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Abstract— Personalized federated learning (PFL), as a novel
federated learning (FL) paradigm, is capable of generating
personalized models for heterogenous clients. Combined with
a meta-learning mechanism, PFL can further improve the
convergence performance with few-shot training. However, meta-
learning based PFL has two stages of gradient descent in each
local training round, therefore posing a more serious challenge
in information leakage. In this paper, we propose a differential
privacy (DP) based PFL (DP-PFL) framework and analyze its
convergence performance. Specifically, we first design a privacy
budget allocation scheme for inner and outer update stages based
on the Rényi DP composition theory. Then, we develop two
convergence bounds for the proposed DP-PFL framework under
convex and non-convex loss function assumptions, respectively.
Our developed convergence bounds reveal that 1) there is an
optimal size of the DP-PFL model that can achieve the best
convergence performance for a given privacy level, and 2) there is
an optimal tradeoff among the number of communication rounds,
convergence performance and privacy budget. Evaluations on
various real-life datasets demonstrate that our theoretical results
are consistent with experimental results. The derived theoretical
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results can guide the design of various DP-PFL algorithms
with configurable tradeoff requirements on the convergence
performance and privacy levels.

Index Terms— Federated learning, meta-learning, differential
privacy, convergence analysis.

I. INTRODUCTION

IT IS expected that big data-driven artificial intelligence
(AI) will soon be applied in many aspects of our daily

lives, including health care [1], communications [2], [3],
autonomous driving [4], etc. At the same time, the rapid
growth of Internet-of-Things (IoT) applications calls for data
mining and model learning securely and reliably in distributed
systems. In integrating AI in a variety of IoT applications,
distributed machine learning (ML) systems are preferred for
data processing tasks with edge intelligence [5]. Federated
learning (FL) [6], [7], [8], as a recent advance in distributed
ML, has been proposed to ensure data being processed locally,
thereby protecting clients’ privacy.

However, due to the heterogeneity of end devices in IoT
environments, e.g., non-independent and identically distributed
(non-IID) data, and imbalanced computing capacity, it is
not practical to train a generally efficient ML model for
all the clients in the conventional FL framework [9], [10],
[11]. Therefore, personalized FL (PFL) has been proposed
to combat client heterogeneity, with the aim of training a
personalized model for each client [12], [13]. To achieve
this aim, PFL utilizes a meta-learning mechanism to first
obtain a initialized model capable of rapidly adapting to new
learning tasks, and then train a personalized model based
on this initial model via fine-tuning [14], [15], [16], [17].
To have a better understanding on convergence performance
of PFL, the work in [18] derived an upper bound of its loss
function, establishing the relationship between the bound and
imbalanced data distributions among clients. Furthermore, the
work in [17] developed two convergence bounds for PFL based
on two measurements of data distribution distances among
clients, i.e., Total Variation (TV) and 1-Wasserstein distances.

Similar to conventional FL, the training process of PFL
keeps personal data locally, thereby helping protect clients’
privacy [19]. However, attackers can still infer private infor-
mation by analyzing model parameters transmitted by the
clients. As one of the well-known privacy-preserving tech-
niques, differential privacy (DP) has been widely applied
for protecting clients’ sensitive information in conventional
FL [20]. The work in [21] derived a convergence bound for
meta-leaning with DP. The work in [22] and [23] proposed a
DP based PFL (DP-PFL) framework, where personal models
are trained via an alternating optimization procedure relying
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on the assumption that loss functions are convex. However,
this assumption is not practical since loss functions in PFL
are generally non-convex.

In this paper, we propose a novel Rényi DP (RDP)
based PFL (RDP-PFL) framework with meta-training and
analyze theoretically the tradeoff between privacy guaran-
tee and learning performance. Specifically, we develop two
convergence bounds within the proposed framework for con-
vex and non-convex loss function assumptions. The derived
expressions for the two bounds reveal that there exist optimal
values of the number of communication rounds and model
size that can maximize the learning performance for a given
privacy level. To the best of the authors’ knowledge, this is
the first work of its kind that provides a theoretical analysis of
the convergence properties of PFL combined with RDP and
meta-training.

Our main contributions can be summarized as follows:
• We propose a meta-learning based DP-PFL framework

by introducing the concept of RDP to enhance clients’
privacy. Specifically, this framework adopts RDP based
SGD (RDP-SGD) training in the meta-learning process
which provides an initial model that can be rapidly
adapted to personalized datasets (e.g., through few-shot
learning). Further, to address the possible privacy leakage
in the two-stage training procedure in each meta-learning
process, we have designed a privacy budget allocation
scheme based on RDP composition theory.

• We study the convergence behavior of RDP-PFL and
develop two bounds with convex and non-convex loss
function assumptions. These two convergence bounds
reveal that there exist an optimal model size and an
optimal number of communication rounds for maximizing
the convergence performance given a fixed privacy level.

• We evaluate the performance of RDP-PFL using a variety
of datasets and settings, which demonstrates that our the-
oretical results are consistent with experimental results.
Therefore, our analytical results are helpful for the design
of privacy-preserving PFL architectures with different
tradeoff requirements on convergence performance and
privacy levels.

The remainder of this paper is organized as follows.
In Section II, we present the PFL framework and introduce
some basics of RDP. Then, we introduce our proposed DP-PFL
algorithm in Section III. We derive two convergence bounds
for the proposed algorithm in Section IV. Experimental results
are described in Section V. Section VI reviews related works
on federated meta-learning and distributed learning with DP.
Finally, conclusions are drawn in Section VII. The main
notation used in this paper is summarized in Tab. I.

II. PRELIMINARIES

In this section, we first present the PFL framework and
introduce some basics of RDP.

A. Framework of PFL
Let us consider a general PFL system consisting of U source

clients and K target clients, in which each client contains two
datasets, i.e., the query dataset and support dataset. In each
communication round, each source client trains its local model
based on the global one from the central server. Then, all
source clients upload their trained models to the server and
the server update the global model by aggregating all received

TABLE I
SUMMARY OF MAIN NOTATION

local models. The local model update for one epoch contains
two steps: the inner update and the outer update. The inner
update is based on a one-step gradient descent of the outer
update model in the previous epoch, while the outer update
model is based on a one-step gradient descent of the inner
update model in the current epoch.

We denote by θ
t,τ
i and w

t,τ
i the inner and outer update

models, respectively, in the τ -th local epoch of the t-th
communication round for the i-th source client, i ∈ U ≜
{1, 2, . . . , U }. The inner update in the τ -th local epoch of
the t-th communication round over query dataset DQ

i can be
expressed as

θ
t,τ
i = w

t,τ−1
i − η∇Fi (w

t,τ−1
i ,DQ

i ), (1)

where Fi (·) is the loss function of the i-th client and η is
the learning rate. Generally, the loss function Fi (·) is given
by the empirical risk and has the same expression for various
clients. Then the outer update in the τ -th local epoch of the
t-th communication round over support dataset DS

i can be
expressed as

w
t,τ
i = w

t,τ−1
i − β∇Fi (θ

t,τ
i ,DS

i )

= w
t,τ−1
i − β(I − η∇2 Fi (w

t,τ
i ,DQ

i ))∇Fi (θ
t,τ+1
i ,DS

i ),

(2)

where β is the learning rate for the outer update.
When all clients complete the local training, they need to

upload their local models to the central server. The server
performs the global aggregation to obtain a global model
parameter wt+1, which can be expressed as

wt+1
=

∑
i∈U

piw
t,τ0
i , (3)

where τ0 is the number of local training epochs, pi ≜
|DS

i |/|D
S
| ≥ 0 with

∑
i∈U pi = 1, |DS

i | represents the size
of the support dataset DS

i , and |DS
| =

∑
i∈U |DS

i | represents
the size of all support datasets.
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Fig. 1. The diagram of differentially private PFL.

