rounds.
Hence, the later rounds are more essential to the learning
performance of FL, and more resources need to be
allocated to them. This observation provides important
guidance for practical system design. However, the
conventional isolated system design approach neglects
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the significant property and treats all the communication
rounds equally.

• To enhance the ultimate performance of FL, we integrated
design multiple communication rounds to minimize the
optimality gap and establish the long-term system design
schemes. We first propose an offline design approach in
which the entire FL procedure is sequentially decom-
posed based on the available lookahead information, and
then leverage the Lyapunov framework [33] to construct
an online design problem over each communication
round without foreseeing the future. The transceiver
design and the IRS phase shift tuning are decoupled
through the block coordinate descent (BCD) method.
Furthermore, we propose an element-wise successive
refinement algorithm with low complexity to guide the
practical implementation of an IRS with discrete phase
shift constraint.

• We conduct extensive simulations to evaluate the per-
formance of the proposed performance-oriented design
framework on the MNIST dataset [34] and the CIFAR-
10 dataset [35] with convolution neural networks (CNNs).
Simulation results show that the proposed long-term
design schemes can achieve higher test accuracy than
the conventional isolated design approach eventually,
although it may lag behind in the beginning. Furthermore,
it is observed that the online system design approach can
acquire satisfactory performance compared to the offline
solution without foreseeing the future, which further
validates the later-is-better principle. Simulation results
demonstrate that the proposed online scheme is a practical
and promising approach for FL system design.

The remainder of this paper is organized as follows.
In Section II, we describe the FL model and the IRS-
assisted AirComp framework. In Section III, we analyze the
FL performance and accordingly formulate the performance-
oriented optimization problem. In Section IV, we harness an
efficient BCD approach to alternatively optimize transceiver
and IRS phase shifts. In Section V, we present extensive
numerical results to evaluate the proposed algorithm. Finally,
this paper concludes in Section VI.

Notation: Scalars are denoted by italic letters, and vectors
and matrices are denoted by bold-face lower-case and
uppercase letters, respectively. Rm×n and Cm×n denote the
space of m × n real-valued and complex-valued matrices,
respectively. For a complex-valued vector x, ∥x∥ represents
the Euclidean norm of x, arg(x) denotes the phase of x,
and diag(x) denotes a diagonal matrix whose main diagonal
elements are extracted from the vector x. For a square matrix
S, tr(S) and S−1 denote its trace and inverse, respectively,
while S ⪰ 0 means that S is positive semi-definite, where 0
is a zero matrix of proper size. For any general matrix A, AH,
rank(A), and Ai,j denote its conjugate transpose, rank, and
(i, j)th entry, respectively. IM denotes an identity matrix of
size M ×M . ȷ denotes the imaginary unit, i.e., ȷ2 = −1. E[·]
denotes the statistical expectation. |·| denotes the cardinality
of a given set. O (·) is the big-O computational complexity
notation.

Fig. 1. An IRS-assisted AirComp-based FL system.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider an IRS-assisted FL
system comprising of K single antenna devices, an IRS with
N passive elements, and a base station (BS) with M antennas
serving as an edge server. Devices and the IRS are coordinated
by the BS to realize the collaborative model training through
periodical communication and computation. The details of the
FL procedure and the IRS-assisted over-the-air aggregation are
introduced as follows.

A. Federated Learning Procedure

The goal of the FL system is to collectively acquire the
desired parameter w∗ ∈ Rd that minimizes the global loss
function with respect to the entire dataset. Instead of uploading
all the raw data to the server, each device processes its local
data in parallel and uploads the correspondingly generated
local parameters or gradients to the server. We adopt the
gradient sharing strategy in the FL procedure, i.e., the edge
devices compute their local gradients and upload them to the
edge server, and then the edge server broadcasts the global
gradient which is computed based on the aggregated gradients
to the edge devices for synchronizing local models’ update.

Specifically, we assume that each edge device holds a subset
of training data with |Dk| samples that are sampled i.i.d.
from a source distribution D =

⋃
k∈KDk, which is denoted

by Dk = {u1,u2, . . . ,u|Dk|}. Notation ui represents a data
sample, which can be represented as a set of feature vectors
and its label in supervised learning. The regularized local loss
function of device k is given by

Fk(w) =
1
|Dk|

∑
ui∈Dk

f(w;ui) + λ′R(w), (1)

where R(w) is a strongly convex regularization function,
λ′ ≥ 0 is a scaling hyperparameter. The global loss function
evaluated at model parameter w is

F (w) =
1

Dtot

K∑
k=1

|Dk|Fk(w), (2)

where Dtot =
∑

k |Dk|. This amounts to the regularized
empirical average of the sample-wise loss functions on the
global data set D. The FL procedure aims to obtain the optimal
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w∗ that minimizes the global loss function:

w∗ = arg min F (w). (3)

To perform cooperative training among edge devices, the
edge devices compute their local gradients by minimizing
Fk(w) in parallel, and then the BS obtains the global gradient
based on gathered local gradients. Specifically, based on a
randomly sampled mini-batch D̂k from the local dataset, each
device k computes a gradient vector g(t)

k at communication
round t as

g(t)
k = ∇Fk(w(t))

=
1
|D̂k|

∑
u,v∈D̂k

∇f(w;u, v) + λ∇R(w(t)), (4)

where w(t) is the model parameter before updating. In this
paper, we assume that all the mini-batch sizes are equal among
devices.1 Hence, the aggregated global gradient is

g(t) =
1
K

K∑
k=1

g(t)
k . (5)

Then the BS broadcasts the global gradient to edge devices for
synchronously local model updating. We assume that downlink
communication is ideal, hence each device can obtain precise
global gradient g(t) for local model updating as

w(t+1) = w(t) − α(t) · g(t), (6)
in which α(t) denotes the learning rate in the communication
round t.

B. Over-the-Air Aggregation

We adopt the AirComp technique to perform the
communication-efficient gradient aggregation, and the IRS is
deployed to assist the signal transmission from devices to the
BS. Generally, the target function for aggregating the local
gradient at the BS can be expressed as

g(t) = χ(t)(ϱ(t)
k (g(t)

k )), (7)

where ϱ
(t)
k (·) denotes the pre-process function at device k

for normalization in round t, and χ(t)(·) denotes the post-
process function for de-normalization at the BS. Hence,
the transmit sequence is s(t)

k = ϱ
(t)
k (g(t)

k ). The baseband
equivalent channels in communication round t from the IRS
to BS, from the device k to IRS, and from the device k to
BS are denoted by G(t) ∈ CM×N , h(t)

r,k ∈ CN×1 and h(t)
d,k ∈

CM×1, respectively. The CSI in current communication round
is assumed to be perfectly known based on the various channel
acquisition methods discussed in [24]. Due to the severe path
loss, the power of the signals that are reflected by the IRS
two or more times is assumed to be negligible [36]. With the
assistance of IRS, the signal received at the BS is given by

Y (t) =
∑

k∈K(t)

(
h

(t)
d,k +G(t)Θ(t)h

(t)
r,k

)
b
(t)
k (s(t)

k )T +Z(t),

(8)

1The utilized FL framework can be readily extended to the case that devices
are equipped with different data sizes. In this case, (5) can be revised to a
weighted-average form.

where b
(t)
k ∈ C is the transmit factor of device k that

controls the power consumption in round t, and Z(t) ∈ CM×d

with each entry zi ∼ CN (0, σ2
z) denotes the additional

white Gaussian noise at the receiver. Besides, Θ(t) =
diag(β(t)

1 eȷθ
(t)
1 , . . . , β

(t)
N eȷθ

(t)
N ) denotes the diagonal phase shift

matrix of the IRS, where θ
(t)
n ∈ [0, 2π), β(t)

n ∈ [0, 1],∀n ∈
N ,∀t ∈ T denote the phase shift and the amplitude reflection
coefficient on the incident signal of element n. We assume
β

(t)
n = 1,∀n ∈ N ,∀t ∈ T without loss of generality [36].

