
1820 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

Joint Task Offloading and Caching for Massive
MIMO-Aided Multi-Tier Computing Networks
Kunlun Wang , Member, IEEE, Wen Chen , Senior Member, IEEE, Jun Li , Senior Member, IEEE,

Yang Yang , Fellow, IEEE, and Lajos Hanzo , Life Fellow, IEEE

Abstract— In this paper, a massive multiple-input multiple-
output (MIMO) relay assisted multi-tier computing (MC) system
is employed to enhance the task computation. We investigate
the joint design of the task scheduling, service caching and
power allocation to minimize the total task scheduling delay.
To this end, we formulate a robust non-convex optimization
problem taking into account the impact of imperfect channel
state information (CSI). In particular, multiple task nodes (TNs)
offload their computational tasks either to computing and caching
nodes (CCN) constituted by nearby massive MIMO-aided relay
nodes (MRN) or alternatively to the cloud constituted by nearby
fog access nodes (FAN). To address the non-convexity of the opti-
mization problem, an efficient alternating optimization algorithm
is developed. First, we solve the non-convex power allocation opti-
mization problem by transforming it into a linear optimization
problem for a given task offloading and service caching result.
Then, we use the classic Lagrange partial relaxation for relaxing

Manuscript received May 30, 2021; revised October 10, 2021 and
December 20, 2021; accepted January 1, 2022. Date of publication January 11,
2022; date of current version March 17, 2022. The work of Kunlun Wang
was supported by the National Natural Science Foundation of China (NSFC)
under grant 61801463. The work of Wen Chen was supported by National
key project 2020YFB1807700 and 2018YFB1801102, by Shanghai Kewei
20JC1416502, and NSFC 62071296. The work of Jun Li was supported
by National Natural Science Foundation of China under Grant 61872184.
The work of Yang Yang was supported by the National Key Research and
Development Program of China under grant 2020YFB2104300, and Shanghai
Sailing Program under grant 19YF1455900. Lajos Hanzo would like to
acknowledge the financial support of the Engineering and Physical Sciences
Research Council projects EP/P034284/1 and EP/P003990/1 (COALESCE)
as well as of the European Research Council’s Advanced Fellow Grant
QuantCom (Grant No. 789028). Part of this paper will be presented at
IEEE International Conference on Communications, Seoul, South Korea,
May 16–20, 2022. The associate editor coordinating the review of this article
and approving it for publication was L. Sanguinetti. (Corresponding author:
Jun Li.)

Kunlun Wang is with the School of Communication and Electronic Engi-
neering, East China Normal University, Shanghai 200241, China (e-mail:
klwang@cee.ecnu.edu.cn).

Wen Chen is with the Department of Electronic Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: wenchen@sjtu.edu.cn).

Jun Li is with the School of Electronic and Optical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
jun.li@njust.edu.cn).

Yang Yang is with the Shanghai Institute of Fog Computing Technol-
ogy (SHIFT), ShanghaiTech University, Shanghai 201210, China, also with
the Research Center for Network Communication, Peng Cheng Labora-
tory, Shenzhen 518000, China, and also with Shenzhen SmartCity Technol-
ogy Development Group Company Ltd., Shenzhen 518046, China (e-mail:
yangyang@shanghaitech.edu.cn).

Lajos Hanzo is with the Department of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
lh@ecs.soton.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3142162.

Digital Object Identifier 10.1109/TCOMM.2022.3142162

the binary task offloading as well as caching constraints and
formulate the dual problem to obtain the task allocation and
software caching results. Given both the power allocation, as well
as the task offloading and caching result, we propose an iterative
optimization algorithm for finding the jointly optimized results.
The simulation results demonstrate that the proposed scheme
outperforms the benchmark schemes, where the power allocation
may be controlled by the asymptotic form of the effective signal-
to-interference-plus-noise ratio (SINR).

Index Terms— Multi-tier computing (MC), massive MIMO,
service caching, task scheduling.

I. INTRODUCTION

THE intelligent internet of things (IoT) is emerging in
support of billions of resource-constrained devices around

us connected to heterogeneous networks [1]–[3], including a
wide range of new computation-intensive applications such
as augmented reality (AR), industrial robots and intelligent
robotic cars, etc., [4], [5]. However, these novel applications
require agile mobility support, location awareness and low
latency. These sophisticated services rely on high-speed real-
time signal processing and high-rate data exchange [6]. Due to
the substantial overhead of inter-cloud communications, cloud
computing is unsuitable for latency-sensitive applications.
Hence, a new low-latency platform is needed for meeting these
requirements of the intelligent IoT.

Multi-tier computing (MC) constitutes a beneficial virtual-
ized platform for addressing the above concerns [7]–[9], which
is capable of providing computing, storage, and networking
services. Although the associated task scheduling has been
considered in [7], [10], advanced caching may be conceived
for alleviating the associated bottleneck of the Fronthaul and
for reducing the delay, hence increasing the quality-of-service
(QoS). With the aid of caching services storing the software of
mobile applications at edge nodes, the computation tasks may
be executed at the network edge to reduce the latency with
the advent of optimized service computation. However, there
is a paucity of literature on the joint design of service caching,
computational task offloading and radio resource allocation in
MC scenarios.

In MC, many users offload their computational tasks to a
computation node in the uplink. Hence, the communication
performance plays a key role in determining the performance
of MC, especially in massive multiple-input multiple-output
(MIMO) scenarios [11], [12]. More specifically, the achiev-
able data rates of massive MIMO schemes are predomi-

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5727-5166
https://orcid.org/0000-0003-2133-8679
https://orcid.org/0000-0002-6239-2922
https://orcid.org/0000-0003-0608-9408
https://orcid.org/0000-0002-2636-5214

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1821

nantly determined by the large-scale fading, which hence also
critically influences the resource management. This implies
that there is no need for frequently updating the resource
management, which mitigates the signalling overhead. Lastly,
massive MIMO schemes improve the spectral versus energy
efficiency trade-off, and as an explicit benefit, they are capable
of supporting for a large number of users, which is particularly
important for MC systems. The application of massive MIMO
to MC is of pivotal significance since, since the massive
MIMO is of salient importance in future wireless commu-
nication networks, since apart from a whole host of benefits,
it improves computation offloading. Specifically, the increased
spectral and energy efficiencies provided by massive MIMO
can yield improved transmission rates and reduced energy
consumption for offloading in multi-tier computing, while
simultaneously reducing task execution delay. Motivated by
these facts, we aim for showing the benefits of massive MIMO
schemes in MC networks.

A. Related Work

As a benefit of efficiently harnessing their abundant com-
puting resources, MC systems have been proposed to address
the computing and communication resource allocation issues
in multi-user task scheduling. However, one of the challenges
is the efficient joint computation and wireless communica-
tion resource allocation among the nodes to simultaneously
support multi-tier computation, since the computational capa-
bility and energy resources for task offloading are limited.
To address the above challenges and improve the performance
of MC systems, sophisticated joint communication and com-
puting resource allocation techniques have been proposed in
[13]–[16]. In many practical scenarios, the tasks of the indi-
vidual users cannot be partitioned and hence they can only be
offloaded as a whole [7], [17], [18]. The multi-user offload-
ing strategies proposed in [14], [19] and [7] are based on
frequency-division multiple access (FDMA) and code division
multiple access (CDMA), respectively. Furthermore, to allow
the partitioning of tasks for conceiving partial task offloading
schemes, time-division multiple access (TDMA) [10], orthog-
onal frequency-division multiple access (OFDMA) [20] and
non-orthogonal multiple access (NOMA) [21] based multiuser
task offloading have also been designed. Explicitly, they can
use both local and remote computing.

The above mentioned impressive contributions have been
dedicated to studying computation offloading for realizing
joint computation and communication resources allocation.
However, the benefits of massive MIMO-aided MC schemes
have not been explored. Upon deploying very large of num-
ber of antennas, the resultant massive MIMO configurations
significantly improve the task offloading data rate in contrast
to a family of conventional MIMO. Benefiting from the
massive MIMO, the integration of MC and massive MIMO
arrangements significantly improves the performance of task
scheduling and resource management in multi-user MC sys-
tems [22]–[26]. Although the benefits of massive MIMO-aided
MC have been demonstrated by establishing high-date rate
and low-latency links, the joint benefits of service caching
and task offloading have not been exploited in resource

allocation, which are particularly pivotal for delay-sensitive
MC systems.