Given a global model wt , the j-th target client can obtain
its personalized model θ j through one-step gradient descent
on wt , j ∈ K ≜ {1, 2, . . . , K }, which can be expressed as

θ j = wt
− η∇F j (w

t ,D j ), (4)

where D j is the dataset of the j-th target client.

B. Rényi Differential Privacy
DP with parameters ϵ and δ provides a criterion for privacy

protection in distributed data processing systems. Here, ϵ >
0 is the distinguishable bound of all outputs on neighboring
datasets D,D′ in a database, and δ represents the probability
of the event that the ratio of the probabilities for two adjacent
datasets D,D′ cannot be bounded by eϵ after adding a privacy-
preserving mechanism.

In this paper, we consider an improved DP definition called
RDP, which is strictly stronger than (ϵ, δ)-DP for δ > 0 and
allows tighter composition analysis [24]. We formally define
RDP as follows.

Definition 1 ((α, ϵ)-RDP [24]): Given a real number α ∈
(1,+∞) and privacy budget ϵ, a randomized mechanism
M satisfies (α, ϵ)-RDP for any two adjacent datasets D,D′,
we have

Dα[M(D)∥M(D′)] :=
1

α − 1
log E

[(
M(D)

M(D′)

)α]
≤ ϵ,

(5)
where the expectation is taken over the output of M(D)
and α is a selective parameter. We can note that RDP is a
generalization of (ϵ, δ)-DP that adopts Rényi divergence as
a distance metric between two distributions. It can be shown
that pure (ϵ, δ)-DP is equivalent to (∞, ϵ)-RDP, and, further,
that if a model M satisfies (α, ρ)-RDP, then M also satisfies(

ϵ +
log 1

δ

α−1 , δ

)
-DP for any δ ∈ (0, 1). Deep learning models

attain RDP guarantees via two alterations to the training
process, i.e., the clipping of gradients, and the addition of
Gaussian noise to gradients, as known as DP-SGD.

III. DIFFERENTIALLY PRIVATE PERSONALIZED
FEDERATED LEARNING

A. RDP Based PFL
We can note that each client needs to upload its local

model w
t,τ0
i , i ∈ U , to the server. This poses threats on

clients’ privacy as potential adversaries may reveal sensi-
tive information about individual clients from w

t,τ0
i . Hence,

in RDP-PFL, each client performs inner and outer updates by

the DP-SGD mechanism. We first use a clipping threshold C
to bound the L2-norm of training gradients in the inner and
outer updates. Then we perturb these two clipped gradients by
Gaussian noise vectors nQ

i and nS
i , respectively, where each

element in the noise vectors follows the Gaussian distribution
N (0, C2σ 2). Here, σ is the noise standard deviation (SD),
which is determined by the privacy budget shown in the next
subsection. Specifically, detailed steps to update the inner and
outer models for each local epoch are shown as follows.

1) Inner Update: Compute the local gradient and perform
the inner update.

∇Fi (w
t,τ
i ,DQ

i ) =
∇Fi (w

t,τ
i ,DQ

i )

max
{

1,
∥∇Fi (w

t,τ
i ,DQ

i )∥

C

} , (6)

θ̃
t,τ+1
i = w

t,τ
i − η

(
∇Fi (w

t,τ
i ,DQ

i )+ nQ
i

)
, (7)

where θ̃
t,τ+1
i represents the inner update mode in RDP-PFL.

2) Outer Update: Compute the local gradient and perform
the outer update.

w
t,τ+1
i = w

t,τ
i (8)

− β

 g1

max
{

1,
∥g1∥√

C

} g2

max
{

1,
∥g2∥√

C

} + nS
i

 , (9)

where

g1 = I − η∇2 Fi

(
w

t,τ
i ,DQ

i

)
, (10)

g2 = ∇Fi

(
θ̃

t,τ+1
i ,DS

i

)
, (11)

and I is an identity matrix. Eqs. (10) and (11) are derived by
Eq. (2). Note that the source clients can use partial data to
train their models in each local training epoch for the inner
and outer updates with sampling rates qQ and qS, respectively.

The RDP-PFL process completes after the number of com-
munication rounds reaches a preset number T . We summarize
the detailed steps of RDP-PFL in Algorithm 1. The Fig. 1
shows the diagram of RDP-PFL. Since the inner and outer
models are trained based on query and support datasets,
respectively, we need to control the norm of gradients, and
then add Gaussian noise to gradients in the inner and outer
updates. In addition, we will calculate the accumulation of
privacy leakage (privacy budget) for both the inner and outer
updates to obtain the SD of the Gaussian noise in the following
subsection.

B. Privacy Analysis
It can be noted that privacy budget for multiple access to the

training data can be measured by the RDP technique. Based
on Definition 5, we demonstrate that the privacy budget for
DQ

i or DS
i can be calculated as follows.

Theorem 1: For the meta-training process, the privacy bud-
get ϵ with a given δ for the published local model at each
update can be written as

ϵ =
T τ0

α − 1
(log I Q

+ log I S)

+
log( 1

δ
)+ (α − 1) log(1− 1

α
)− log(α)

α − 1
,

(12)
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Algorithm 1 Rényi Differential Privacy Based PFL
Data: The maximum number of communication

rounds T , the number of local training epochs
τ0, noise SD σ , clipping threshold C , initial
model w0;

1 for t: 0 to T − 1 do
2 Server execute:
3 Server sends global model wt to all clients in U ;
4 Client execute:
5 for all i ∈ U do
6 Update the local model: w

t,0
i = wt ;

7 for τ : 0 to τ0 − 1 do
8 Perform the inner update by Eqs. (6)

and (7);
9 Perform the outer update by Eqs. (8)

and (9);
10 Upload the local model w

t,τ0
i to the server;

11 Server execute:
12 Aggregate all local models by (3);
13 t ← t + 1;

Result: wT

where

I Q
=

∫
∞

−∞

µ
Q
0 (z)

(
(1− qQ)+

qQµ
Q
1 (z)

µ
Q
0 (z)

)α

, (13)

I S
=

∫
∞

−∞

µS
0(z)

(
(1− qS)+

qSµS
1(z)

µS
0(z)

)α

. (14)

In Eq. (13), µ
Q
0 (z) and µ

Q
1 (z) denote the probability density

function (PDF) of the Gaussian distribution N (0, σ ) and the
PDF of a mixture of two Gaussian distributions qQN (1, σ )+
(1− qQ)N (0, σ ), respectively. In Eq. (14), µS

0(z) denotes the
N (0, σ ) PDF, and µS

1(z) denotes the PDF of a mixture of two
Gaussian distributions qSN (1, σ )+ (1− qS)N (0, σ ).