By applying receive beamformer m(t), the obtained signal at
BS is

(ŝ(t))T

= (m(t))H
(∑

k∈K

h̃
(t)

k b
(t)
k (s(t)

k )T +Z(t)

)
=

∑
k∈K

(s(t)
k )T︸ ︷︷ ︸

desired signal: (s(t))T

+
∑
k∈K

(
(m(t))Hh̃

(t)

k b
(t)
k − 1

)
(s(t)

k )T + (m(t))HZ(t)

︸ ︷︷ ︸
aggregation error: (ε

(t)
s )T

.

(9)

where h̃
(t)

k = h
(t)
d,k +G(t)Θ(t)h

(t)
r,k denotes the superimposed

channel from devices to BS, and ε(t)
s is the aggregation error

caused by the uplink transmission via AirComp. Hence, the
corresponding estimated global gradient ĝ(t) and the gradient
distortion ε(t)

g can be presented as

ĝ(t) = χ(t)(ŝ(t)),
ε(t)

g = χ(t)(ŝ(t))− g(t) = χ(t)(s(t) + ε(t)
s )− χ(t)(s(t)).

(10)

Hence, the local model updating at each device becomes

w(t+1) = w(t) − α(t) · ĝ(t) = w(t) − α(t) ·
(
g(t) + ε(t)

g

)
.

(11)

Notice that the aggregated gradient at BS in (10) is biased
due to perturbation caused by the channel fading and noise.
In the next section, we analyze the convergence behavior of
the AirComp-based FL with perturbed gradients.

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

In this section, we analyze the convergence behavior of FL.
First, we introduce several assumptions on the loss function
F (w) and stochastic gradients to facilitate the convergence
analysis, that are commonly made in the existing literature.
Then, the generalized optimality gap, which is suitable for
generic wireless networks, is derived to characterize the
learning efficiency between two arbitrary communication
rounds. The obtained optimality gap sheds light on how the
imperfect gradient updates affect the convergence of FL. Next,
we focus on the IRS-assisted AirComp to provide precise
gradients aggregation for FL, and formulate the corresponding
performance-oriented design problems.
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A. Convergence Analysis

In this subsection, we present several assumptions which
have been widely used in the convergence analysis of FL, see
e.g., [37], [38] and [39].

Assumption 1 (Smoothness): The global loss function
F (w) is smooth at any point w ∈ Rd with constant L > 0,
that is, it is continuously differentiable and the gradient
∇F (w) is Lipschitz continuous with constant L, i.e.,

∥∇F (w)−∇F (w′)∥ ≤ L∥w −w′∥, ∀w,w′ ∈ Rd. (12)

Assumption 2 (Polyak-Łojasiewicz (PL) Condition [40]):
The global loss function F (w) satisfies the PL condition, i.e.,
for constant µ > 0,∥∥∥∇F (w(t))

∥∥∥2

≥ 2µ(F (w(t))− F (w∗)), (13)

where w∗ is the global minimizer of the loss function.
Assumption 3 (Unbiased Estimation): The stochastic gra-

dient evaluated on a mini-batch D̂k ⊂ D and at any point
w is an unbiased estimator of the partial full gradient, i.e.
E[g(t)

k ] = ∇F (w(t)).
As shown in the following theorem, the convergence

behavior for generic wireless networks with perturbed
gradients is proposed based on the above assumptions.

Theorem 1 (Generalized Optimality Gap): Suppose that an
FL procedure satisfies Assumptions 1-3, and the learning rate
α(t) ≡ α with α ≤ 1

µ and α ≤ 1
L ,2 for arbitrary T2, T1 satisfy

T2 > T1, the optimality gap at the end of T2-th round
compared to the one of T1-th is bounded by

E
[
F
(
w(T2+1)

)]
− F (w∗)

≤ (1− µα)(T2−T1)
(
E
[
F
(
w(T1+1)

)]
− F (w∗)

)
+

T2∑
t=T1+1

(1− µα)(T2−t)

{
α(1−Lα)

2

∥∥∥E [ε(t)
g

]∥∥∥2

+
Lα2

2
E
[∥∥∥ε(t)

g

∥∥∥2
]

+
Lα2

2
E
[∥∥∥g(t)

∥∥∥2
]}

, (14)

where ε(t)
g = χ(t)(s(t) + ε

(t)
s ) − χ(t)(s(t)) is the gradient

distortion.
Proof: See Appendix A. ■
The presented optimality gap in Theorem 1 is shown as

a weighted sum of distortions ε(t)
g in each communication

round. For arbitrary communication round t1, t2 satisfy T1 <
t1 < t2 < T2, the time-related weights (1 − µα)(T2−t1) <
(1 − µα)(T2−t2) due to that the base (1 − µα) belongs to
(0, 1) and the exponents T2 − t1 > T2 − t2 ≥ 1. Hence,
more communication resources are required to diminish the
aggregation error in the later rounds thus minimizing the
optimality gap which exhibits the “latter-is-better” principle.
Next, we formulate the offline and online problems based on
Theorem 1.

2Note that the optimality gap with time-varying learning rate is also given
in Appendix A, and the following problem formulation and proposed solution
can be readily implemented on the one with varying α(t).

B. Problem Formulation

The distortion caused by the channel fading and noise have
a strong impact on the FL convergence, therefore, we utilize
the IRS to configure favorable channels thereby reducing the
aggregation error. As we focus on the ultimate performance of
FL, the goal is to directly minimize the optimality gap in the
final round with the maximum power constraint and long-term
energy budget constraint of each device. Note that distortion
ε
(t)
g in (14) is highly related to two aspects, one is the wireless

channel, the other is normalization and de-normalization
processes. Typically, the transmit symbols in AirComp are
normalized into zero-mean unit-variance symbols based on
current local gradient statistics [19], [27]. Although (14) can
be readily transformed into the case by setting T2 = T , and
T1 = 0, one critical issue appears that such a long-term
system optimization requires foreseeing the future information,
i.e., complete offline channel state information (CSI) and the
normalization and de-normalization functions shown in (7)
over the entire FL period (i.e., all the T learning rounds) which
is impractical. In this part, we propose two schemes, one is
the offline design with lookahead information served as the
benchmark, and the other is the online design conducted on
each communication round.