Given that the edge nodes have limited storage resources,
beneficially distributing the tasks among edge and cloud
nodes is vital for optimizing the QoS at a high resource
efficiency. Caching services at edge nodes relieves the burden
of both the backhual transmission and of the central clouds.
Hence, service caching has received significant attention in
the literature. To elaborate, Borst et al. [27] have proposed
popularity-based distributed caching algorithms for content
distribution networks. Zhang et al. [28] have proposed a
cooperative edge caching scheme for user-centric large-scale
wireless networks to minimize the delay, which optimizes both
the content caching and the network’s cluster size based on the
time-variant network topology, service distribution, channel
state, and content popularity. Yang et al. [29] have devised
caching schemes based on the user location for maximizing
the total hit rate of the cached content. In particular, the
future content hit rate is estimated by their linear prediction
based model. Specifically, dynamic caching at edge nodes
has been discussed in [30]–[32]. Bi et al. [30] have studied
the joint optimization of content placement, computational
resource allocation, and communication resource allocation.
By considering the realistic unknown arrival orders of service
requests, online algorithms have been proposed in [31] for
dynamic service caching at the edge nodes for coping with the
limited computational capability of edge computing nodes, and
for mitigating the task scheduling costs of forwarding requests
and downloading new services. Xu et al. [32] have studied
a joint service caching and computation offloading scheme
in dense cellular networks relying on edge computing, and
considered an efficient decentralized online service caching
algorithm by exploiting both the temporal and spatial service
content popularity patterns. However, the above contributions
have not taken into account the multi-tier task computation
issues of massive MIMO-enabled resource management and
task scheduling, which are crucial for MC systems. Further-
more, since massive MIMO systems substantially improve
the communication performance at the edge of the network,
a main issue is in this context how to jointly manage task
offloading and service caching. More precisely, we should
decide which tasks have to be computed and cached in the
massive MIMO-enabled node stratum, versus the fog node
stratum. All in all, both the cache size and computational
capability of edge nodes are limited. To guarantee the stringent
QoS requirements of resource-intensive and delay-sensitive
services, service caching and task offloading should be jointly
considered.

B. Contributions and Organization

Against the above backdrop, we aim for addressing the
aforementioned challenges by proposing a technique for
jointly optimized computing, communication and caching in
massive MIMO-enabled MC systems. Nevertheless, offloading
incurs extra overhead due to the communication required
between the mobile device and the computing server. The
additional communication requirement affects both the energy
consumption and the latency, and consequently, the offloading

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1822 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

TABLE I

NOVELTY COMPARISON

power allocation is particularly important, which is the focus
of this treatise. We propose a multi-tier computation based
system, in which the task nodes (TNs) offload their tasks to the
massive MIMO-aided relay node (MRN) in their proximity,
which have under-utilized caching resources. Again, caching
popular services reduces the task execution latency. By exploit-
ing the intricate relationship between the task execution delay
and service caching, as well as the optimal power allocation,
the intertwined service caching and computational resource
allocation can be jointly optimized. However, due to the
non-convex feature of the resultant optimization problem, it is
challenging to find the optimal solution. To circumvent this
challenge, we solve the joint task offloading, software package
caching, and MRN power allocation problem by conceiving
a bespoke alternating optimization technique for decoupling
the communication, caching and computation optimization.
Furthermore, we design an iterative algorithm for joint task
offloading and software caching optimization. Our unique
contributions are boldly and explicitly contrasted to the state-
of-the-art in Table I, and they are further detailed as follows:

1) We develop massive MIMO-aided multi-tier task
scheduling and service caching systems, where services
are cached in the computing and caching nodes (CCN)
constituted by nearby MRN. Based on this scheme,
we design a mechanism that jointly performs task
offloading, service caching and communication resource
allocation for efficient task execution.

2) Due to the NP hard nature of the joint task scheduling
and service caching optimization problem, we propose
an alternating optimization technique for solving the
task offloading, service caching and power allocations
puzzle. We transform the original joint optimization
problem into two subproblems, namely into the task
offloading and service caching subproblems plus a MRN
power allocation subproblem.

3) We transform the non-convex power allocation sub-
problem into a linear optimization problem, and use
the classic Lagrange partial relaxation to relax both
the task offloading as well as caching constraints and
formulate the dual problem for carrying out the joint task
offloading and software caching decisions. Based on our
power allocation, task offloading and software caching
results, we propose an iterative optimization algorithm

for finding the jointly optimal solution. Additionally, the
proposed iterative algorithm is formally shown to be
converge.

4) We evaluate the performance of the proposed massive
MIMO-aided multi-tier MC systems through extensive
simulations. The simulation results demonstrate that the
proposed algorithm substantially outperforms the tradi-
tional solutions for a diverse range of system parameters.

The rest of the paper is organized as follows. Section II
describes the system model and our problem formulation,
including the caching model, the computation model, and the
communication model. In Section III, we optimize the MRN
power allocation by transforming it into a linear optimization
problem. In Section IV, we use the Lagrange partial relaxation
technique for relaxing the binary constraints and formulate
the dual problem to obtain the task allocation and software
caching results. Furthermore, we conceive an popular alternat-
ing optimization technique to obtain the joint power allocation,
task offloading and software caching result. In Section V,
we discuss our simulation results, followed by our conclusions
in Section VI. Table II lists the frequently used notations.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we design joint service caching and task
offloading for MC systems. We consider an MC system,
which consists of a decode-and-forward (DF) MRN and FAN
equipped with M and N antennas, respectively, plus multiple
TNs each equipped with a single antenna. The data transmis-
sions among TN, MRN and FAN in the system model can
be regarded as data transmission between a user (TN) and a
base station (BS) (FAN) via a relay access point (AP) (MRN).
This happens, when the communication is not successful via
the direct link, but can be completed with the help of a relay.
Thus, we propose to use an MRN regarded as a relay without
computing resource for significantly improving the data rate
of computational task offloading as well as the task execution
efficiency. An example of this scenario is illustrated in Fig. 1.
A library of S = {1, . . . , S} services is provided, such as
video streaming, AR, intelligent driving control software, etc,
which have different computation and storage requirements,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1823

TABLE II

FREQUENTLY USED NOTATION

Fig. 1. Illustration of a massive MIMO-enabled multi-tier computing
network, where the CCN and the cloud compute the tasks and cache the
software.

and each service type is requested by one of the TNs of Fig. 1.1

The MRN is equipped with a CCN, which is capable of
providing caching and computing services. We assume that
the CCN and the MRN of Fig. 1 are co-located, and they
are connected using a high-throughput low-latency optical
fiber. Hence, the data communication between the MRN and
CCN is assumed to be delay-free. The centralized cloud
is assumed to have cached all the services in its library,
because it has much larger storage and computational capacity
than the CCN. We also assume that all services must be
executed either by the CCN or by the cloud, given the limited
computational resources of the TN. Additionally, we assume
having slow channel fading, where the fading envelope of the
channels between the TNs and the MRN remains constant
during the entire task offloading session (downlink or uplink
transmission).

Under the setup in Fig. 1, all the TNs first offload their
computational tasks to the MRN. Then, provided that the
corresponding services are cached in the CCN, the CCN
executes the tasks. Otherwise, the tasks are offloaded to the
FAN via the MRN, and then the FAN computes the offloaded
tasks. After that, the FAN transmits the task execution results
back to TNs. As a rule, the time required by the MRN and
FAN for transmitting back the execution results is negligible.
The MRN of Fig. 1 is assumed to have all the communication

1In particular, to fully unleash the potential of MC for service caching,
we assume that the number of computational requests is equal for different
services. According to this characteristic, each type of service is associated
with one corresponding TN, and indices of service are not differentiated
from those of TNs throughout this paper. Note that a more general case on
non-equal number computational requests from TNs over different services is
left for our future work.

information of the TNs, so that it can coordinate the task
offloading for multiple TNs.

A. Service Caching Model

We assume that each service s ∈ S corresponds to a
particular software package, indexed by s ∈ S. Specifically,
a type-s software package has a data length of ls bits, s ∈
S. It should be noted that the software packages frequently
requested by the TNs can be proactively cached at the CCN
in our cache-aided MC system of Fig. 1.