Proof: Please see Appendix A.
According to Theorem 1, we can note that Algorithm 1

satisfies the (ϵ, δ)-DP by selecting a proper SD σ . Specif-
ically, we obtain the noise SD based on Eq. (12) via the
searching method, in which this noise SD needs to make the
accumulation of privacy budget no more than the required one.
In RDP-PFL, we adopt the clipping-and-noising technique for
inner and outer updates, in which each update will consume
part of the privacy budget. Given sampling rates qQ and qS,
Theorem 1 presents the privacy budgets allocated to inner and
outer updates in RDP-PFL, i.e., log I Q and log I S, respectively.

IV. CONVERGENCE ANALYSIS

In this section, we present our theoretical results on
the convergence performance of RDP-PFL with convex and
non-convex loss function assumptions. Before that, we first
mention four customary assumptions required for both convex
and non-convex loss function assumptions.

Assumption 1: For any i and w ∈ Rd , the gradient of Fi (w)
is bounded by a non-negative constant B, i.e., ∥∇Fi (w)∥ ≤ B.

Assumption 2: The loss function Fi (w), and its gradient
and Hessian are Lipschitz continuous, i.e., for any w, w′ ∈ Rd ,

existing constants λ, L and ρ,

∥Fi (w)− Fi (w
′)∥ ≤ λ∥w − w′∥, (15)

∥∇Fi (w)−∇Fi (w
′)∥ ≤ L∥w − w′∥, (16)

∥∇
2 Fi (w)−∇2 Fi (w

′)∥ ≤ ρ∥w − w′∥. (17)
Assumption 3: The gradient and Hessian of the loss func-

tion Fi (w) satisfy the following conditions:

∥∇Fi (w)−∇F(w)∥ ≤ εi and ε =
∑
i∈U

piεi , (18)

∥∇
2 Fi (w)−∇2 F(w)∥ ≤ γi , and γ =

∑
i∈U

piγi , (19)

for any w ∈ Rd , where F(w) ≜
∑

i∈U pi Fi (w), εi and γi are
constants.

Assumption 4: For any client i , a data sample x and w ∈
Rd , the gradient ∇Fi (w) and Hessian ∇2 Fi (w) have bounded
variances, i.e.,

E
{
∥∇Fi (w, x)−∇Fi (w)∥2

}
≤ σ 2

G , (20)

E
{
∥∇

2 Fi (w, x)−∇2 Fi (w)∥2
}
≤ σ 2

H , (21)

where σ 2
G and σ 2

H are two variances.
Assumption 1 ensures that the gradient can be bounded by

B, where gradient clipping is a popular ingredient of ML.
Assumption 2 implies that the local loss function Fi (w) as
well as its gradient and Hessian are Lipschitz continuous
with constants λ, L and ρ, respectively. The conditions in
Assumption 3 and Assumption 4 on the bias and variance of
stochastic gradients and Hessian are also customary. We can
see that Assumptions 1-4 are widely adopted in the theoretical
analysis for convergence bounds [16], [17].

To characterize the convergence behavior of RDP-PFL,
we first examine the structural properties of the meta-learning
objective function Gi (w), which is defined as Gi (w) ≜
Fi (w− η∇Fi (w)). Based on Assumptions 1-3, we can obtain
following lemmas about the meta-learning objective function.

Lemma 1: The gradient of the meta-learning objective
function Gi (w) is Lipschitz continuous. Moreover, considering
the objective function Gi (w) and Gi (w

′), for any w, w′ ∈ Rd ,
we have

∥∇Gi (w)−∇Gi (w
′)∥ ≤ L ′∥w − w′∥, (22)

where L ′ = L(1+ ηL)2
+ ηρB.

Proof: Please see Appendix B.
Lemma 1 indicates that the meta-learning objective function

Gi (w) is obtained by the one-step gradient descent based on
Fi (w). If we set the leaning rate as η = 0, we have L ′ = L .

Lemma 2: Considering the local objective function Gi (w)

and global objective function G(w) ≜
∑

i∈U pi Gi (w), for any
w ∈ Rd , we have

∥∇Gi (w)−∇G(w)∥ ≤ εi (1+ ηL)+ ηBγi . (23)
Proof: Please see Appendix C.

Lemma 2 bounds the bias of the gradient for the
meta-learning objective function Gi (w) based on Assumptions
1-3.

A. Challenges in Analyzing RDP-PFL
We first briefly highlight the challenges in analyzing the

convergence of RDP-PFL based on the intermediate lemmas
above.
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1) Biased Estimator: We can note that ∇Fi (w
t,τ
i −

η∇Fi (w
t,τ
i ,DQ

i ),DS
i ) is not an unbiased estimator of the

gradient ∇Gi (w
t,τ
i ). In other word, the descent direction

utilized in the local training for updating models is a biased
estimator. To analyze this bias, we have the following Lemma.

Lemma 3: Suppose that the conditions in Assumptions 1-3
are satisfied. By defining

G̃i
(
w

t,τ
i
)

≜ Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DQ

i

)
,DS

i

)
, (24)

and ∇̃Gi
(
w

t,τ
i
)

is the gradient of G̃i
(
w

t,τ
i
)
, we have

E{∥∇̃Gi
(
w

t,τ
i
)
−∇Gi

(
w

t,τ
i
)
∥}

≤
η(1+ ηL)LσG√

|DS
i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

.

(25)
Proof: Please see Appendix D.

2) Gradient Clipping: We can notice that the gradient
clipping will affect the convergence performance of RDP-PFL.
When the clipping threshold C is smaller than the gradient
norm, the values of the gradient will be scaled down. The
following lemma gives an upper bound to measure the distance
between the unclipped gradient and clipped one.

Lemma 4: Considering the unprocessed gradient
∇̃Gi (w

t,τ
i ) and the clipped gradient ∇Gi (w

t,τ
i ), we have∥∥∇Gi (w

t,τ
i )− ∇̃Gi (w

t,τ
i )
∥∥

≜ 4(C, S, σ ) ≤ (1+ ηL)

·

(
2ηL B + ηL2+

√
C

min
{√

C
B , 1

} −√C min
{ √

C
1+ ηL

, 1
})

,

(26)

where

2 =

 2σC

√
2
π

S − 1
S − 2

·
S − 3
S − 4

· · ·
4
3
· 2, if S is odd,

2σC
√

2π
S − 1
S − 2

·
S − 3
S − 4

· · ·
3
2
, if S is even,

(27)

and S is the number of model parameters.
Proof: See Appendix E.

3) Multi-Step Local Update: We can note that multiple
local updates before aggregation have a performance loss com-
pared with the centralized meta-learning [16], [25]. Following
the same method in [25], we denote ŵt−1,τ by the model
parameter obtained by the global aggregation result at each
local epoch. We denote vt and v

t,τ
i by the global and local

models in RDP-PFL without data sampling and DP mechanism
in the training process, respectively. Both ŵt−1,0 and vt−1

are synchronized with wt−1 at the beginning of the (t − 1)-
th communication round, i.e., ŵt−1,0

= vt−1
= wt−1. The

lemma below gives an upper bound on the difference between
vt and ŵ

t−1,τ0 .
Lemma 5: The distance between vt and ŵ

t−1,τ0 can be
bounded as follows:

E{∥vt
− ŵ

t−1,τ0∥}

≜ h(τ0)

≤ β(ε(1+ ηL)+ ηBγ )

(
(1+ βL ′)τ0 − 1

βL ′
− τ0

)
. (28)

Proof: See Appendix F.