1) Offline Design With Lookahead Information: We divide
the entire FL period into R ≥ 1 periods, each comprising
of ρ ≥ 1 learning rounds such that T = Rρ. The offline
framework is based on the ρ-rounds lookahead CSI and
estimated ℓ2-norm bound of local gradients in each round.
We assume the CSI in the next ρ rounds is known in advance
which is reasonable when the CSI during all the ρ-rounds
remains static in a slow-fading channel, or the CSI can be
precisely predicted via deep learning or other techniques [41].
In addition, the ℓ2-norm bound of local gradients in the next
ρ rounds are estimated by the heuristic methods provided
in [42]. In that case, the normalization process at each device
is conducted as

s(t)
k =

g(t)
k√
γ(t)

, ∀k, (15)

where
√

γ(t) is the estimated ℓ2-norm bound according to [42]
and [43]. The de-normalization process at the BS is

ĝ(t) =

√
γ(t)

K
ŝ(t) = g(t) +

√
γ(t)

K
ε(t)

s . (16)

Hence, the corresponding gradient aggregation error is given
by

ε(t)
g =

√
γ(t)

K
ε(t)

s , (17)

and we have∥∥∥E [ε(t)
g

]∥∥∥2

=
∣∣∣∣ 1
K

∑
k∈K

(
(m(t))Hh̃

(t)

k b
(t)
f,k − 1

)∣∣∣∣2∥∇F (w(t))∥2

≤
∣∣∣∣ 1
K

∑
k∈K

(
(m(t))Hh̃

(t)

k b
(t)
f,k − 1

)∣∣∣∣2γ(t), (18)
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E
[∥∥∥ε(t)

g

∥∥∥2
]

≤
(

1
K2

∑
k∈K

∣∣∣(m(t))Hh̃
(t)

k b
(t)
f,k−1

∣∣∣2 +
1

K2
∥m(t)∥2dσ2

z

)
× γ(t), (19)

where b
(t)
f,k denotes the transmit factor of the offline scheme.

According to (14), the optimality gap at the end of period
r compared to that of period r − 1 is bounded as (20),
shown at the bottom of the next page, where ω

(t)
1 =

(1− µα)(T2−t) α(1−Lα)
2 , and ω

(t)
2 = (1− µα)(T2−t) Lα2

2 .
Hence, the ultimate gap at round T (i.e., the end of period
R) is bounded as

E
[
F
(
w(T+1)

)]
− F (w∗)

≤ (1− µα)T
(
E
[
F
(
w(1)

)]
− F (w∗)

)
+

R∑
r=1

(1− µα)(R−r)ρ Λ(r)({b(t)
k }, {Θ(t)}, {m(t)}).

(21)

We consider the maximum transmit power on an individual
symbol to be Pmax

k , thus each edge device is subject to a
maximum power constraint dPmax

k on each communication
round, i.e.,

E
(∥∥∥|b(t)

f,k|s
(t)
k

∥∥∥2
)
≤ |b(t)

f,k|
2 ≤ dPmax

k , ∀k ∈ K, ∀t ∈ T ,

(22)

Besides, to reveal the communication resources allocation
between different communication rounds, we further consider
the average power constraint of each period which equivalently
substitutes the long-term energy budget constraint:

rρ∑
t=(r−1)ρ+1

E
(∥∥∥|b(t)

f,k|s
(t)
k

∥∥∥2
)
≤

rρ∑
t=(r−1)ρ+1

|b(t)
f,k|

2

≤ ρdP avg
k , ∀k ∈ K. (23)

By discarding the constant term in (21), i.e., the initial
optimality gap, the corresponding optimization problem3 is
given by

(P1) : min
{b

(t)
f,k

},

{Θ(t)},{m(t)}

R∑
r=1

(1− µα)(R−r)ρ Λ(r)({b(t)
f,k},

{Θ(t)}, {m(t)}) (24a)

s.t. |b(t)
f,k|

2 ≤ dPmax
k , ∀k ∈ K, ∀t ∈ T , (24b)

rρ∑
t=(r−1)ρ+1

|b(t)
f,k|

2 ≤ ρdP avg
k ,

∀k ∈ K, ∀r ∈ [1, R], (24c)

0 ≤ θ(t)
n ≤ 2π, ∀n ∈ {1, . . . , N}, ∀t ∈ T .

(24d)

3The formulated problem can be readily extended to the one including
device scheduling, and two kinds of extensions are provided in Appendix B.

where the objective function is a weighted sum of the
optimality gap in each communication round, and the latter
rounds have larger weights. Furthermore, (P1) can be divided
into R subproblems since both the objective function and
the constraints are independent among different periods. Each
subproblem designs the resource allocation in one period in
which the communication resources can be flexibly allocated.
In practice, the CSI and the estimated gradient bounds may
have errors, thereby the energy consumption needs to be
corrected at the end of each period r. Note that the presented
offline design scheme is served as a benchmark for the online
scheme shown below.

2) Online Design via Lyapunov Technique: (P1) needs the
ρ-rounds lookahead CSI as well as the estimated gradient norm
bound to allocate the communication resources. However,
the CSI varies rapidly within a period when facing a fast-
varying channel, and the channel prediction techniques may
induce additional errors. In addition, the estimated ℓ2-norm
bound of local gradients may induce additional perturbation to
the obtained optimality gap. Hence, we utilize the Lyapunov
optimization framework [33] to construct a virtual energy
deficit queue ek(t) for each device k to guide the power
allocation over sequential communication rounds without
foreseeing the future. According to [19] and [27], the
normalization process at each device is conducted as

s(t)
k =

g(t)
k − 1

K

∑
k∈K ξ

(t)
k

1
K

√∑
k∈K(ι(t)k )2

, ∀k, (25)

where ξ
(t)
k , (ι(t)k )2 is the local gradient statistics (i.e., the means

and variances) in current round t that are computed as

ξ
(t)
k =

1
D

D∑
d=1

g
(t)
k,d, (ι(t)k )2 =

1
D

D∑
d=1

(g(t)
k,d − ξ

(t)
k )2, ∀k.

(26)

The de-normalization process at the BS is

ĝ(t) =
1
K

(√∑
k∈K(ι(t)k )2

K
ŝ(t) +

∑
k∈K

ξ
(t)
k

)
, (27)

thereby, the corresponding gradient aggregation error is

ε(t)
g = ĝ(t) − g(t) =

√∑
k∈K(ι(t)k )2

K2
ε(t)

s , (28)

and we have∥∥∥E [ε(t)
g

]∥∥∥2

= 0,

E
[∥∥∥ε(t)

g

∥∥∥2
]
≤

d
∑

k∈K(ι(t)k )2

K4

(∑
k∈K

∣∣∣(m(t))Hh̃
(t)

k b
(t)
k − 1

∣∣∣2
+∥m(t)∥2σ2

z

)
. (29)