Based on the popularity distribution, the software packages
are indexed in descending order, which means the sth file is the
sth most popularly requested software package. The cache size
of the MRN is CMRN bits, and the software package library
size is larger than CMRN. The software packages requested
by the TNs are downloaded from the library based on the
Zipf popularity distribution [33]–[35]. With this model, the
software packages can be ordered according to their descend-
ing order of popularity. We denote zM,s as the caching result
of the sth software package by the CCN. For the CCN that
is not caching any software package or does not provide
sufficient computational resources, the computational tasks
should be offloaded to the cloud via the FAN. Similar to
the previous assumption, we assume that the cloud and the
FAN are co-located and connected using high-throughput low-
latency optical fiber. As a result, the task offloading delay
imposed by the task transmission between the FAN and the
cloud is deemed to be negligible. As the CCN caching capacity
is limited, we assume that the storage size allocated for the
content of the tasks at the CCN is CMRN bits. Then, we have:

∑
s∈S

zM,sls ≤ CMRN. (1)

B. Computational Model

Note that each service has a specific task, hence we denote
ks as the task of TN k for the requested service s, which is
specified by the size of the task input data of Lk,s bits. Let
ρk,s denote the task offloading decision of TN k, where

ρk,s ∈ [0, 1], ∀k ∈ K, ∀s ∈ S. (2)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1824 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

Here ρk,s = 1 represents that task ks is computed at the cloud
and ρk,s = 0 means that task ks is carried out at CCN. Let
ρ = (ρk,s)k∈K,s∈S denote the computation offloading action.

In our MC system the total number of CPU cycles is
deemed to be linearly proportional to the number of bits to
be processed [21], [26]. Hence the number of CPU cycles
used for completing the task of TN kth is CkLk,s, where the
number of CPU cycles per bit is Ck, which depends on by
both of the CPU type and on the software task to be executed.

For simplicity, the CCN server is assumed to have multi-
core, and each core is independently assigned to a particular
offloaded task. Additionally, we assume that each core has the
same maximum clock frequency fmax

0 (in cycles per second).
Then, the computational delay of the task ks at CCN is given
by

tck,s =
Ck(1 − ρk,s)Lk,s

fM
k

, (3)

where fM
k , k ∈ K denotes the clock frequency of each core.

As a benefiting of dynamic voltage and frequency scaling
techniques (DVFS) [36], fM

k is adjustable. The computational
delay of the task ks at cloud is given by

tc,F
k,s =

Ckρk,sLk,s

fF
k

, (4)

where fF
k , k ∈ K denotes the clock frequency of each core at

cloud. If the required software package is not cached by the
CCN, the computational delay of the task ks at cloud is given
by

t̂c,F
k,s =

CkLk,s

fF
k

. (5)

C. Communication Model

In our MC architecture, the task can be offloaded either for
execution by the cloud or CCN. If the software is cached by
the MRN, the task can be offloaded for execution by the CCN
or by the cloud. Then, the task offloading time delay for the
kth TN from the MRN to the FAN is given by

DR
k =

ρk,sLk,s

Rk
, ∀k, (6)

where Rk represents the task transmission rate from the MRN
to the FAN. If the software is not cached by the MRN, the
task is offloaded for execution by the cloud. Thus, the task
offloading time delay for the kth TN from the MRN to the
FAN is given by

D̂R
k =

Lk,s

Rk
, ∀k. (7)

Correspondingly, the task transmission time from the kth TN
to the MRN is given by

DL
k =

Lk,s

rk
, ∀k, (8)

where rk represents the task transmission rate from the TN k
to the MRN.

Then, the total transmission energy consumption of MC for
task of the kth TN is given by

Eoff
k = Pttk + pkD

R
k =

PtLk,s

rk
+
pkρk,sLk,s

Rk
, (9)

where rk and pk ∈ p = [p1, · · · , pK] represent the task
transmission rate from the kth TN to the MRN and the MRN
transmit power allocated to offload the task of the TN k,
respectively. Upon denoting Pr as the maximum transmit
power of each stream at the MRN. As a result, we have
pk ≤ Pr.

For ensuring that the overall task offloading delay analysis
becomes tractable, we stimulate with the following assump-
tions.

• Since the task partitioning operation critically hinges both
on the data-size and on the computation workload of each
task [37] and [38], the CCN distributed in the MRN
cannot partition a task until receiving all the data for
optimal partitioning.

• In general, task computation may rely both on the specific
task structure as well as on the correlation between
adjacent task in practical systems, as exemplified by the
analysis of media streaming. Recall that for ensuring the
reliability of the task execution result, both the CCN and
the cloud are unable to start computing a task until the
task offloading between the TNs and the MRN or the
transmission between the MRN and FAN is completed.

Based on the above assumptions, the FAN allocates its
computing resources for each task after receiving all the
computational tasks. Accordingly, the total task scheduling
delay consists of the task computation delay plus the task
transmission delay. By combining (3)-(5) and (6)-(8), the total
task scheduling delay of the kth TN is given by

Dtotal,k =
∑
s∈S

ϑs

(
DL

k + max(tck,s, D
R
k + tc,F

k,s)zM,s

+ (D̂R
k + t̂c,F

k,s)(1 − zM,s)
)
. (10)

D. Problem Formulation

Next, we formulate the weighted-sum delay minimization
problem of our massive MIMO-aided task offloading system
considered subject to both the task scheduling constraints, the
caching and computational capacity constraints at the CCN,
and the MRN power allocation constraint.

Explicitly, a positive weighting coefficient βk ∈ (0, 1) is
assigned to each TN. By employing this coefficient, the fair-
ness among TNs can be controlled, which satisfies

∑K
k=1 βk =

1.2 To account for this effect, we adopt the service priority
of each TN to determine the value of each weighting factor,
which represents the level of importance. Therefore, the resul-
tant optimization problem is formulated as:

(P1) min
p,ρ,z

∑
k∈K

βkDtotal,k, (11a)

2Note that the weighted min-max delay of all TNs is another optimized
criteria to be considered in practical systems. In particular, our goal is to
minimize the system weighted-sum delay, and the optimal solution is identical
to the weighted min-max delay problem by adjusting the weights appropriately
based on [39].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1825

s.t. ρk,s ∈ {0, 1}, ∀k, (11b)

0 ≤ pk ≤ Pr , ∀k, (11c)

γk ≥ γ0, ∀k, (11d)

zM,s ∈ {0, 1}, ∀s ∈ S, (11e)∑
s∈S

zM,sls ≤ CMRN , (11f)

K∑
k=1

fM
k ≤ FMRN , (11g)

where βk is the (normalized) weighting coefficient repre-
senting the cost per unit of delay at the kth TN, so that∑

K βk = 1; (11b) specifies the task offloading indicator
function, determining when their task is computed at the CCN
or in the cloud; (11c) gives the range of the power allocation
variables at the MRN; (11d) quantifies the QoS constraints
to ensure that the SINR γk of the kth signal stream at the
FAN is higher than γ0; (11e) specifies the software package
caching results, constraint (11f) indicates that the amount
of cached data must not exceed the capacity CMRN of the
CCN’s storage, (11g) is imposed to ensure that the sum of
computational resources allocated to all offloaded tasks at the
CCN must not exceed the computational capability FMRN of
the CCN.

Remark 1: Due to the binary variables of the task offload-
ing vector ρ and software package caching vector z, solving
Problem (P1) is known to be challenging. Additionally, the
feasible set and objective function of Problem (P1) are non-
convex, so this non-convex problem is NP hard. Therefore,
we obtain a locally optimal solution of Problem (P1) in this
paper, and we rely on transformations as well as simplifi-
cations of the original problem. Specifically, to circumvent
the non-convex nature of the feasible set of Problem (P1),
the binary variables ρ and z are relaxed into continuous
variables. Subsequently, we adopt the popular alternating opti-
mization technique for decoupling the computing, caching and
communication designs. Therefore, the resultant optimization
problem is transformed to a more tractable form.

III. OPTIMAL POWER ALLOCATION STRATEGY

In this section, we solve the sub-problem of MRN power
allocation. For a given software caching strategy, z = z∗,
and task offloading strategy ρ∗, the power allocation can be
performed by the FAP in a centralized way.

A. Received SINR

As for the task computation, both the CCN and the cloud
have the options of either executing the task only after receiv-
ing all the data or alternatively provided that the task leads
itself to partitioning executing the task while still receiving
more data. For analytical tractability, let us assume that the
CCN and the cloud only carries out the task after receiving
all the data from the TN. In this way, the task scheduling in our
proposed massive MIMO-aided MC network consists of the
TN → MRN transmission and the MRN → FAN transmission.