B. Convex Setting

Now we proceed to establish a convergence bound for
RDP-PFL with the strongly convex loss function assumption.
We first formally state the strongly convex assumption.

Assumption 5: Fi (w) is l-strongly convex, for any w, w′ ∈
Rd , which implies that

⟨∇Fi (w)−∇Fi (w
′), w − w′⟩ ≥ l∥w − w′∥2. (29)

We can note that Assumption 5 is satisfied for many ML
models [18], e.g., squared support-vector machine (SVM) and
linear regression models.

Based on this strong convexity assumption, we can have the
following lemma.

Lemma 6: Gi (w) is l ′-strongly convex, for any w, w′ ∈ Rd ,
which implies that

⟨∇Gi (w)−∇Gi (w
′), w − w′⟩ ≥ l ′∥w − w′∥2, (30)

where l ′ = (1 − ηL)(l − ηL2) − ηρB. Proof: See
Appendix G.

With the above preparation, we characterize the convergence
of RDP-PFL in the following theorem.

Theorem 2: By supposing that Assumptions 1-5 are satis-
fied, we have the following convergence bound for RDP-PFL:

G(wT )− G(w⋆) ≤ ζ T τ0(G(w0)− G(w⋆))

+
1− ζ T τ0

1− ζ τ0
λ

(
(1+ ηL) h(τ0)︸ ︷︷ ︸

(a) (caused by multi-step local update)

+ βτ0(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )︸ ︷︷ ︸

(b) (caused by DP clipping and DP noise)

+
η(1+ ηL)LσG√

|DS
i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |︸ ︷︷ ︸

(c) (caused by the number of training data)

)

·

τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

, (31)

where w⋆ is the optimal model and ζ = 1− 2l ′β + L ′l ′β2.
Proof: Please see Appendix H.

In Theorem 2, we can select a proper learning rate β to
make the parameter ζ smaller than 1. We can observe that
the convergence performance of RDP-PFL will be affected
by the number of model parameters S, the number of training
epochs T , and the training data size |DS

i |. As can be seen from
terms (a)-(c) in (31), both the local data heterogeneity, i.e., ε
and γ in h(τ0), and noise SD σ , deteriorate the convergence
performance. When the DP mechanism is removed in the
training process, i.e., σ = 0 and C →+∞, it can decrease the
convergence bound, i.e., improve the training performance.

Remark 1: Theorem 2 suggests that there is an optimal
value of the number of communication rounds T in terms
of convergence performance with a given privacy level ϵ.
Specifically, if the number of communication rounds T is
larger, the term ζ T τ0(G(w0) − G(w⋆)) in Eq. (31) will be
smaller but the terms (a) and (c) in Eq. (31) will be larger
due to a larger noise SD caused by DP. By setting τ = 1,
C → +∞ and σ = 0, Theorem 2 recovers the convergence
rate of the conventional meta-learning.
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Remark 2: We can also note that a large training data size
can enhance the convergence performance, because if |DS

i | is
larger, the convergence bound in Eq. (31) will be smaller.

Remark 3: In the conventional meta training, if the number
of neurons is larger, the convergence performance will be
better over the enough communication rounds. In RDP-PFL,
a larger number of model parameters S will result in a larger
gradient compression because of the clipping process, which
can be seen in Lemma 4. Therefore, there exists an optimal
number of model parameters for a given clipping threshold C.

C. Non-Convex Setting

We now present a convergence bound for RDP-PFL with
the non-convex loss function assumption.

Theorem 3: If Assumptions 1-4 are satisfied, then we have
the following convergence bound for RDP-PFL:

1
T

T−1∑
t=0

τ0−1∑
τ=0

∥∥∇G(ŵ
t,τ

)
∥∥2
≤

G(w0)− G(w⋆)

Tβ
(

1− βL ′
2

)
+

λ

β
(

1− βL ′
2

)((1+ ηL) h(τ0)︸ ︷︷ ︸
(a) (caused by multi-step local update)

+ βτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )︸ ︷︷ ︸

(b) (caused by DP clipping and DP noise)

+
η(1+ ηL)LσG√

|DS
i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |︸ ︷︷ ︸

(c) (caused by the number of training data)

)

·

τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

. (32)

Proof: Please see Appendix I.
Theorem 3 suggests that there is an optimal number of com-

munication rounds. We can notice that the term G(w0)−G(w⋆)

Tβ(1− βL′
2 )

is a decreasing function of T . However, a larger T will lead
to a higher SD of the Gaussian noise as shown in Theorem
1, which will damage the training performance according to
terms (a) and (c) in Eq. (32). We can also see that, at least
in terms of the bounds, the convergence speed of the convex
setting, O(ζ T τ0), where ζ = 1 − 2l ′β + L ′l ′β2 < 1, is much
faster than that in the non-convex setting, O( 1

T ).

V. EXPERIMENTS

A. Experimental Setup

We examine experimental results for RDP-PFL, on three
neural network models, i.e., multi-layer perceptron (MLP),
convolutional neural network (CNN) and ResNet-18, and two
datasets, i.e., MNIST and CIFAR-10, which are described as
follows:
• Datasets. MNIST is a dataset of digits consisting of

60, 000 training examples and 10, 000 testing exam-
ples formatted as 28 × 28 size gray scale images [26].
The CIFAR-10 dataset consists of 60, 000 color images
in 10 object classes with 6, 000 images included per
class [27]. The complete dataset of CIFAR-10 is
pre-divided into 50, 000 training images and 10, 000 test

images. We use the cross-entropy loss for both MNIST
and CIFAR-10.

• Models. The MLP model is a simple feed-forward deep
neural network with ReLU units and additional softmax
layer of 10 classes (corresponding to 10 categories). The
CNN model consists of three 3 × 3 convolution layers
(the first with 64 filters, the second with 128 filters, the
third with 256 filters, each followed with the 2× 2 max
pooling layer and ReLu activation function), two fully
connected layers (the first with 128 units, the second
with 256 units, each followed with the ReLu activation
function), and a final softmax output layer. ResNet-
18 consists of 17 convolutional layers with the filter size
of 3×3, a fully connected layer, and an additional softmax
layer [28]. The ResNet-18 model involves 33.16 million
parameters, in which the ReLU activation function and
batch normalization (BN) are attached to the entire con-
volutional layers.

We consider that there are 50 clients, in which 60% clients
are selected as source clients and the rest of clients are
applied for evaluating the fast adaptation performance. In order
to illustrate the personalized learning process, we adopt the
non-IID data setting as done in [29]. We assign three classes
for each client and ensure that the class sets of all clients are
different from each other. Specifically, we generate 50 class
sets, in which each class set contains three different classes
and all class sets are different from each other. We randomly
select a specific class set for each client without replacement,
and then assign each client 600 data samples, i.e., 200 data
samples for each class based on its class set. In addition,
for each client, we divide the local training dataset into
two datasets, i.e., query and support datasets, in which 50%
training data is selected as the query dataset, and the rest of
the training data is selected as the support dataset, as described
in [15]. For convenience, we set qQ

= qS in the experiments.
For tuning hyper-parameters, we use the grid search method
to find the optimal learning rates η and β to conduct our
experiments [30]. In particular, we divide the set of clients into
a test set (target clients), validation set and training set (source
clients) randomly with the ratios 0.2, 0.1, and 0.7, respectively.
In addition, we tune the hyper-parameters with the validation
set, because the performance of the model generated by the
training set is usually evaluated on the validation set. When
training with RDP-PFL, we set the learning rates η and β to
0.01 for MNIST, and 0.05 for CIFAR-10, respectively.