Consider the maximum transmit power on an individual
symbol to be Pmax

k as the offline scheme, thereby the
maximum power constraint of the online scheme is given by

|b(t)
k |2 ≤ Pmax

k , ∀k ∈ K, ∀t ∈ T . (30)
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The virtual energy queue of device k starts with ek(t) ≥ 0,∀k,
and is updated at the end of each round t as

ek(t + 1) = max{ek(t) + d|b(t)
k |2 − dP avg

k , 0}, (31)

where d|b(t)
k |2 is the power consumption on communication

round t. Hence, ek(t) indicates the deviation of the current
energy consumption of device k from its long-term energy
constraint ρdP avg

k . Let e(t) = {e1(t), e2(t), . . . , eK(t)}
collect the energy deficit queues for all devices. The
constructed optimization problem of communication round t
is shown as a weighted sum of the per-round optimality gap
and the energy consumption at the devices, i.e.,

(P2) :

min
{b(t)

k },{Θ(t)},
{m(t)}

Vr (1− µα)(R−r)ρ
ω

(t)
2 E

[∥∥∥ε(t)
g

∥∥∥2
]

+
∑
k∈K

dek(t)|b(t)
k |2 (32a)

s.t. |b(t)
k |2 ≤ Pmax

k , ∀k ∈ K, ∀t ∈ T , (32b)

0 ≤ θ(t)
n ≤ 2π, ∀n ∈ {1, . . . , N}, ∀t ∈ T ,

(32c)

where parameter Vr ≥ 0 is represented as an importance
weight to adjust the emphasis on the objective function
(i.e., optimality gap minimization) in different communication
rounds. Notice that if ek(t) increases in round t, then
minimizing energy consumption is more critical in round t+1.
Intuitively, when the energy queue is stable, the constraint in
(24c) is satisfied. Although problems (P2) and (P1) are not
equivalent due to the different objective functions, constraints,
and even different normalization/de-normalization processes,
the following theorem unveils that the results of (P2) are
comparable to (P1) and are within a bounded deviation from
the optimal results of the omniscient (P1) with precise future
information.

Theorem 2: Assume that the omniscient (P1) is an
offline scheme that obtains precise CSI and local gradient
statistics at the beginning of each period and conducts
the normalization/de-normalization as the one in the online
scheme. (P2) can achieve a performance-backlog tradeoff
of [O(1/V ),O(

√
V )] with compared to omniscient (P1).

We use G∗ to represent the obtained optimality gap via the
optimal offline solution and G† to represent obtained the
optimality gap via (P2). Specifically, the FL performance is

O(1/V )-optimal, which is bounded by
T∑

t=1

G†t ≤
T∑

t=1

G∗t +
R−1∑
r=1

Cr

Vr
, (33)

where Cr = ρCe +
∑(r+1)ρ

t=rρ+1

∑
k∈KEmax

(
(t − 1)Emax +

ek(rρ + 1)
)
, and Emax = maxk,t(d|b(t)

k |2 − dP avg
k ). Besides,

the energy consumption of each device is O(
√

V )-bounded as
T∑

t=1

(
d|b(t)

k |2 − dP avg
k

)

≤
R−1∑
r=1

(√√√√2
(

Cr + Vr

(r+1)ρ∑
t=rρ+1

G∗t

)
− ek(rρ + 1)

)
. (34)

Proof: See Appendix C. ■

IV. PROPOSED ALGORITHMS FOR OFFLINE
AND ONLINE DESIGN

In the previous section, we present an offline optimization
problem based on the available lookahead information and
an online optimization problem via the Lyapunov technique
without foreseeing the future. It is observed that (P1) can
be divided into R subproblems, each of which corresponds
to one period, and (P2) is an online design problem within
each communication round. Note that although variables are
highly coupled in the objective function, all the constraints
corresponding to each variable are uncoupled with others in
both problems. This thus motivates us to apply the BCD
method to solve them efficiently by properly partitioning
the optimization variables into different blocks. One can
observe that, with any given transmit factor, the optimization
procedures for receiver m(t) and IRS phase shift Θ(t)

of (P2) is a simplification of (P1) with drop the term

related to
∥∥∥E [ε(t)

g

]∥∥∥2

. Besides, there exist similarities in the
optimization procedures for power allocation of (P1) and
(P2). Therefore, we propose the optimization algorithms for
the two problems from the perspective of different variable
blocks.

A. Power Allocation

For any given {Θ(t)} and {m(t)}, the transmit factors
need to be precisely allocated among different communication
rounds to minimize the ultimate optimality gap. Recalling
(P1) and (P2), we can obtain the following remark.

Remark 1: To minimize the objective functions of (P1) and
(P2), each device k in communication round t always adjusts

E
[
F
(
w(rρ+1)

)]
− F (w∗) ≤

(
1− µα

)ρ (E [F (w((r−1)∗ρ+1))
]
− F (w∗)

)
︸ ︷︷ ︸

Optimality gap in the end of period r − 1

+
rρ∑

t=(r−1)ρ+1

ω
(t)
1

∥∥∥E [ε(t)
g

]∥∥∥2

+
rρ∑

t=(r−1)ρ+1

ω
(t)
2

(
E
[∥∥∥ε(t)

g

∥∥∥2
]

+ E
[∥∥∥g(t)

∥∥∥2
])

︸ ︷︷ ︸
Λ(r)({b(t)

k },{Θ(t)},{m(t)})

, (20)
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the phase of its transmit factor for phase compensation with
respect to its equivalent fading channel h̄

(t)
k = (m(t))Hh̃

(t)

k ,
i.e., arg(b(t)

f,k) = arg(b(t)
k ) = arg

(
(h̄(t)

k )−1
)
.

In that case, only the magnitudes of {b(t)
f,k} have effects

on the value of the objective function. By fixing arg(b(t)
f,k) =

arg
(
(h̄(t)

k )−1
)
, and letting b̄

(t)
f,k = |b(t)

f,k|,∀k ∈ K, the power
allocation problem of (P1) over one dedicated period can be
expressed in the real form as

(P1.1) : min
{b̄(t)

f,k}

rρ∑
t=(r−1)ρ+1

γ(t)ω
(t)
1

K2

(∑
k∈K

|h̄(t)
k |b̄(t)

f,k −K

)2

+
rρ∑

t=(r−1)ρ

γ(t)ω
(t)
2

K2

∑
k∈K

(
|h̄(t)

k |b̄(t)
f,k − 1

)2

(35a)

s.t. (b̄(t)
f,k)2 ≤ dPmax

k , ∀t ∈ [(r − 1)ρ + 1, rρ],

∀k ∈ K, (35b)
rρ∑

t=(r−1)ρ+1

(b̄(t)
f,k)2 ≤ ρdP avg

k , ∀k ∈ K.

(35c)

Note that (P1.1) is a convex quadratic optimization
problem which can be optimally solved by standard convex
optimization techniques such as the interior point method or
alternating direction method of multipliers (ADMM). Instead,
we next resort to the Lagrange duality method to derive
the structured optimal solution for problem (P1.1) to gain
engineering insights. Let λ∗k denote the optimal dual variable
associated with the k-th constraint in (35c). By adopting the
first-order optimality condition, the optimal solution of b̄

(t)
k is

given by

(b̄(t)
f,k)∗ = min

{
γ(t)ω

(t)
1 (K −

∑
i̸=k |h̄

(t)
i |b̄(t)

i ) + γ(t)ω
(t)
2(

γ(t)ω
(t)
1 + γ(t)ω

(t)
2

)
|h̄(t)

k |+ K2

|h̄(t)
k |

λ∗k
,

√
dPmax

k

}
, (36)

where the optimal dual variables {λ∗k} can be obtained through
the subgradient-based methods as shown in [20].