For the TN → MRN transmission, the symbols of all
offloaded tasks are simultaneously transmitted to the MRN.

Let s = [s1, · · · , sK]T denote the symbol vector with
E(ss†) = IK , and sk be the symbol transmitted from the TN
k. According to our slow-fading channel model, the symbol
vector yM ∈ CM×1 received at the MRN is given by

yM = Hx + nM , (12)

where nM ∈ CM×1 represents the additive white Gaussian
noise (AWGN) at the MRN with zero-mean and a variance of
E(nMnH

M) = σ2
rIM , while the transmitted signal is given by

x =
√
Pts. (13)

Based on (12), the signal received by the MRN for the kth
TN is

yM,k =
√
Pthksk + nM,k, (14)

where yM,k, sk, and nM,k represent the kth element of yM ,
s, and nM , respectively, and hk represents the kth row of H.
Hence, the effective SINR of the kth signal stream at the MRN
is expressed as

ηk =
Pt(hkhH

k)
σ2

u

. (15)

Given (22), the task transmission rate from the TN k to the
MRN is given by

rk = B log2(1 + ηk), (16)

where B indicates the transmission bandwidth. It is reasonable
to assume that the CSI is perfectly known at the receiver [40],
since the receiver is capable of acquiring accurate CSI at the
receiver (CSIR) with the aid of training, especially, when for
example decision-directed joint iterative channel estimation
and data detection is employed. However, the transmitter can
only acquire imperfect CSI through a finite-rate feedback
channel, which introduces both quantization errors and feed-
back delays. Consequently, we assume that the CSI in the
TN → MRN phase is perfectly known at the MRN as the
up-link receiver, while the CSI in the MRN → FAN phase is
imperfectly known at the MRN as the down-link transmitter.
Thus, the MRN precodes its transmit signal x. Then, the
filtered symbol vector xM ∈ CM×1 is given by

xM = Ŵx, (17)

where Ŵ ∈ CM×M is the transmit precoding (TPC) matrix
of the MRN, which is given by

Ŵ = Ĝ†P, (18)

where we have Ĝ† = (ĜHĜ)−1ĜH and H† =
(HHH)−1HH. The diagonal matrix P ∈ RK×K represents
the power allocation results at the MRN. In particular, the kth
diagonal element [P]k,k =

√
pk denotes the transmit power

allocated for the task of TN k.
As for the MRN → FAN phase, the decoded x is broadcast

to the FAN by the MRN. Then, the signal received at the FAN
is given by

yF = ŴGPx + ŴnF , (19)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1826 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

where yF = [yF,1, · · · , yF,K] ∈ CK×1, and nF is the
AWGN at the FAN with having zero mean and a variance
of E(nF nH

F) = σ2
F IK .

Given (19), we rewrite the symbol vector received at the
FAN as

yF = Ĝ†GPx + Ĝ†nF

= Ĝ†(
√

1 − τ2
DĜ + τDΩD)Px + Ĝ†nF

=
√

1 − τ2
DPx + τDĜ†ΩDPx + Ĝ†nF . (20)

Based on (20), the signal received by the FAN from the kth
TN is

yF,k =
√

1 − τ2
D

√
pkPtsk + ζkx + nk, (21)

where yF,k, sk, and nk represent the kth element of yF , s, and
nF , respectively, and ζk represents the kth row of τDĜ†ΩDP.
Hence, the effective SINR of the kth signal stream at the FAN
is formulated as:

γk =
(1 − τ2

D)pkPt

Pt(ζkζH
k) + σ2

u

. (22)

Given (22), the task transmission rate from the MRN to the
FAN becomes

Rk = B log2(1 + γk). (23)

B. Optimal Power Allocation

In order to solve the power allocation optimization problem,
we first characterize the asymptotic value of the SINR in (22)
when the number of antennas, M → ∞, as formulated from
the massive MIMO, which is shown in the following theorem.

Theorem 1: Upon assuming that the number of antennas at
the MRN obeys M → ∞, the received SINR at the FAN in
(22) has a asymptotical expression, which is given by

γk,∞ =
λk(1 − τ2

D)pkPt

σ2
u

. (24)

Proof: Please refer to Appendix A.
Given the asymptotic value of the SINR, the power allo-

cation subproblem can be solved as a linear optimization
problem. To this end, we can rewrite the power allocation
optimization problem as shown in the following proposition.

Proposition 1: The power allocation that minimizes the task
scheduling delay can be found by solving the following linear
optimization problem

min
�

∑
k∈K

βkΓ(
k) (25a)

s.t. (11c), (25b)

where we have
k = log2 pk and

Γ(
k)=−κk
k−κk log2 λk(1 − τ2
D)Pt + 2κi log2 σu−υk.

(26)

Proof: Please refer to Appendix B.
According to the upper-bound of the task offloading rate, the

optimized power allocation results for Problem (25) may be

Algorithm 1 Power Allocation Algorithm
Step 1: set i = 0.
Randomly construct the initial points of the power allocation
p, and the maximum number of iterations Imax. Calculate
γ′k,∞(0) based on p.
Step 2: Set the convergence threshold ε.
while |γ′k,∞(i) − γ′k,∞(i− 1)| ≥ ε do
i = i+ 1;
Set γ′k,∞(i) = γk,∞(i− 1), and calculate κk, υk.
Solve problem (25) for given κk and υk, and set the results
as �(i).
Update p, where pk(i) = 2�k(i).
Calculate γk,∞(i) for given pk(i).

end while
Step 3: Results: p∗k = pk(i), ∀k ∈ K.

found by Algorithm 1. The power allocation obtained for each
iteration tightens the upper-bound in (48), until convergence
is achieved. Therefore, the value of the delay decreases after
each iteration of the proposed power allocation Algorithm 1.

Proposition 2: Algorithm 1 converges within a finite num-
ber of iterations.

Proof: Please refer to Appendix C.

IV. JOINT POWER ALLOCATION, TASK OFFLOADING AND

SOFTWARE PLACEMENT STRATEGY

In this section, first we will use the Lagrange partial
relaxation for relaxing the constraints and formulate the dual
problem to obtain the task allocation and software caching
results; secondly, the update method conceived for the sub-
gradient algorithm are presented; then, the relaxed continuous
variables are converted to binary results; finally, we summarize
the overall joint optimization algorithm.

A. Task Offloading and Software Package Caching

We have relaxed the binary caching constraints into con-
tinuous values, and the continuous caching variable can be
regarded as the probability of a software package being
cached. According to the caching strategy of [41], the sth
software package has a probability of zM,s to be independently
cached by the CCN. Based on the probabilistic caching scheme
of [41], [42], each software package’s caching probability has
to satisfy zM,s ∈ [0, 1]. Given the task offloading rate now,
we can obtain the delay of task transmission. However, solving
Problem (11) is still NP-hard due to coupled nature of the task
offloading variable and the software package caching variable.
To tackle this challenge, we introduce the new variable xk,s =
ρk,szM,s and resort to the following problem transformation:

min
ρ,z,x

∑
k∈K

βkDtotal,k, (27a)

s.t. (11b), (11e), (11f), (27b)

xk,s = ρk,szM,s. (27c)

To solve the transformed problem (27) subject to the
non-convex constraint (27c), the equality constraint (27c)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1827

should be transformed into an inequality constraint. To pro-
ceed, by using McCormick envelopes [43], the McCormick
convex relaxation of [43] is applied for equivalently trans-
forming (27c) to a series of inequality constraints, which is
given by

xk,s ≤ zM,s, ∀k ∈ K, ∀s ∈ S, (28)

xk,s ≤ ρk,s, ∀k ∈ K, ∀s ∈ S, (29)

0 ≤ xk,s ≤ 1, ∀k ∈ K, ∀s ∈ S. (30)

To deal with the task offloading and software package
caching problem, the classic Lagrange partial relaxation can
be used for relaxing the constraints (28) and (29). Then, the
respective set of dual Lagrange multipliers are defined as

κk,s ≥ 0, ∀k ∈ K, ∀s ∈ S, (31)

υk,s ≥ 0, ∀k ∈ K, ∀s ∈ S. (32)

Given the dual Lagrange multipliers, we have the Lagrange
function as

L(κ,υ,ρ, z,x) =
∑
k∈K

∑
s∈S

[
βk(

Lk,sϑs

Rk
+
CkLk,sϑs

fF
k

)xk,s

+ βk(D̂R
k ϑs + t̂c,F

k,s ϑs)(1 − zM,s)
+ κk,s(xk,s − zM,s) + υk,s(xk,s − ρk,s)].