B. Evaluation of Privacy Levels

In Fig. 2(a), we choose various privacy levels ϵ =
2, 4, 6 with MLP on the MNIST dataset to show the test
accuracy of RDP-PFL. In this experiment, we set T = 200 and
δ = 0.001 to how the test accuracy changes as the communi-
cation round t increases. As shown in Fig. 2(a), values of the
test accuracy in RDP-PFL are increasing when we relax the
privacy guarantee (increasing ϵ). We also use CNN model on
the CIFAR-10 dataset to show how the test accuracy changes
as the privacy level varies in Fig. 2(b). In this figure, we choose
the values of ϵ as 2, 6 and 10 and can observe the same
property as Fig. 2(a). In Fig. 3, we show how the test accuracy
of fast adaption changes as the DP parameter δ varies. It can
be noted that values of the test accuracy for RDP-PFL are
increasing when we choose large values of δ.
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Fig. 2. The test accuracy with different values of ϵ with δ = 0.001 for the
whole training process.

Fig. 3. The test accuracy with different values of δ with ϵ = 2 for the whole
training process.

Fig. 4. The training accuracy and test accuracy of RDP-PFL under different
values of clipping threshold C and different values of privacy levels ϵ with
δ = 0.001.

Fig. 5. The test accuracy with different numbers of data samples for the
whole training process under ϵ = 2 and δ = 0.001.

We also conduct the proposed RDP-PFL algorithm with
ResNet-18 on the CIFAR-10 dataset under different values of
the clipping threshold C and different values of the privacy
budget ϵ with δ = 0.001. As shown in Fig. 4, both the
training accuracy and test accuracy increase as the privacy
level ϵ grows. Although the training accuracy is low due
to DP, the test accuracy reaches a relatively high level. The
reason/intuition is that RDP-PFL aims to learn an initialized
model across a set of source clients by a meta-learning
approach instead of a model with high training accuracy.
Based on the initialized model, the target clients can achieve
satisfactory personalized models with fast adaption.

Fig. 6. The test accuracy with different numbers of neurons for the whole
training process under ϵ = 2 and δ = 0.001.

Fig. 7. The test accuracy with different values of clipping thresholds with
ϵ = 2 and δ = 0.001.

C. Evaluation of the Number of Data Samples
Figs. 5(a) and (b) show how the test accuracy of fast

adaption changes as the number of data samples increases.
We conduct the experiments with MLP on MNIST dataset and
the CNN model on the CIFAR-10 dataset in Figs. 5(a) and (b),
respectively. From Fig. 5(a), we observe that, as the number of
data samples increases, the values of the test accuracy increase.
This is due to the fact that, as the number of data samples
increases, each client in RDP-PFL can use more numbers
of data samples for training the meta model. In this way,
the aggregated model can finish the fast adaption efficiently.
Fig. 5(b) also demonstrates that, when the number of data
samples increases, the test accuracy increases quickly.

D. Evaluation of Model Sizes
In Figs. 6(a) and (b), we show how the test accuracy of fast

adaption changes as the number of neurons varies. We select
various numbers of neurons for the last fully connected layer
for MLP and CNN models in this experiment. The fact that
the test accuracy remains unchanged demonstrates that the FL
algorithm converges. From Figs. 6(a) and (b), we can see that,
as the number of neurons increases, the test accuracy of fast
adaption of RDP-PFL will increase, and then decrease. This
is due to the fact that the the number of neurons is sensitive
with the clipping value. If the model size is too large, the
convergence performance will be poor.

E. Evaluation of Clipping Thresholds
In Tab. II, we show how the training loss and test loss

change as the value of the clipping threshold varies. From
Tab. II, we can see that, as the values of the clipping threshold
increase, the training loss and test loss of RDP-PFL will first
decrease and then increase. We also plot the test accuracy of
RDP-PFL with different values of the clipping threshold in
Fig. 7. From this figure, we can observe the same property as
Tab. II. We can notice that limiting the gradient norm has two
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TABLE II
THE TRAINING LOSS AND TEST LOSS WITH DIFFERENT VALUES OF THE

CLIPPING THRESHOLD WITH ϵ = 2 AND δ = 0.001

opposing effects. On the one hand, if the clipping threshold
C is too small, clipping will destroy the intended gradient
direction of parameters. On the other hand, increasing the
clipping threshold C forces us to add more privacy-enhancing
noise to the parameters.

VI. RELATED WORKS

A. Federated Meta-Learning
The goal of meta-learning is to find an initialized model that

current or new clients can easily obtain satisfactory models
by performing one-step or a few steps of gradient descent
with their own data [14], [15], [16]. The work in [15] first
proposed a federated meta-learning framework (FML) with
model-agnostic meta-learning (MAML) to train an initialized
model capable of rapidly adapting to new learning tasks,
instead of a global model in conventional FL. Moreover,
extensive experiments on LEAF datasets and a real-world pro-
duction dataset demonstrated that FML achieves a reduction in
required communication cost by 2.82−4.33 times with a faster
convergence rate, and an increase in accuracy by 3.23% −
14.84% compared with conventional FL [15]. This work [17]
evaluated the performance of FML with a convergence bound,
in terms of the gradient norm and data distribution distances
of clients, for the non-convex loss function assumption. The
work in [18] investigated bounds of the training and adaptation
performances at the target client in FML in terms of client
similarity.

B. Machine Learning With Differential Privacy
Privacy-enhanced ML has attracted intensive attention in

recent years [30], [31], [32], [33], as the emergence of ML
based open data applications may lead to the leakage of
private information. The concept of deep learning with DP
was first proposed in [34], which provides an evaluation
criterion for privacy guarantees. The work in [35] improved
DP-SGD algorithms by dynamically determining the privacy
budget and step size for each iteration based on the quality of
the gradient of the current training iteration. Further, privacy
issues are more critical in distributed ML systems due to
the published gradients or model parameters trained locally.
The work in [36] provided an approach for analyzing the
quality of distributed ML models based on the theoretical
analysis of DP-SGD algorithms, which reveals that the quality
is related to the privacy level and the size of the datasets. The
count sketch algorithm, compressing the local updates using
hash functions with bounded errors, was involved to design a
communication-efficient and privacy-enhanced FL framework
in [37]. The work in [38] developed a privacy-preserving
PFL framework for user recommendation models with a

hierarchical structure that contains both the public component
and private component. Via addressing these components
carefully, this privacy-preserving PFL framework in [38] can
safeguard the data privacy, where each client uploads the
public component directly, while delivering extracted features
of the private component.