Consider the special case that the average power budget
is not less than the maximum power at all devices, i.e.,
P avg

k ≥ Pmax
k ,∀k ∈ K. Then, the average power constraints

are not activated, and the dual variables are equal to zero
(i.e., λ∗k = 0,∀k). The proposed optimal power allocation
strategy is reduced to the isolated optimization across
different communication rounds, and exhibits a threshold-
based structure: all the devices k ∈ K′ that cannot compensate
their channel fading, i.e., satisfying |h̄(t)

i |
√

dPmax
k − 1 < 0,

should transmit signals with the largest power; otherwise, the
devices k /∈ K′ that satisfying |h̄(t)

i |
√

dPmax
k − 1 ≥ 0, should

enlarge their transmit power moderately (overcompensate their
channel) to minimize the optimality gap exacerbated by the
deep faded channel of the devices k ∈ K′. As for the general
case that the average power budgets are less than the maximum

power at all devices, i.e., P avg
k < Pmax

k ,∀k ∈ K, the dual
variables in (36) are larger than zero (i.e., λ∗k > 0). From (36),
one can observe that the power allocation is closely related
to the chronological order and the current channel condition.
Larger power will be allocated to the devices in the later
communication rounds and/or with better channel conditions.

The power control of (P2) in one dedicated communication
round is a convex optimization problem presented as

min
{b(t)

k }
Vr (1− µα)(R−r)ρ

ω
(t)
2

∑
(ι(t)k )2

K4

∑
k∈K

∣∣∣|h̄(t)
k |b̄(t)

k − 1
∣∣∣2

+
∑
k∈K

ek(t)|b(t)
k |2 (37a)

s.t. |b(t)
k |2 ≤ Pmax

k , ∀k ∈ K, ∀t ∈ T , (37b)

and the optimal solution is given by

(b̄(t)
k )† = min

{
1

|h̄(t)
k |+ ek(t)K4

Vr(1−µα)(R−r)ρω
(t)
2

∑
(ι

(t)
k )2|h̄(t)

k |

,

√
Pmax

k

}
. (38)

It can be observed that the power allocation is closely related
to the current energy queue ek(t) and the parameter Vr which
acted as an importance weight to balance the emphasis on
the optimality gap and energy consumption minimization,
in addition to the chronological order and the current channel
condition. We can obtain a similar result as (P1) that
larger power will be allocated to the devices in the later
communication rounds and/or with better channel conditions.
Besides, the allocated power will be diminished when facing
a higher energy queue ek(t) and/or less importance weight Vr

on the optimality gap in order to satisfy the long-term energy
constraint.

B. Receiver Design

For any given power allocation and phase shift of IRS, the
optimization problems with respect to the receive beamformers
{m(t)} of (P1) can be separated among different rounds.
The corresponding subproblem of (P1) with omitting the time
index can be expressed as

(P1.2) : min
m

ω1

∣∣∣mH
∑
k∈K

h̃kbf,k −K
∣∣∣2

+ ω2

(∑
k∈K

∣∣∣mHh̃kbf,k − 1
∣∣∣2 + dσ2

z∥m∥2
)
. (39)

Since problem (P1.2) is an unconstrained convex problem,
by exploiting the first-order optimality condition, the closed-
form solution for m is given by

m∗ =
(

ω1

(∑
k∈K

h̃kbf,k

)2

+ ω2

∑
k∈K

|bf,k|2h̃kh̃
H

k

+ ω2dσ2
zI

)−1

×
((

Kω1 + ω2

)∑
k∈K

h̃kbf,k

)
. (40)
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The optimal receiver (40) of the proposed offline design
scheme is shown as a weighted summed structure, with the
corresponding weights being the ones of the bias term and
the MSE term in (14). Similarly, it can be obtained that
the optimal receiver of the online design scheme is given

by
(∑

k∈K |bk|2 h̃kh̃
H

k + σ2
zI
)−1 (∑

k∈K h̃kbk

)
that targets

at computing the summation of local gradients.

C. Phase Shift Optimization of the IRS

For any given power allocation and the receiver beamformer,
the optimization problem with respect to the phase shift
{Θ(t)} of (P1) can be separated among different commu-
nication rounds. Note that optimization procedures for {Θ(t)}
of (P2) is part of the subproblem of (P1) that is only
related to the MSE term E

[∥∥ε(t)
g

∥∥2
]
. Hence, we analyze the

corresponding subproblem of (P1) and obtain the solutions of
the two problems. By multiplying by a constant term K2, the
subproblem with respect to the phase shift {Θ} of (P1) is
given by

(P1.3) : min
Θ

ω1

∣∣∣mH
∑
k∈K

h̃kbf,k −K
∣∣∣2

+ ω2

∑
k∈K

∣∣∣mHh̃kbf,k − 1
∣∣∣2 (41a)

s.t. 0 ≤ θn ≤ 2π, ∀n ∈ {1, . . . , N}. (41b)

Since (P1.3) is a non-convex optimization problem due to the
per-phase constraints in (41b). We first apply the semidefinite
relaxation (SDR) strategy to relax (P1.3) into a semidefinite
programming (SDP) problem. To reduce the computational
complexity, we further propose an element-vise optimization
approach to achieve near-optimal performance. Besides, it can
be readily extended to the practical scenario that with discrete
phase shifts constraint.

1) SDR Approach: Let v = [eȷθ1 , . . . , eȷθN ]H, (P1.3) can
be transformed to a convex optimation problem with norm-
one constraint. Furthermore, the well-known SDR technique
can be applied to convert it to a convex SDP problem [36],
[44], [45] which can be solved efficiently in polynomial time
by existing convex optimization solvers such as CVX. Besides,
additional steps such as Gaussian randomization [45] need to
be applied to extract a suboptimal solution when the optimal
solution to the SDP problem is obtained with a higher rank.

2) Low-Complexity Suboptimal Solution: Although a sat-
isfactory solution to (P1.3) can be obtained through the
SDR approach, the lifted optimization variable induces huge
computation complexity. Solving a series of high-dimensional
SDP problems drastically increases the computational burden.
Besides, the additional steps to extract a suboptimal solution
are often with intolerable computation consumption, especially
when facing an IRS with large-scale elements that are
common in practice. Furthermore, the obtained continuous
phase shifts are practically difficult to implement due to
hardware limitations. Generally, the discrete phase shifts
optimization problem is shown as an integer linear program
problem that can be optimally solved via the branch-and-
bound with the worst-case exponential complexity [46].