(33)

As a result, we can rewrite the dual problem as

max
κ,υ

min
ρ,z,x

L(κ,υ,ρ, z,x), (34a)

s.t. (11b), (11e), (11f), (30) − (32). (34b)

Thus, we can decompose the dual problem (34) into three
sub-problems having independent feasible regions, respec-
tively, which can be expressed as

min
ρ

∑
k∈K

∑
s∈S

ρk,s(−υk,s), (35a)

s.t. (11b), (35b)

min
z

∑
k∈K

∑
s∈S

zM,s

(
−βk(D̂R

k ϑs + t̂c,F
k,s ϑs) − κk,s

)
, (36a)

s.t. (11e), (11f), (36b)

min
x

∑
k∈K

∑
s∈S

xk,s

(
βk(

Lk,sϑs

Rk
+
CkLk,sϑs

fF
k

)+κk,s+υk,s

)
,

(37a)

s.t. (30). (37b)

To elaborate a little further, after we decompose the dual
problem, we obtain a set of separate problems from the joint
task offloading and software package caching optimization
problem. Note that sub-problem (35a) is a task offloading
problem. The optimal task partitioning strategy is derived in
Proposition 3, which is shown as follows:

Proposition 3: The optimized results {ρk,s} of our task
scheduling strategy can be expressed as

ρ∗k,s =

CkLk,s

fM
k

Lk,s

Rk
+ CkLk,s

fF
k

+ CkLk,s

fM
k

. (38)

Proof: Please refer to Appendix D.
On the other hand, both sub-problems (36) and (37) are

linear optimization problems. In this case, generic linear
programming methods can be applied for solving them. Then,
software package caching problem can be solved on a time
scale that considers service package popularity, data size and
computing resources required for the service. By solving the
sub-problems (35), (36) and (37), we arrive at the optimized
values of ρ, z and x. Additionally, the dual variables are
updated by the sub-gradient method. In particular, the dual
variables in iteration t1 are updated as follows:

κk,s(t1 + 1) = [κk,s(t1) + ψ(t1)d(κk,s(t1))]+, (39)

υk,s(t1 + 1) = [υk,s(t1) + ψ(t1)d(υk,s(t1))]+, (40)

where we have [x]+ = max{0, x} and ψ(t1) is the step size,
while d(κk,s(t1), d(υk,s(t1) are the sub-gradients of the dual
problems, which are given by

d[κk,s(t1)] = xk,s − zM,s, (41)

d[υk,s(t1)] = xk,s − ρk,s. (42)

According to the proof in [44], the optimal solutions of
the transformed problem (27) are guaranteed to be found,
which can be regarded as the best task offloading and software
caching strategy.

B. Binary Variable Recovery

To efficiently solve problem (11), the binary variables
ρ and z are relaxed into continuous variables and (11) is
transformed it into a convex problem. Therefore, the binary
variables have to be recovered after the sub-gradient process
converges for problem (27). Accordingly, the binary variables
ρ and z are recovered by our specifically constructed Algo-
rithm 2. In particular, an example of ρ is used in Algorithm 2.
Meanwhile, the same process is applied to z. Due to the
NP-hard nature of the original optimization problem, there
is no guarantee that the optimized results acquired actually
represent the optimal solution. As a result, there may be a gap
between them. However, we will show in our simulations that
the gap is modest.

C. Joint Power, Task Allocation and Software
Caching Optimization

With the optimized solution from the above-mentioned two
subproblems in place, the joint optimization of power and
task allocations, as well as software caching is summarized
in Algorithm 3.

As pointed out in the previous subsection, the subproblem of
power allocation is solved as a linear optimization problem at a
polynomial complexity. There are numerous methods of solv-
ing linear problems, including Dantzig’s simplex method [43]
and the interior-point method. Furthermore, as the subprob-
lem of task allocation and software caching optimization is
transformed into a convex one, we may readily find the
optimal solution with a polynomial complexity. As a result,
the computational complexity of our proposed alternating

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

Algorithm 2 Binary Task Scheduling Recovery
1: Calculating the first partial derivations.

Based on (33), calculate the first partial derivations of
Lagrangian Gk,s = ∂L(κ,υ,ρ,z,x)

∂ρk,s
with respect to task

scheduling variable ρk,s.
2: Sort all Gk,s, ∀k, s from largest to smallest. Mark them

with G1, G2, . . ., Gg , Accordingly, mark the corre-
sponding ρk,s as ρ1, ρ2, . . ., ρg ,

3: for g = 1, 2, . . . do
4: Set ςg = 1 and ςg+1, ςg+2, ςg+3, . . . = 0.
5: if Any of the constraints (11b)-(11g) does not hold, then
6: Break
7: end if
8: end for
9: Output the recovered task scheduling solutions {ρk,s},

∀k, s.

Algorithm 3 Joint Power, Task Allocation and Software
Caching Optimization Algorithm

1: Initialize j = 0, ε = 1, and give feasible points p(0) and ρ(0).
2: while ε > 0.001 do
3: j = j + 1;
4: Solve problem (27), and obtain ρ(j) and z(j) via Algorithm 2 with

p(j−1).
5: Obtain p(j) via Algorithm 1 with ρ(j) and z(j);

6: Calculate ε = maxk | (
�

k∈K βkDtotal,k)(j)−(
�

k∈K βkDtotal,k)(j−1)

(
�

k∈K βkDtotal,k)(j−1) |;
7: end while

optimization algorithm is only polynomially increasing, which
increases with the problem dimension.

Proposition 4: Algorithm 3 converges within a finite num-
ber of iterations.

Proof: Please refer to Appendix E.

V. PERFORMANCE EVALUATION

In this section, we quantify the accuracy of the analytical
results characterizing our massive MIMO-aided task offload-
ing, software caching and resource allocation regime in the
context of MC by means of simulations.

A. Simulation Setup

The corresponding simulation parameters are as follows.
There are 10 TNs for task offloading, which are uniformly
scattered within a 100 m × 100 m square area at the
left-hand side of Fig. 1. The MRN and FAN are located at
positions of (100, 0) and (200,0) respectively, at the right-
hand side of Fig. 1. The elements of each channel matrix
are distributed as CN (0, 1), while the transmission bandwidth
of the system is B = 20 MHz. The variance of the AWGN
noise is σ2 = 10−9W. As for the CCN, the CPU’s computa-
tional capability FMRN is uniformly selected from the set of
{3, 4, · · · , 10}GHz [45].

B. Performance of Software Package Caching

We adopt a benchmark of the simulated optimal solution
to verify the superiority of our proposed algorithm, which

Fig. 2. The weighted-sum delay versus the cache size of the MRN.

Fig. 3. The effect of the Zipf popularity exponent of ε on the delay.

achieves the best task scheduling performance at the cost of a
high computational complexity. In Fig. 2, we investigate the
weighted-sum delay versus the cache size of the MRN. As can
be observed from Fig. 2 that performance gap between the pro-
posed algorithm and the simulated optimal solution is not sig-
nificant for M = 500 and 1000 antennas, and the gap between
the two algorithms is only about 10 ∼ 20 ms. It can also be
observed that for M = 1000 antennas the weighted-sum delay
is substantially lower than for M = 500 antennas, which
verifies the analytical results at Section III. Furthermore, the
weighted-sum delay decreases upon increasing the cache size.
This is due to the fact that more software packages are cached
at the CCN for larger cache sizes. As a result, the computa-
tional task is more likely to be executed locally. However, as
the cache size of the CCN increases, the weighted-sum delay
reduction rate slows. This is because the computing resources
of the CCN are limited.

Fig. 3 portrays the weighted-sum delay versus the number
of TNs for different Zipf popularity exponents. Observe from
the figure that the performance associated with the Zipf distri-
bution is better than that of the uniform random offloading
strategy. Furthermore, as the Zipf exponent increases, the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1829

Fig. 4. The weighted-sum delay versus the cache size for different offloading
strategies, where the number of TNs is 10.

weighted-sum delay decreases. This is due to the fact that most
of the users access an increasingly smaller number of popular
software packages upon increasing the Zipf exponent. Mean-
while, the weighted-sum delay increases near-linearly with the
number of TNs, because the number of the computational tasks
increases upon increasing the number of TNs.