VII. CONCLUSION

As there is a risk that personal information can be leaked
to potential malicious clients in PFL, we have enhanced the
privacy protection of data by proposing a novel RDP-PFL
framework with meta-training to train an initial shared model
under a DP guarantee. Further, we have investigated two
convergence bounds for RDP-PFL in terms of the number
of communication rounds, model size, and training data size
under convex and non-convex loss function assumptions.
Finally, we have conducted extensive experiments with three
neural networks and two real-world datasets, whose results
demonstrate the correctness of our theoretical results. In the
proposed RDP-PFL framework, we can see that with an
increasing number of communication rounds, the commu-
nication cost and privacy budget will increase. Thus, high
communication costs and stringent privacy will degrade the
training performance. An interesting direction for future work
is to apply model compression techniques, such as model
pruning or quantization, to enhance the privacy protection and
communication efficiency of RDP-PFL.

APPENDIX A
PROOF OF THEOREM 1

Based on the defintion of Rényi DP, we can calculate the
Rényi divergence with a positive value α as follows:

Dα[M(D)|M(D′)] =
1

α − 1
log E

[(
M(D)

M(D′)

)α]
. (33)

Based on Theorem 20 in [39], we have

ϵ = ϵ′ +
log( 1

δ
)+ (α − 1) log(1− 1

α
)− log(α)

α − 1
, (34)

where ϵ′ is the Rényi divergence.
For the inner update, we first use a sampling rate qQ to

perform the SGD scheme based on the query dataset and
bound the L2 norm of the gradient vector using the clipping
technique with threshold C in Eq. (6). Then we add the
Gaussian noise to the clipped gradient vector with SD σ
to satisfy DP in Eq. (7). Thus, we can calculate the Rényi
divergence for the inner update as follows:

Dα[µ
Q(z)|µQ

0 (z)] (35)

=
1

α − 1
log Ez∼µ

Q
0 (z)

[(
(1− qQ)µ

Q
0 (z)+ qQµ

Q
1 (z)

µ
Q
0 (z)

)α]
(36)

=
1

α − 1
log

∫
∞

−∞

µ
Q
0 (z)

(
(1− qQ)+

q Qµ
Q
1 (z)

µ
Q
0 (z)

)α

. (37)

For the outer update, we use a sampling rate qS to perform
the SGD scheme based on the support dataset and bound the
L2 norm of the gradient vector using the clipping technique
with threshold C in Eq. (8). Then we add Gaussian noise
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to the clipped gradient vector with SD σ to satisfy DP in
Eq. (8). Because the term (I − η∇2 F(w

t,τ
i ,DQ

i ))∇F(w
t,τ
i −

η∇F(w
t,τ
i ,DQ

i ),DS
i ) has been bounded by the clipping tech-

nique, we can calculate the Rényi divergence for the outer
update as follows:

Dα[µ
S(z)|µS

0(z)] (38)

=
1

α − 1
log Ez∼µS

0(z)

[(
(1− qS)µS

0(z)+ qSµS
1(z)

µS
0(z)

)α]
(39)

=
1

α − 1
log

∫
∞

−∞

µS
0(z)

(
(1− qS)+

qSµS
1(z)

µS
0(z)

)α

. (40)

Via the composition theorem [39], the total Rényi divergence
for the training process can be expressed as

ϵ′ = T τ0

(
Dα[µ

Q(z)|µQ
0 (z)] + Dα[µ

Q(z)|µQ
0 (z)]

)
(41)

=
T τ0

α − 1

[
log

∫
∞

−∞

µS
0(z)

(
(1− qS)+

qSµS
1(z)

µS
0 (z)

)α

(42)

+ log
∫
∞

−∞

µ
Q
0 (z)

(
(1− qQ)+

qQµ
Q
1 (z)

µ
Q
0 (z)

)α ]
(43)

=
T τ0

α − 1
log

[ ∫
∞

−∞

µS
0(z)

(
(1− q S)+

qSµS
1(z)

µS
0(z)

)α

(44)

·

∫
∞

−∞

µ
Q
0 (z)

(
(1− qQ)+

qQµ
Q
1 (z)

µ
Q
0 (z)

)α ]
(45)

=
T τ0

α − 1
log(I Q I S), (46)

where

I S
=

∫
∞

−∞

µS
0(z)

(
(1− qS)+

qSµS
1(z)

µS
0(z)

)α

, (47)

I Q
=

∫
∞

−∞

µ
Q
0 (z)

(
(1− qQ)+

qQµ
Q
1 (z)

µ
Q
0 (z)

)α

. (48)

Actually, we compute the integrals I S and I Q via the method
proposed in Section 3.3 in [40], which has already been
adopted in Opacus [41]. In addition, we also use this cal-
culation method based on Opacus in the experiments. This
completes the proof. □

APPENDIX B
PROOF OF LEMMA 1

Via the definition of Gi (w), we have

∥∇Gi (w)−∇Gi (w
′)∥ (49)

= ∥∇Fi (w − η∇Fi (w))−∇Fi (w
′
− η∇Fi (w

′))∥ (50)

= ∥(I − η∇2 Fi (w))∇Fi (w − η∇Fi (w)) (51)

− (I − η∇2 Fi (w
′))∇Fi (w

′
− η∇Fi (w

′))∥ (52)
= ∥∇Fi (w − η∇Fi (w)) (53)

− η∇2 Fi (w)∇Fi (w − η∇Fi (w)) (54)
−∇Fi (w

′
− η∇Fi (w

′)) (55)

+ η∇2 Fi (w
′)∇Fi (w

′
− η∇Fi (w

′))∥ (56)

= ∥[∇Fi (w − η∇Fi (w))−∇Fi (w
′
− η∇Fi (w

′))] (57)

· [I − η∇2 Fi (w
′)]η∇2 Fi (w

′)∇Fi (w − η∇Fi (w)) (58)

+
(((((((((((((((

−η∇2 Fi (w
′)∇Fi (w

′
− η∇Fi (w

′)) (59)

− η∇2 Fi (w)∇Fi (w − η∇Fi (w)) (60)

(((((((((((((((

+η∇2 Fi (w
′)∇Fi (w

′
− η∇Fi (w

′))∥ (61)
= ∥[∇Fi (w − η∇Fi (w))−∇Fi (w

′
− η∇Fi (w

′))] (62)

· [I − η∇2 Fi (w
′)] − η∇Fi (w − η∇Fi (w)) (63)

· [∇
2 Fi (w)−∇2 Fi (w

′)]∥. (64)

Using the Lipschitz continuous of Fi (w), we can obtain

∥∇Gi (w)−∇Gi (w
′)∥ (65)

≤ ∥∇Fi (w − η∇Fi (w))−∇Fi (w
′
− η∇Fi (w

′))∥ (66)

∥I − η∇2 Fi (w
′)∥ + η∥∇2 Fi (w)−∇2 Fi (w

′)∥ (67)
∥∇Fi (w − η∇Fi (w))∥ (68)
≤ L(1+ ηL)∥w − η∇Fi (w)− w′ + η∇Fi (w

′)∥ (69)
+ ηρB∥w − w′∥ (70)

≤ L(1+ ηL)2
∥w − w′∥ + ηρB∥w − w′∥ (71)