To reduce the computational complexity and provide the
near-optimal solution for the IRS with discrete phase shifts
constraint, we successively refine the phase shift of each
element until converges. It is noted that the phase shifts of
all elements are fully separable in the constraint, and only
coupled in the objective function. Hence, we can successively
optimize the phase shift of each element until converges. For
a given n ∈ N , by fixing the others, the objective function in
(P1.3) is linear with respect to eȷθn , which is written as

ω1

(
vHψψH︸ ︷︷ ︸

Ψ′

v + 2ℜ{vHψζH︸︷︷︸
ζ′

}+ |ζ|2
)

+ ω2

∑
k∈K

(
vH ϕkϕ

H
k︸ ︷︷ ︸

Φ′k

v + 2ℜ{vH ϕkφH
k︸ ︷︷ ︸

φ′k

}+ |φk|2
)

= ω1

( N∑
l ̸=n

N∑
i̸=n

Ψ′(l, i)eȷ(θl−θi) + 2ℜ{eȷθnq(1)
n }+ C ′

)

+ ω2

( K∑
k=1

N∑
l ̸=n

N∑
i̸=n

Φ′
k(l, i)eȷ(θl−θi) + 2ℜ

{
eȷθn

K∑
k=1

q
(2)
k,n

}

+
K∑

k=1

Ck

)
, (42)

where ψ = diag(mHG)Hrb, ζ = mHHdb − K, ϕk =
diag(mHG)hr,kbf,k, φk = mHhd,kbf,k− 1, and Hr,Hd, b
collect the channel and the power allocation of devices,
respectively. Besides, the constant terms in (42) are given by

q(1)
n =

N∑
l ̸=n

Ψ′(n, l)e−ȷθl + ζ ′(n) = |q(1)
n |eȷνn , (43)

C ′ = Ψ′(n, n) + 2ℜ{
N∑

l ̸=n

eȷθlζ ′(l)}+ |ζ ′|2, (44)

K∑
k=1

q
(2)
k,n =

K∑
k=1

 N∑
l ̸=n

Φ′(n, l)e−ȷθl + φ′k(n)

 = |q(2)
n |eȷςn ,

(45)

Ck = Φ′(n, n) + 2ℜ


N∑

l ̸=n

eȷθℓφ′k(l)

+ |φ′k|2. (46)

By leveraging the trigonometric identities, the part related to
element n can be equivalently transformed to

ω1ℜ{eȷθnq(1)
n }+ ω2ℜ

{
eȷθn

K∑
k=1

q
(2)
k,n

}
= ω1|q(1)

n | sin(θn + νn +
π

2
) + ω2|q(2)

n | sin(θn + ςn +
π

2
)

= ĉn sin(θn + θ̂n), (47)

where θ̂n = atan ω2|q(2)
n | sin(ςn−νn)

ω1|q(1)
n |+ω2|q(2)

n | cos(ςn−νn)
∈ [−π

2 , π
2 ] if

ω1|q(1)
n | + ω2|q(2)

n | cos(ςn − νn) > 0, otherwise θ̂n = π +
atan ω2|q(2)

n | sin(ςn−νn)

ω1|q(1)
n |+ω2|q(2)

n | cos(ςn−νn)
∈ [π

2 , 3π
2 ].
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Hence, the optimal phase shift of (P1.3) for the
element n is

θ∗n =
3
2
π − θ̂n. (48)

Besides, the optimal phase shift of the element n to minimize
the objective function of (P2) is θ∗n = arg minθn sin(θn +
ςn + π

2 ). For ease of practical implementation, we consider
that the phase shift at each element of the IRS can take only
a finite number of discrete values. Let δ denote the number
of bits used to indicate the number of phase shift levels. For
simplicity, we assume that such discrete phase shift values are
obtained by uniformly quantizing the interval [0, 2π). Thus,
the set of discrete phase shift values at each element is given
by S = {0, ∆θ, . . . , (2δ − 1)∆θ} with ∆θ = 2π/2δ . Hence,
the optimal configuration with finite quantization bit is θ̄∗n =
arg minθ∈S |θ − θ∗n|. With successively setting the phase shifts
of all elements based on the above, the objective value will
be non-increasing over the iterations until converges.

Overall Algorithm and Computational Complexity
Analysis: Based on the provided solutions to the above
three subproblems, an efficient BCD algorithm is proposed,
where the IRS beamforming vector and transceiver are
alternately optimized until convergence is achieved. Note that
the objective value of problem (P1) and (P2) is bounded and
non-decreasing by alternately optimizing {m(t)}, {b(t)

k } and
{Θ(t)}. Besides, the proposed BCD algorithm is guaranteed
to converge to the stationary points of the two problems
since the variables are only coupled in the objective functions.
The mainly computational complexity of the proposed BCD
algorithm lies in solving the sub-problems (P1.1), (P1.2),
and (P1.3). Specifically, the corresponding computational
complexity is given by O((ρK)3.5), O(ρM) and O(ρNI ′iter),
where I ′iter denotes the number of iterations required in the
element-vise optimization of discrete phase shifts. Therefore,
the total complexity of the BCD algorithm is O

((
(ρK)3.5 +

ρ(NI ′iter + M)
)
Iiter

)
, where Iiter denotes the number of

iterations required to reach convergence of the objective
function.

(P2) is an online system design problem that is operated in
each communication round. The corresponding complexity of
the BCD algorithm for (P2) is O

((
K + NI ′iter + M

)
Iiter

)
.

From Theorem 2, we can obtain (P2) is only a bounded
substitution of omniscient (P1). Vr is utilized to control the
trade-off between the sizes of the queue backlogs and the
objective function value. It is noted that an increasing Vr will
strengthen the emphasis on the optimality gap minimization
rather than power minimization in the later rounds, therefore
the ultimate performance can be promoted. Besides, if the
ek(rρ + 1) is initialized to 0 as in the existing literature [31],
(P2) is reduced to an optimality gap minimization problem
in the initial rounds without virtual energy constraint. In that
case, the obtained power allocation in the initial is most like to
exceed the average power constraint, which obviously deviates
from the optimal allocation. Therefore, the value of Vr and
ek(rρ + 1) are highly related to the FL performance, and we
will show this phenomenon in the next section.

Fig. 2. Convergence behavior of the proposed algorithm.

V. SIMULATION RESULTS

In this section, we conduct extensive simulations to validate
the performance of the proposed performance-oriented long-
term design approach for IRS-assisted FL. Simulations are
operated on the MNIST dataset [34] and the CIFAR-10
dataset [35]. First, the convergence behavior of the proposed
optimality gap minimization algorithm was presented. Then,
we analyze the test accuracy under different parameters, e.g.,
ρ which determines the available future information which
is highly related to the power allocation among different
communication rounds, and the number of IRS elements N
which determines the capability to configure the wireless
channel. Besides, we compare the performance of offline and
online design approaches under different settings, and provide
the power allocation over the entire FL procedure to depict
the later-is-better principle.

A. Simulation Setup

We consider a three-dimensional coordinate system, where
the BS and the IRS are respectively located at (0, 0, 30) and
(0, 50, 20) meters. In addition, the edge devices are randomly
distributed in the circle region centered at (50, 40, 0) with the
radius equals to 20 meters. The wireless channels from the
devices to the BS over different communication rounds follow
i.i.d. Rayleigh fading, and the channels from IRS to BS and
devices follow i.i.d. Rician fading. The path loss model under
consideration is L(d) = T0(d/d0)α, where T0 = −30 dB is
the path loss at reference distance d0 = 1 meter, d is the
signal distance, and α is the path loss exponent. The path
loss exponents for the BS-device link, the BS-IRS link, and
the IRS-device link are set to 3.5, 2.2, and 2.5, respectively.
Other parameters are set as follows: Pmax

k = 20 dBm and
P avg

k = 17 dBm, σ2
z = −80 dBm.