C. Performance of Joint Task Scheduling and Software
Package Caching Algorithm

In Fig. 4, we show the weighted-sum delay versus the
cache size for different offloading strategies, and we set the
number of TNs to 10. When the cache size of the CCN
increases, the weighted-sum delay of the pure CCN computing
scheme decreases significantly. Under these circumstances,
offloading the tasks to the CCN will achieve lower delay than
offloading the tasks to the cloud, which eventually leads to the
reduced weighted-sum delay observed. Similarly, the random
offloading scheme exhibits a reduced delay upon increasing
the cache size. By contrast, when the cache size of the CCN
becomes smaller, the pure cloud computing based scheme
will have better performance than the pure CCN computing
scheme. As expected, the proposed algorithm exhibits the
best weighted-sum delay performance among all the schemes.
However, similar to Fig. 2, the weighted-sum delay converges
to a constant minimum value due to the limited computing
resources of the CCN upon increasing the cache size.

We now show the simulation results of the optimal task
offloading and optimal software package caching strategies
having different system parameters. In Fig. 5, we show the
weighted-sum delay versus the cache size FMRN of the CCN,
where we compare the most popular content caching (MPC) to
our optimal software package caching strategy, and the random
task offloading to our optimal task offloading strategy, respec-
tively. Again, we also set the number of TNs to 10. As can
be observed from Fig. 5 that the proposed algorithm hav-
ing different CCN computational resources always performs
best among all the schemes. Furthermore, compared to the
MPC strategy, we observe that our proposed caching strategy

Fig. 5. The weighted-sum delay versus the cache size FMRN of the MRN.

Fig. 6. The weighted-sum delay versus the cache size for different number
of MRN antennas, the total number of TNs is 10.

reduces the total cost at the same cache size and CCN compu-
tational capacity, which coincides with our analytical results.
Additionally, it can be also observed that the weighted-sum
delay of the optimal task scheduling scheme is creased slower
than that of the random task offloading scheme, when the
optimal software package caching strategy is utilized. This
is due to the dominance of the task computation delay over
the transmission delay. Furthermore, note that upon increasing
both the cache size and the computational capability, the delay
is significantly reduced. This phenomenon indicates that if the
cache size and the computational resources are increased, then
more tasks will be executed locally. This is an explicit benefit
of the fact that more popular software packages are cached
in the CCN, hence the tasks are more likely to be computed
locally with the aid of more computational resources.

For characterizing the impact of the number MRN antennas
on the delay, we also conduct weighted-sum delay simulations.
In Fig. 6, we show the weighted-sum delay versus the cache
size for different number of MRN antennas, where the total
number of TNs is 10. Observe that the weighted-sum delay
decreases when the number of MRN antennas is increased,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1830 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

which is a benefit of the higher task transmission rate upon
having more antennas. On the other hand, as the cache size
of the CCN increases, we observe from the figure that the
weighted-sum delay is reduced. This is mainly because more
software packages are cached at MRN to reduce the task
transmission delay. This coincides with the benefits of service
caching. However, as the cache size of the CCN increases
much larger, the weighted-sum delay converges to a stable
value due to the limited computing resources of the CCN.

VI. CONCLUSION

In this paper, we proposed a massive MIMO-aided MC
framework, where the computational tasks of multiple TNs
are offloaded to the CCN constituted by the nearby MRN,
and to the cloud constituted by the nearby FAN via the MRN.
We formulated a weighted-sum delay minimization problem
for reducing the total task scheduling delay, while considering
realistic imperfect CSI. Since the task offloading and caching
variables are binary, we solved the resultant non-convex power
allocation, task offloading, and service caching problem by
proposing an alternative optimization scheme. We first deter-
mined the power allocation for a given task offloading and
service caching result, followed by conceiving a beneficial
iterative optimization algorithm to obtain the power allocation
results. Based on the power allocation, we used the Lagrange
partial relaxation for relaxing the binary constraints and for
formulating the dual problem to obtain the task allocation
and software caching results. Finally, we proposed an iter-
ative optimization algorithm for determining the joint task
offloading, service caching and power allocation solution.
The simulation results demonstrate that the proposed scheme
outperforms the benchmark schemes, and we can choose the
minimum-delay optimal offloading strategy of our proposed
massive MIMO-aided MC system according to the received
SINR found for M → ∞.

APPENDIX A
PROOF OF THEOREM 1

Based on (20), the relative strengths of the interference is
given by

E

{(
τDĜ†ΩDP

) (
τDĜ†ΩDP

)H
}

k,k

= τ2
DE

{
Ĝ†ΩDPPHΩH

DĜ†H
}

k,k
=τ2

D

K∑
k=1

pkE
{̂
g†

kĝ
†H
k

}
,

=
τ2
D(1 − τ2

D)
M(1 + τ2

D)

K∑
i=1

pk. (43)

Next, the eigenvalue/eigenvector decomposition of ĜHĜ is
adopted. Then, we have

ĜHĜ = QHΛQ, (44)

where Q and Λ = diag{λ1, · · · , λK} respectively represent
the unitary eigenvector matrix and the nonnegative diagonal

eigenvalue matrix. As a result, the noise power at the FAN is
given by

E
{
nH

U Ĝ†HĜ†nU

}

= tr
{
Ĝ†HĜ†nUnH

U

}

= tr
{
Ĝ(ĜHĜ)−1(ĜHĜ)−1ĜHnUnH

U

}
,

= tr
{
Ĝ(QHΛQ)−1(QHΛQ)−1ĜHnUnH

U

}
,

= tr
{
ĜQH(Λ)−1QQH(Λ)−1QĜHnUnH

U

}
,

= tr
{

QΛQH

(Λ)2
nUnH

U

}
,= tr

{
σ2

u

Λ
IK

}
. (45)

Based on (43) and (45), we obtain the effective SINR of the
kth data stream at the FAN, which is given by

γk =
(1 − τ2

D)pkPt

τ2
D(1−τ2

D)

M(1+τ2
D)

∑K
i=1 pk + σ2

u

λk

. (46)

APPENDIX B
PROOF OF PROPOSITION 1

According to the approximation in [46], we can rewrite the
upper-bound of the task transmission rate as a linear function
of log2 γk,∞. As a result, for a given variable γ′k,∞, we have
the following inequality

log2(1 + γk,∞) ≥ κk log2 γk,∞ + υk, (47)

where κk and υk are respectively defined as κk = γ′
k,∞

1+γ′
k,∞

,

υk = log2(1 + γ′k,∞) − γ′
k,∞

1+γ′
k,∞

log2 γ
′
k,∞. To proceed, it is

obvious that log2(1 + γk,∞) = κk log2 γk,∞ + υk is satisfied
when γk,∞ = γ′k,∞.

By employing the inequality in (47), the upper bound of the
objective function in (11) can be obtained, which is given by
∑
k∈K

βkDtotal,k =
∑
k∈K

βk

∑
s∈S

ϑs

(
DL

k + z∗M,s(
ρk,sLk,s

Rk
)

+ (1 − z∗M,s)(
Lk,s

Rk
)
)

≤
∑
k∈K

βkΘ(pk),

(48)

where Θ(pk) is defined as

Θ(pk)

=
∑
s∈S

z∗M,sρk,sLk,sϑs + (1 − z∗M,s)Lk,sϑs

κi log2 γk,∞ + υi

=
∑
s∈S

z∗M,sρk,sLk,sϑs+(1−z∗M,s)Lk,sϑs

κi log2 pk+κi log2 λk(1−τ2
D)Pt − 2κi log2 σu+υi

.

(49)

Next, we define
k = log2 pk and denote � =
{
1, . . . ,
|I|}. Therefore, the power allocation that mini-
mizes the task scheduling delay can be found by solving the
following linear optimization problem

min
�

∑
k∈K

βkΓ(
k) (50a)

s.t. (11c), (50b)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1831

∑
k∈K

βk

∑
s∈S

ϑs

(
max(tck,s, D

R
k + tc,F

k,s)z∗M,s

)
=

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈K βk

∑
s∈S ϑs

(
Ck(1 − ρk,s)Lk,s

fM
k

z∗M,s

)
, 0 ≤ ρk,s ≤ ρ∗k,s,

∑
k∈K βk

∑
s∈S ϑs

(
(
ρk,sLk,s

Rk
+
Ckρk,sLk,s

fF
k

)z∗M,s

)
, ρ∗k,s ≤ ρk,s ≤ 1

(55)

where Γ(
k) is given by

Γ(
k)=−κk
k−κk log2 λk(1−τ2
D)Pt+2κi log2 σu−υk.