≤ L ′∥w − w′∥, (72)

where L ′ = L(1+ ηL)2
+ ηρB. This completes the proof. □

APPENDIX C
PROOF OF LEMMA 2

Via the definitions of Gi (w) and G(w), we can have

∥∇Gi (w)−∇G(w)∥ (73)
= ∥∇Fi (w − η∇Fi (w))−∇F(w − η∇F(w))∥ (74)

= ∥(I − η∇2 Fi (w))∇Fi (w − η∇Fi (w)) (75)

− (I − η∇2 F(w))∇F(w − η∇F(w))∥ (76)
= ∥∇Fi (w − η∇Fi (w)) (77)

− η∇2 Fi (w)∇Fi (w − η∇Fi (w)) (78)
−∇F(w − η∇F(w)) (79)

+ η∇2 F(w)∇F(w − η∇F(w))∥ (80)
= ∥[∇Fi (w − η∇Fi (w))−∇F(w − η∇F(w))] (81)

· [I − η∇2 F(w)] + η∇2 F(w)∇Fi (w − η∇Fi (w)) (82)

(((((((((((((

−η∇2 F(w)∇F(w − η∇F(w)) (83)

− η∇2 Fi (w)∇Fi (w − η∇Fi (w)) (84)

(((((((((((((

+η∇2 F(w)∇F(w − η∇F(w))∥ (85)
= ∥[∇Fi (w − η∇Fi (w))−∇F(w − η∇F(w))] (86)

· [I − η∇2 F(w)] (87)

− η∇Fi (w − η∇Fi (w))[∇2 Fi (w)−∇2 F(w)]∥ (88)

≤ εi∥I − η∇2 F(w)∥ (89)

+ η∥∇2 Fi (w)−∇2 F(w)∥∥∇Fi (w − η∇Fi (w))∥ (90)
≤ εi (1+ ηL)+ ηBγi . (91)

This completes the proof. □
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APPENDIX D
PROOF OF LEMMA 3

First, we define Gi (w) ≜ Fi (w − η∇Fi (w)) and

G̃i (w
t,τ
i ) ≜ Fi (w

t,τ
i − η∇Fi (w

t,τ
i ,DQ

i ),DS
i ), (92)

Further, we define ∇̃Gi (w
t,τ
i ) as the gradient of G̃i (w

t,τ
i ).

According to the update rule, we can see the SGD gradient at
t-th round can be given by

∇̃Gi (w
t,τ
i ) =

(
I − η∇2 Fi (w

t,τ
i ,DQ

i )
)

(93)

∇Fi

(
w

t,τ
i − η∇Fi (w

t,τ
i ,DS

i ),DS
i

)
. (94)

However, the exact gradient of ∇Gi at w
t,τ
i is given by

∇Gi
(
w

t,τ
i
)
=

(
I − η∇2 Fi (w

t,τ
i )
)

(95)

∇Fi
(
w

t,τ
i − η∇Fi (w

t,τ
i )
)
. (96)

We can note that, given ∇Gi and w
t,τ
i , the update we used is

a biased estimation of ∇Gi (w
t,τ
i ). Hence, we have

∇̃Gi (w
t,τ
i ) =

(
I − η∇2 Fi (w

t,τ
i )+ eH

i

)
(97)(

∇Fi
(
w

t,τ
i − η∇Fi (w

t,τ
i )
)
+ eG

i

)
, (98)

where

eH
i = η∇2 Fi (w

t,τ
i )− η∇2 Fi (w

t,τ
i ,DS

i ), (99)

and

eG
i = ∇Fi

(
w

t,τ
i − η∇Fi (w

t,τ
i ,DS

i ),DS
i

)
(100)

−∇Fi
(
w

t,τ
i − η∇Fi (w

t,τ
i )
)
. (101)

Further, substituting (95) into (97), we can obtain

∇̃Gi (w
t,τ
i )

= ∇Gi (w
t,τ
i )+ eG

i

(
I − η∇2 Fi (w

t,τ
i )
)

(102)

+ eH
i
(
∇Fi

(
w

t,τ
i − η∇Fi (w

t,τ
i )
))
+ eG

i eH
i . (103)

We can calculate the expectation of ∥eH
i ∥

2 by

E
{
∥eH

i ∥
2
}

(104)

= ηE
{∥∥∥∇2 Fi (w

t,τ
i )−∇2 Fi (w

t,τ
i ,DS

i )

∥∥∥2
}

(105)

= ηE
{∥∥∥∥ 1
|DS

i |

∑
x∈DS

i

(
∇

2 Fi (w
t,τ
i ) (106)

−∇
2 Fi (w

t,τ
i , x)

)∥∥∥∥2}
(107)

=
η

|DS
i |

2
E
{ ∑

x∈DS
i

∥∥∇2 Fi (w
t,τ
i ) (108)

−∇
2 Fi (w

t,τ
i , x)

∥∥2
}
. (109)

Combining Eq. (21), we have

E
{
∥eH

i ∥
2
}
≤

η2σ 2
H

|DS
i |

. (110)

Further, we can bound E{∥eH
i ∥} using Jensen’s inequality as

E
{
∥eH

i ∥
}
≤

√
E
{
∥eH

i ∥
2
}
≤

ησH√
|DS

i |

. (111)

Similarly, we can also bound the expectations of ∥eG
i ∥

2 and
∥eG

i ∥ as

E
{
∥eG

i ∥
2
}
≤

η2L2σ 2
G

|DS
i |

, E
{
∥eG

i ∥
}
≤

ηLσG√
|DS

i |

. (112)

Based on Eq. (102), we can have

E{∥∇̃Gi (w
t,τ
i )−∇Gi (w

t,τ
i )∥} (113)

≤ E{∥eG
i

(
I − η∇2 Fi (w

t,τ
i )
)

(114)

+ eH
i
(
∇Fi

(
w

t,τ
i − η∇Fi (w

t,τ
i )
))
+ eG

i eH
i ∥} (115)

≤ E
{
∥eG

i ∥

∥∥∥I − η∇2 Fi (w
t,τ
i )

∥∥∥+ ∥eG
i ∥∥e

H
i ∥ (116)

+ ∥eH
i ∥

∥∥∇Fi
(
w

t,τ
i − η∇Fi (w

t,τ
i )
)∥∥}. (117)

Substituting Eqs. (111) and (112) into (113), using Assump-
tions 1-2, we can obtain

E{∥∇̃Gi (w
t,τ
i )−∇Gi (w

t,τ
i )∥} (118)

≤
η(1+ ηL)LσG√

|DS
i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

. (119)

This completes the proof. □

APPENDIX E
PROOF OF LEMMA 4

According to RDP-PFL, the definitions of ∇̃Gi (w
t,τ
i ) and

∇Gi (w
t,τ
i ) can be expressed as

∇̃Gi (w
t,τ
i ) ≜ (I − η∇2 Fi (w

t,τ
i ,DQ

i )) (120)

· ∇Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DS

i

)
,DS

i

)
, (121)

∇Gi (w
t,τ
i ) ≜

g1

max
{

1,
∥g1∥√

C

} g2

max
{

1,
∥g2∥√

C

} , (122)

where

g1 = I − η∇2 Fi (w
t,τ
i ,DS

i ), g2 = ∇Fi (θ̃
t,τ+1
i ,DS

i ).