B. Performance Evaluation

First, the convergence behavior of the proposed offline
scheme on the MNIST dataset [34] is shown in Fig. 2. We set
T = 100, R = 10, and ρ = 10, the convergence behavior of
the proposed optimality gap minimization algorithm conducted
on the period 5 (i.e., 40 to 50 communication rounds)
is presented as an example. Besides, parameters in the
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assumptions are set as µ = 0.2, L = 10, respectively [47].
The number of devices is fixed to K = 20. For the case
without IRS, the phase shifts matrix is fixed to Θ = 0. For
the case with IRS, the number of the IRS elements is fixed to
N = 40, and the number of antennas equipped at BS is set
to M = 5. It is shown that the IRS can significantly diminish
the optimality gap even with a finite configuration range such
as the quantization bit equals to 1. Besides, the performance
of IRS with a quantization level of 3 can achieve nearly the
same performance as the one with continuous phase shifts.

Then, the IRS-assisted FL was deployed for handwritten
recognition on the MNIST dataset [34] and image classifica-
tion on the CIFAR-10 dataset [35]. We implement a 3-layer
CNN as the recognition model for the MNIST dataset, which
consists of an input layer, a final softmax output layer, and a
midterm convolution layer with max pooling. The local batch
size at each edge device is set to B = 64, and the learning rate
αt is fixed to 0.005. Besides, three convolution layers followed
by max-pooling layers are developed for classification on
the CIFAR-10 dataset, and other parameters are set as µ =
1, L = 5, B = 256, αt = 0.01 [48]. We compare the learning
performance with the following two benchmark schemes:
• Optimal aggregation: The wireless channels are ideal,

thus the server can aggregate precise local gradients
without the aggregation error presented in (9).

• Isolated Design: Variables are isolated optimized in each
communication round as the existing works to minimize
the aggregation error, hence the maximum transmit power
constraint becomes Pavg.

Fig. 3a and 4a present the test accuracy of the offline scheme
on the two datasets with different ρ. It is observed that the
offline scheme with ρ = 1 has the same performance as the
conventional isolated design approach since the offline scheme
degenerates to the isolated design with no future information
available. Besides, the performance of ρ = 10 and ρ = 20 are
inferior to the isolated design approach initially, but it speeds
up and eventually outperforms in the later rounds. This is
due to the fact that the contributions of aggregation errors
to the optimality gap are distinct at different communication
rounds, which cannot be captured by the conventional isolated
design scheme. Note that the system optimization is operated
based on each ρ rounds lookahead information, therefore,
the available information is closely related to the system
performance. It is observed that the offline scheme with
ρ = 20 outperforms the one with ρ = 10. Moreover,
one can observe that the performance declines in the initial
as the ρ goes, but rises and exceeds in the later rounds.
These observations are consistent with the convergence
analysis in the former sections which further demonstrate the
necessity and efficiency of such a performance-oriented design
approach. The ultimate performance of the proposed algorithm
monotonically increases with a moderate ρ since more
communication rounds are integrated optimized. However,
it is observed that the offline scheme with ρ = 50 has the
worst performance compared to ρ = 10 and ρ = 20 since
the lookahead CSI and the estimated gradient bounds in the
distant rounds may have errors thus degrading the system
performance. Besides, the performance of the FL without the

TABLE I
PERFORMANCE OF THE ONLINE SCHEME WITH DIFFERENT ρ

TABLE II
PERFORMANCE OF OFFLINE/ONLINE SCHEME UNDER

DIFFERENT POWER SEQUENCE

assistance of the IRS deteriorates heavily as the number of
communication rounds increases. This is due to the model
aggregation error in the latter rounds deteriorating the learning
performance greater than the beginning.

Fig. 3b and 4b depict the test accuracy of the online
learning scheme on the two datasets. The FL procedures
contain T = 100 rounds and T = 200 rounds on the MNIST
and the CIFAR-10 dataset, respectively. We choose varying Vr

sequences with Vr = 20
√

(10r + 1) for both the MNIST and
CIFAR-10 dataset. Besides, the benchmarks with fixed Vr are
set as Vr = 20, Vr = 90, Vr = 200 and Vr = 20, Vr = 100,
Vr = 300 for the two datasets, respectively. The energy
queue ek(rρ + 1),∀r are initialized as 0.2dP avg

k . It can be
observed that the online design scheme can achieve satisfying
performance compared to the offline without foreseeing the
future, which can be regarded as a practical and promising
approach for FL system design. Besides, Fig. 3b and 4b
validate that the online design approach with varying Vr can
obtain higher test accuracy than the fixed Vr. The online design
schemes with low Vr are more conservative to meet the long-
term energy constraints while at the expense of sacrificing
the system performance. On the contrary, the online design
scheme with high Vr obtains near-optimal performance in the
beginning, but it results in extreme energy consumption which
is destructive to the latter rounds. It can be observed from
the figures that an increasing Vr queue leads to larger power
allocation in the latter rounds in FL, thus better performance
can be achieved. Furthermore, we present the simulation
results of the online scheme on the CIFAR-10 dataset with
different parameters in Table I. It is observed that larger
ρ leads to better performance under different V . Compared
it with Fig. 4b, we can observed that the online scheme
with appropriated V can enhance its performance by enlarge
ρ since more communication rounds can be incorporated
in the Lyapunov framework, while large ρ deteriorates the
performance of the offline scheme as shown in Fig. 4a.

In order to further depict the later-is-better theory,
we present the power allocation for a specific device of
the online scheme on the MNIST dataset in Fig. 3c. The
simulation is conducted under a static channel, therefore,
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Fig. 3. Performance of the offline/online design scheme on MINST dataset.

Fig. 4. Performance of the offline/online design scheme on CIFAR-10 dataset.

Fig. 5. Test accuracy on MNIST dataset versus channel parameters.

it can be readily obtained and observed that the transmit
power of a fixed device in conventional isolated design
schemes remains the same over all the communication rounds.
However, the long-term design schemes have a near-monotonic
in the transmit power over time. Furthermore, we test the
performance of descending and equal power queue on the
MNIST dataset with ρ = 20 on a stationary channel. We first
inverse the obtained power queues of the proposed offline and
online schemes to construct the descending power sequences,
and then optimize other variables. The equal power queue can
be obtained from the conventional isolated design approach
since the channel remains static. The simulation results are
shown in Table II. It is observed that both the offline and online

schemes with descending power sequence have extremely poor
performance compared with the proposed algorithm and the
equal power queue. Such an observation further validates
the “latter-is-better” principle. By combing Fig. 3a, 3b, 3c
and Table II, we can obtain that the system performance
is enhanced by allocating large transmit power to the later
communication rounds.