(51)

APPENDIX C
PROOF OF PROPOSITION 2

The optimal solution of problem (25) is �(i) after the
ith iteration. Set pk(i) = 2�k(i). Then, we can obtain the
following inequalities:∑

k∈K
βkΓ(log2 pk(i)), (52a)

=
∑
k∈K

βkΓ(
k(i)), (52b)

≥
∑
k∈K

βkΓ(
k(i+ 1)), (52c)

=
∑
k∈K

βkΓ(log2 pk(i+ 1)), (52d)

the second inequality (52c) holds because
k(i + 1) is the
optimal solutions of problem (25) for the (i + 1)th iteration;
Since the value of

∑
k∈K βkΓ(
k) is lower bounded due to

limited energy resources, Algorithm 1 finally converges and
outputs the power allocation results.

APPENDIX D
PROOF OF PROPOSITION 3

For a given software caching strategy and based on Problem
(P1), Problem (35a) can be transformed into

(P2) min
ρ

∑
k∈K

βk

∑
s∈S

ϑs

(
max(tck,s, D

R
k + tc,F

k,s)z∗M,s

)
,

(53a)

s.t. 0 ≤ ρk,s ≤ 1, ∀k, (53b)

By substituting (3), (6) and (4) into the objective function in
(P1), the objective function can be rewritten as

∑
k∈K

βk

∑
s∈S

ϑs

(
max(

Ck(1 − ρk,s)Lk,s

fM
k

,
ρk,sLk,s

Rk

+
Ckρk,sLk,s

fF
k

)zM,s

)
. (54)

Then, when ρk,s ∈ [0, 1], we can readily show that tck,s

decreases with ρk,s and tck,s ∈ [0, CkLk,s

fM
k

]. On the other hand,

we have DR
k + tc,F

k,s ∈ [0, Lk,s

Rk
+ CkLk,s

fF
k

], which increases with
ρk,s. Thus, we can rewrite the objective function of Problem
(P2) as (55), which is shown at the top of the page. The

optimal task scheduling ratio ρ∗k,s is obtained by solving the
following equation

Ck(1 − ρk,s)Lk,s

fM
k

=
ρk,sLk,s

Rk
+
Ckρk,sLk,s

fF
k

. (56)

As a result, the optimal task scheduling ratio ρ∗k,s is given by

ρ∗k,s =

CkLk,s

fM
k

Lk,s

Rk
+ CkLk,s

fF
k

+ CkLk,s

fM
k

. (57)

APPENDIX E
PROOF OF PROPOSITION 4

Based on Algorithm 3, we have the inequalities for the jth
iteration as follows∑

k∈K
βkDtotal,k

(
p(j−1),ρ(j−1), z(j−1)

)
, (58a)

≥
∑
k∈K

βkDtotal,k

(
p(j−1),ρ(j−1), z(j)

)
, (58b)

≥
∑
k∈K

βkDtotal,k

(
p(j−1),ρ(j), z(j)

)
, (58c)

≥
∑
k∈K

βkDtotal,k

(
p(j),ρ(j), z(j)

)
, (58d)

where (58b) is given by solving linear sub-problem (36a);
(58c) and (58d) are valid according to Proposition 52a and
Proposition 1, and solution ρ(j) represents its optimal solu-
tion. Note that

∑
k∈K βkDtotal,k (p,ρ, z) is decreased at each

iteration based on (58a) and (58d). Additionally, the OF
is obviously lower-bounded by a finite value due to the
associated constraints. Therefore, within a finite number of
iterations, Algorithm 3 converges given a threshold.

REFERENCES

[1] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: Resource-efficient
edge computing for intelligent IoT applications,” IEEE Netw., vol. 32,
no. 1, pp. 61–65, Jan. 2018.

[2] S. Andreev, V. Petrov, K. Huang, M. A. Lema, and M. Dohler, “Dense
moving fog for intelligent IoT: Key challenges and opportunities,” IEEE
Commun. Mag., vol. 57, no. 5, pp. 34–41, May 2019.

[3] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A
survey on network methodologies for real-time analytics of massive IoT
data and open research issues,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

[4] K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated
machine learning for intelligent IoT via reconfigurable intelligent sur-
face,” IEEE Netw., vol. 34, no. 5, pp. 16–22, Sep. 2020.

[5] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. Shen,
“Software defined space-air-ground integrated vehicular networks: Chal-
lenges and solutions,” IEEE Commun. Mag., vol. 55, no. 7, pp. 101–109,
Jul. 2017.

[6] X. Liu and N. Ansari, “Toward green IoT: Energy solutions and
key challenges,” IEEE Commun. Mag., vol. 57, no. 3, pp. 104–110,
Mar. 2019.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

1832 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 3, MARCH 2022

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[8] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[9] N. Chen, Y. Yang, T. Zhang, X. Luo, and J. Zao, “FA2ST: Fog as a
service technology,” IEEE Commun. Mag., vol. 56, no. 11, pp. 95–101,
Nov. 2018.

[10] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“MEETS: Maximal energy efficient task scheduling in homogeneous fog
networks,” IEEE Internet Things J., vol. 5, pp. 4076–4087, Oct. 2018.

[11] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[12] K. Wang, W. Chen, J. Li, and B. Vucetic, “Green MU-MIMO/SIMO
switching for heterogeneous delay-aware services with constellation
optimization,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1984–1995,
May 2016.

[13] K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang, “Learning-based task
offloading for delay-sensitive applications in dynamic fog networks,”
IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11399–11403, Nov. 2019.

[14] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[15] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled IoT using natural actor-
critic deep reinforcement learning,” IEEE Internet Things J. vol. 6, no. 2,
pp. 2061–2073, Apr. 2019.

[16] K. Wang, W. Chen, J. Li, Y. Yang, and L. Hanzo, “Minimum-delay task
offloading and caching in multi-tier computing networks,” in Proc. IEEE
ICC, Seoul, South Korea, Jun. 2022, pp. 1–6.

[17] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless pow-
ered mobile-edge computing with binary computation offloading,” IEEE
Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Sep. 2018.

[18] W. Xia, J. Zhang, T. Q. S. Quek, S. Jin, and H. Zhu, “Power
minimization-based joint task scheduling and resource allocation in
downlink C-RAN,” IEEE Trans. Wireless Commun., vol. 17, no. 11,
pp. 7268–7280, Nov. 2018.

[19] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-
device communication assisted fog computing,” IEEE Trans. Mobile
Comput., vol. 20, no. 3, pp. 1076–1091, Mar. 2021.

[20] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[21] K. Wang, Y. Zhou, Z. Liu, Z. Shao, X. Luo, and Y. Yang, “Online
task scheduling and resource allocation for intelligent NOMA-based
industrial Internet of Things,” IEEE J. Sel. Areas Commun., vol. 38,
no. 5, pp. 803–815, May 2020.

[22] O. Y. Bursalioglu, G. Caire, R. K. Mungara, H. C. Papadopoulos,
and C. Wang, “Fog massive MIMO: A user-centric seamless hot-
spot architecture,” IEEE Trans. Wireless Commun., vol. 18, no. 1,
pp. 559–574, Jan. 2019.

[23] H. Pirzadeh, C. Wang, and H. Papadopoulos, “Machine-learning assisted
outdoor localization via sector-based fog massive MIMO,” in Proc. IEEE
ICC, Shanghai, China, Jun. 2019, pp. 1–6.

[24] D. Chen, “Low complexity power control with decentralized fog com-
puting for distributed massive MIMO,” in Proc. IEEE Wireless Commun.
Netw. Conf., Barcelona, Spain, Apr. 2018, pp. 1–6.

[25] R. K. Mungara, G. Caire, O. Y. Bursalioglu, C. Wang, and
H. C. Papadopoulos, “Fog massive MIMO with on-the-fly pilot con-
tamination control,” in Proc. IEEE ISIT, Vail, CO, USA, Jun. 2018,
pp. 1–5.

[26] K. Wang, Y. Zhou, J. Li, L. Shi, W. Chen, and L. Hanzo,
“Energy-efficient task offloading in massive MIMO-aided multi-pair
fog-computing networks,” IEEE Trans. Commun., vol. 69, no. 4,
pp. 2123–2137, Apr. 2021.

[27] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[28] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans.
Mobile Comput., vol. 17, no. 8, pp. 1791–1805, Aug. 2018.

[29] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Trans. Multimedia, vol. 21, no. 4, pp. 915–929, Apr. 2019.

[30] S. Bi, L. Huang, and Y.-J.-A. Zhang, “Joint optimization of ser-
vice caching placement and computation offloading in mobile edge
computing systems,” IEEE Trans. Wireless Commun., vol. 19, no. 7,
pp. 4947–4963, Jul. 2020.

[31] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/LeD: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1857–1870, Aug. 2018.

[32] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE INFO-
COM, Apr. 2018, pp. 207–215.

[33] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[34] S. H. Chae and W. Choi, “Caching placement in stochastic wireless
caching helper networks: Channel selection diversity via caching,” IEEE
Trans. Wireless Commun., vol. 15, no. 10, pp. 6626–6637, Jun. 2016.

[35] D. Malak, M. Al-Shalash, and J. G. Andrews, “Optimizing con-
tent caching to maximize the density of successful receptions in
device-to-device networking,” IEEE Trans. Commun., vol. 64, no. 10,
pp. 4365–4380, Oct. 2016.

[36] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[37] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “POST: Parallel
offloading of splittable tasks in heterogeneous fog networks,” IEEE
Internet Things J., vol. 7, pp. 3170–3183, Apr. 2020.

[38] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[39] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidisciplinary Optim., vol. 26,
no. 6, pp. 369–395, Apr. 2004.

[40] A. Zappone, P. Cao, and E. A. Jorswieck, “Energy efficiency optimiza-
tion in relay-assisted MIMO systems with perfect and statistical CSI,”
IEEE Trans. Signal Process., vol. 62, no. 2, pp. 443–457, Jan. 2014.

[41] Z. Chen, N. Pappas, and M. Kountouris, “Probabilistic caching in
wireless D2D networks: Cache hit optimal versus throughput optimal,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 584–587, Mar. 2017.

[42] K. Wang, J. Li, Y. Yang, W. Chen, and L. Hanzo, “Content-centric
heterogeneous fog networks relying on energy efficiency optimization,”
IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13579–13592, Nov. 2020.

[43] L. Liberti and C. C. Pantelides, “An exact reformulation algorithm
for large nonconvex NLPs involving bilinear terms,” J. Global Optim.,
vol. 36, no. 2, pp. 161–189, Oct. 2006.

[44] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1995.

[45] (2017). Hewlett-Packard Company—Enterprise Computer Server Sys-
tems and Network Solutions. Accessed: Apr. 25, 2017. [Online]. Avail-
able: https://www.hpe.com/au/en/servers.html

[46] J. Papandriopoulos and J. S. Evans, “Low-complexity distributed algo-
rithms for spectrum balancing in multi-user DSL networks,” in Proc.
IEEE ICC, vol. 7, Jun. 2006, pp. 3270–3275.

Kunlun Wang (Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2016.
From 2016 to 2017, he was with Huawei Technolo-
gies Company Ltd., where he was involved in energy
efficiency algorithm design. From 2017 to 2019,
he was with the Key Laboratory of Wireless Sensor
Network and Communication, SIMIT, Chinese
Academy of Sciences, Shanghai. From 2019 to 2020,
he was with the School of Information Science and
Technology, ShanghaiTech University. Since 2021,

he has been a Professor with the School of Communication and Electronic
Engineering, East China Normal University. His current research interests
include energy efficient communications, fog/edge computing networks,
resource allocation, and optimization algorithm. He is the Lead Guest Editor of
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS on Multi-Tier
Computing for Next Generation Wireless Networks, and the Review Editor
of Signal Processing for Communications.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: JOINT TASK OFFLOADING AND CACHING FOR MASSIVE MIMO-AIDED MULTI-TIER COMPUTING NETWORKS 1833

Wen Chen (Senior Member, IEEE) is a tenured Pro-
fessor with the Department of Electronic Engineer-
ing, Shanghai Jiao Tong University, China, where
he is the Director of Broadband Access Network
Laboratory. His research interests include multiple
access, wireless AI, and meta-surface communi-
cations. He has published more than 110 articles
in IEEE journals and more than 120 papers in
IEEE conferences, with more than 6000 citations in
Google Scholar. He is a fellow of the Chinese Insti-
tute of Electronics and the Distinguished Lecturer of

IEEE Communications Society and IEEE Vehicular Technology Society. He is
the Shanghai Chapter Chair of IEEE Vehicular Technology Society and an
Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON COMMUNICATIONS, IEEE ACCESS, and IEEE OPEN

JOURNAL OF VEHICULAR TECHNOLOGY.

Jun Li (Senior Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2009.
From January 2009 to June 2009, he worked
with the Department of Research and Innovation,
Alcatel-Lucent Shanghai Bell, as a Research Sci-
entist. From June 2009 to April 2012, he was a
Post-Doctoral Fellow at the School of Electrical
Engineering and Telecommunications, The Univer-
sity of New South Wales, Australia. From April
2012 to June 2015, he was a Research Fellow at the

School of Electrical Engineering, The University of Sydney, Australia. Since
June 2015, he has been a Professor with the School of Electronic and Optical
Engineering, Nanjing University of Science and Technology, Nanjing, China.
He was a Visiting Professor at Princeton University from 2018 to 2019. His
research interests include network information theory, game theory, distributed
intelligence, multiple agent reinforcement learning, and their applications in
ultra-dense wireless networks, mobile edge computing, network privacy and
security, and the Industrial Internet of Things. He has coauthored more than
200 papers in IEEE journals and conferences, and holds one U.S. patent and
more than ten Chinese patents in these areas. He served as a TPC Member for
several flagship IEEE conferences. He received the Exemplary Reviewer of
IEEE TRANSACTIONS ON COMMUNICATIONS Award in 2018 and the Best
Paper Award from IEEE International Conference on 5G for Future Wireless
Networks in 2017. He served as an Editor for IEEE COMMUNICATIONS

LETTERS.

Yang Yang (Fellow, IEEE) received the B.S. and
M.S. degrees in radio engineering from Southeast
University, Nanjing, China, in 1996 and 1999,
respectively, and the Ph.D. degree in informa-
tion engineering from The Chinese University of
Hong Kong in 2002.

He is currently a Full Professor with the School
of Information Science and Technology, Master of
Kedao College, and the Director of the Shanghai
Institute of Fog Computing Technology (SHIFT),
ShanghaiTech University, China. He is also an

Adjunct Professor with the Research Center for Network Communication,
Peng Cheng Laboratory, China, as well as a Senior Consultant for Shenzhen
SmartCity Technology Development Group Company Ltd., China. Before
joining ShanghaiTech University, he has held faculty positions at The Chinese
University of Hong Kong; Brunel University London, U.K.; University Col-
lege London (UCL), U.K.; and SIMIT, CAS, China. His research interests
include 5G/6G, computing networks, service-oriented collaborative intelli-
gence, the IoT applications, and advanced testbeds and experiments. He has
published more than 300 papers and filed more than 80 technical patents
in these research areas. He has been the Chair of the Steering Committee
of Asia-Pacific Conference on Communications (APCC) since January 2019.
He is also the General Co-Chair of the IEEE DSP 2018 Conference and the
TPC Vice-Chair of the IEEE ICC 2019 Conference.

Lajos Hanzo (Life Fellow, IEEE) received the mas-
ter’s and Ph.D. degrees from the Budapest University
of Technology and Economics in 1976 and 1983,
respectively, the Doctor of Sciences (D.Sc.) degree
from the University of Southampton in 2004, the first
Honorary Doctorate degree from the Budapest Uni-
versity of Technology and Economics in 2009 and
the second Honorary Doctorate degree from The
University of Edinburgh in 2015. He has served
several terms as the Governor of both IEEE ComSoc
and VTS. He has published over 2000 contributions

at IEEE Xplore, 19 Wiley-IEEE Press books, and has helped the fast-track
career of 123 Ph.D. students, over 40 of them are professors at various stages
of their careers in academia and many of them are leading scientists in
the wireless industry. He is a Foreign Member of the Hungarian Academy
of Sciences and a former Editor-in-Chief of the IEEE Press. He is also
a fellow of the Royal Academy of Engineering (F.R.Eng.), the IET, and
EURASIP. He was the recipient of the 2022 Eric Sumner Field Award. For
more details, please visit his websites (http://www-mobile.ecs.soton.ac.uk and
https://en.wikipedia.orgwikiLajos_Hanzo).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:50:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