Finally, we investigate the test accuracy versus the number
of IRS elements4 and the number of users on the MNIST

4With assuming that the signal reflected by IRS two or more times is
negligible and thus ignored, our problem can be readily extended to the
multiple IRSs case. In addition, our proposed algorithm is also applicable
to the multiple IRSs case without any modifications.
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dataset. As shown in Fig. 5a, the test accuracy of the proposed
algorithm is monotonically increased with N until converges
to the optimal. By comparing Fig. 5a to Fig. 3b, we can
observe that a large-scale IRS can diminish the performance
deterioration due to the lack of lookahead information. Hence,
when the CSI is varying or can not be precisely predicted,
e.g., undergoes a fast-varying channel, the IRS with more
elements can configure a more favorable communication link
thus obtaining higher test accuracy in FL. The performance
between FL with IRS and the one without IRS is further
compared with the varying numbers of devices. Devices are
distributed in one cluster in the setting of Fig. 5b(a) and are
distributed in various clusters in the setting of Fig. 5b(b).
Specifically, in the setting of multiple clusters, devices are
randomly distributed in 5 circle regions with each radius equal
to 20 meters, and the centers are located from (50, 40, 0)
to (130, 40, 0) with the coordinates of the first dimension
incremented by 20 in sequence. From Fig. 5b(a), it is observed
that the test accuracy decays slightly as the number of devices
increases even without the help of IRS, while the one with IRS
can still obtain satisfactory test accuracy with tiny performance
loss. This result verifies that AirComp is an efficient data
aggregation approach for model aggregation in FL which is
tolerant of the number of accessed devices. Then redirecting
to Fig. 5b(b), one can observe that the performance of the
one with or without IRS decays as the number of clusters
increases. This is due to that the performance of AirComp is
determined by the devices with poor channels. Fortunately, the
FL system can still maintain satisfactory performance with the
help of IRSs which can configure the deep faded channel to
a favorable one.

VI. CONCLUSION

In this paper, we have proposed a performance-oriented
long-term design framework based on the optimality gap
for IRS-assisted FL systems. By analyzing the convergence
behavior of FL, both offline and online design schemes were
established. We adopted the BCD method to tackle the highly-
intractable problems. Simulation results have demonstrated
that such a long-term design scheme can precisely allocate the
resources to different communication rounds, hence achieving
a higher test accuracy and faster convergence behavior in
FL than the conventional isolated design approach. Besides,
we have confirmed that the online design approach based on
the Lyapunov framework can achieve satisfactory performance
without foreseeing the future which can be regarded as a
practical and promising approach for FL system. Further,
it has been seen that the employed IRS can assist AirComp in
providing precise model aggregation in FL, especially when
the lookahead information is limited or devices are widely
distributed. The relationship between communication accuracy
and learning performance presented in the paper has been
rigorously determined via mathematical proof and simulation
verification, which have revealed a later-is-better principle
that can provide significant guidance for the FL system
design.

APPENDIX A
PROOF OF THEOREM 1

According to Assumption 1, we can obtain that

F
(
w(t+1)

)
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(
w(t)

)
≤
〈
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)
,
(
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+
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. (49)

With α(t) ≤ 1
L , by taking expectation with respect to the

stochastic gradient and the aggregation error on both sides of
(49), we have
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where a is due to Assumption 3, b is due to the Cauchy-
Schwarz inequality and the inequality of arithmetic and
geometric means: ±xT

1 x2 ≤ ∥x1∥ ∥x2∥ ≤ ∥x1∥2
2 + ∥x2∥2

2 .
According to Assumption 2, and with α(t) ≤ 1

µ , α(t) ≤ 1
L ,

we have

E
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(
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Recursively applying (51), finally we obtain that for ∀T2 > T1,

E
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)
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×
{

α(t)(1−Lα(t))
2

∥∥∥E [ε(t)
g

]∥∥∥2

+
L(α(t))2

2
E
[∥∥∥ε(t)

g

∥∥∥2
]

+
L(α(t))2

2
E
[∥∥∥g(t)

∥∥∥2
]}

.

(52)

By fixing α(t) ≡ α, we have
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Hence we can obtain the optimality gap in Theorem 1.

APPENDIX B
TWO KINDS OF EXTENSIONS FOR DEVICE SCHEDULING

Two kinds of extensions to include the device scheduling
are shown as follows.

Case 1: We can simply construct a bicriterion problem
that minimizes the weighted sum of the optimality gap and
maximizes the cardinality of the currently selected device
set. By adding a term −w(t)|K(t)| to the objective function,
where w(t) > 0 is the parameter to achieve a trade-off
between optimality gap and device participation, we can obtain
a similar problem as [28] that minimize the optimality gap
caused by wireless channel while selecting as more devices as
possible for convergence accelerating.

Case 2: We can mathematically characterize the gradient
residual due to the device selection and then formulate the
problem. Consider the general case that the k-th device has
|Dk| training samples with

∑
k |Dk| = |D|. Hence, the desired

global gradient is given by

g(t) =
1
|D|

K∑
k=1

|Dk|g(t)
k , (54)

shown as the weighted average of local gradients with the
weights proportional to the size of the corresponding local
dataset |Dk|. Let K(t) denotes the selected devices set in round
t, and K̃(t) denotes its complement. Then gradient residual due
to the device selection is

ε
(t)
d =

1∑
i∈K(t) |Dk|

∑
i∈K(t)

|Dk|g(t)
i − 1

|D|

K∑
k=1

|Dk|g(t)
k .

(55)

In that case, the gradient error vector is given by

ε̃g
(t) = ε(t)

g + ε(t)
d , (56)

and we have [37]

E[∥ε̃g
(t)∥2] ≤ E[∥εg

(t)∥2] + E[∥εd
(t)∥2]

≤ E[∥εg
(t)∥2] +

4(|D| −
∑

i∈K(t) |Dk|)
|D|2

γ(t),

(57)

where γ(t) is the upper bound of sample-wise gradient. In that
case, minimizing the optimality gap consists of two aspects,
one is decreasing the number of selected devices to reduce the
gradient aggregation error ε(t)

g , and the other is increasing the
number of selected devices to reduce the gradient residual ε(t)

d

due to the device selection.

APPENDIX C
PROOF OF THEOREM 2

Without loss of generality, we adopt the quadratic Lyapunov
function L(e(t)) ≜ 1

2

∑
k∈K e2

k(t). Besides the 1-round
Lyapunov drift and the R-round Lyapunov drift are represented
as ∆1(t) ≜ L(e(t+1))−L(e(t)) and ∆R(t) ≜ L(e(t+R))−
L(e(t)), respectively. According to (31), we have
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where Ce = 1
2KE2

max with Emax = maxk,t(d|b(t)
k |2−dP avg

k ).
Thus,
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For arbitrary r-th period with Vr, we have

∆†
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Note that ∆†
R(rρ) ≥ 0, thus
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where Cr = ρCe +
∑(r+1)ρ
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k∈KEmax

(
(t − 1)Emax +

ek(rρ + 1)
)
. Summing over all the R periods, we can obtain

the (33) in Theorem 2.
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Note that

∆R(t) ≜ L(e(t + R))− L(e(t)) =
∑

k

1
2
e2
k(R + 1). (62)

Hence, we have
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(
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)
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Summing over all the R periods, we can obtain the (34) in
Theorem 2.
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