(123)

Based on the definitions of ∇̃Gi (w) and ∇Gi (w), we can
obtain

E{∥∇Gi (w
t,τ
i )− ∇̃Gi (w

t,τ
i )∥} (124)

= E
{∥∥∥∥ g1

max
{

1,
∥g1∥√

C

} · g2

max
{

1,
∥g2∥√

C

} (125)

− g1 · ∇Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DS

i

)
,DS

i

) ∥∥∥∥} (126)

≤ E
{
∥g1∥

∥∥C1C2 · g2 (127)

−∇Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DS

i

)
,DS

i

) ∥∥}, (128)
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where

C1 = min

{ √
C
∥g1∥

, 1

}
, C2 = min

{ √
C∥∥g2
∥∥ , 1

}
. (129)

Further, we can have

E{∥∇Gi (w
t,τ
i )− ∇̃Gi (w

t,τ
i )∥} ≤ E

{
∥g1∥

∥∥C1C2 · g2

(130)

− g2 + g2 −∇Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DS

i

)
,DS

i

) ∥∥}
(131)

≤ E
{
∥g1∥

(
(1− C1C2)∥g2∥ (132)

+
∥∥g2 −∇Fi

(
w

t,τ
i − η∇Fi

(
w

t,τ
i ,DS

i

)
,DS

i

) ∥∥). (133)

Due to Assumption 2, we can obtain

E{∥∇Gi (w
t,τ
i )− ∇̃Gi (w

t,τ
i )∥} (134)

≤ E
{
∥g1∥

(
(1/C2 − C1)C2∥g2∥ (135)

+ L
∥∥θ̃ t,τ

i − w
t,τ
i + η∇Fi

(
w

t,τ
i ,DS

i

) ∥∥). (136)

Because C2∥g2∥ ≤
√

C and Eq. (7), we have

E{∥∇Gi (w
t,τ
i )− ∇̃Gi (w

t,τ
i )∥} ≤ E

{
∥g1∥ ·

(
ηL (137)∥∥∥∥ ∇Fi (w

t,τ
i ,DS

i )

max
{
1,
∥∇Fi (w

t,τ
i ,DS

i )∥

C

} −∇Fi (w
t,τ
i ,DS

i )

∥∥∥∥ (138)

+ ηL∥nQ
i ∥ +

√
C

C2
−
√

CC1

)}
(139)

≤ (1+ ηL)(2ηL B + ηLE{∥nQ
i ∥} +

√
C/C2 −

√
CC1)

(140)

≤ (1+ ηL)

2ηL B + ηL2+

√
C

min
{√

C
B , 1

} (141)

−
√

C min

{ √
C

1+ ηL
, 1

})
, (142)

where 2 is an upper bound on of E{∥nQ
i ∥} and can be derived

as follows. We can note that the elements in nQ
i and nS

i
are drawn from the same Gaussian distribution N (0, C2σ 2).
We assume that a noise vector n is generated using the same
method as nQ

i and nS
i , and then derive an upper bound on

E{∥n∥} as follows:

E{∥n∥}

=

(
1

√
2πσ

)S ∫ +∞
−∞

dn1 (143)

· · ·

∫
+∞

−∞

√
n2

1 + · · · + n2
Se−

n2
1+···+n2

S
2 dnS (144)

=

(
1

√
2πσ

)S ∫ +∞
−∞

dn1 · · ·

∫
+∞

−∞

dnS−2

∫
+∞

0

∫ π

−π

(145)

r
√

n2
1 + · · · + n2

S−2 + r2e−
n2

1+···+n2
S−2+r2

2 drdθ (146)

=

(
1

√
2πσ

)S ∫ +∞
−∞

dn1 · · ·

∫
+∞

−∞

dnS−2

∫
+∞

0
(147)

2πr
√

n2
1 + · · · + n2

S−2 + r2e−
n2

1+···+n2
S−2+r2

2 dr (148)

=

(
1

√
2πσ

)S ∫ +∞
−∞

dn1 · · ·

∫
+∞

−∞

dnS−3

∫
+∞

0

∫ π
2

−
π
2

(149)

2πr2cosθ
√

n2
1 + · · · + n2

S−3 + r2e−
n2

1+···+n2
S−3+r2

2 drdθ,

(150)

where ns represents the s-th element in n, s ∈ {1, . . . , S}, and
S is the size of n. Recursively, we have

E{∥n∥} =
(

1
√

2πσ

)S ∫ +∞
−

π
2

r Se−
r2
2 dr (151)

2π

∫ π
2

−
π
2

cosθdθ · · ·

∫ π
2

−
π
2

cosS−2θdθ. (152)

The first integral can be calculated by∫
+∞

0
r Se−

r2
2 dr = −σ 2r S−1e−

r2
2 |
−∞

0 (153)

+

∫
+∞

0
(S − 1)σ 2r S−2e−

r2
2 dr (154)

=

{
(S − 1)(S − 3) · · · 2σ S+1, if S is odd,
√

2π(S − 1)(S − 3) · · · 3σ S+1, if S is even.
(155)

Because

∫ π
2

0
cosSθdθ =


S − 1

S
·

S − 3
S − 2

· · ·
4
5
·

2
3
, if S is odd,

S − 1
S
·

S − 3
S − 2

· · ·
3
4
·

1
2
·
π

2
, if S is even,

(156)

and ∫ π
2

0
cosSθdθ

∫ π
2

0
cosS−1θdθ =

π

2S
, (157)

we can have∫ π
2

−
π
2

cosθdθ · · ·

∫ π
2

−
π
2

cosS−2θdθ (158)

= 2S−2
∫ π

2

0
cosθdθ · · ·

∫ π
2

0
cosS−2θdθ (159)

=


2S−2
·

π

2(S − 2)
·

π

2(S − 4)
· · ·

π

2 · 3
· 2, if S is odd,

2S−2
·

π

2(S − 2)
·

π

2(S − 4)
· · ·

π

2 · 2
· 2, if S is even.

(160)

Based on (153) and (158), we can obtain

E {∥n∥} ≜ 2 (161)

=

 2

√
2
π

σ
S − 1
S − 2

·
S − 3
S − 4

· · ·
4
3
· 2, if S is odd,

2
√

2πσ
S − 1
S − 2

·
S − 3
S − 4

· · ·
3
2
, if S is even.

(162)

This completes the proof. □
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APPENDIX F
PROOF OF LEMMA 5

Due to the update rule of ŵ
t−1,τ , i.e.,

ŵ
t−1,τ

= ŵ
t−1,τ−1

− β
∑
i∈U

pi∇Gi (ŵ
t−1,τ−1

) (163)

= ŵ
t−1,τ−1

− β∇G(ŵ
t−1,τ−1

), (164)

we can have∥∥∥vt
− ŵ

t−1,τ0
∥∥∥ ≤ ∥∥∥∑

i∈U
pi (v

t−1,τ0
i − ŵ

t−1,τ0)

∥∥∥ (165)

≤

∥∥∥vt−1,τ0−1
− β

∑
i∈U

pi∇Gi (v
t−1,τ0−1
i ) (166)

− ŵ
t−1,τ0−1

+ β∇G(ŵ
t−1,τ0−1

)

∥∥∥ (167)

≤

∥∥∥vt−1,τ0−1
− ŵ

t−1,τ0−1
∥∥∥ (168)

+ β
∑
i∈U

pi

∥∥∥∇Gi (w
t−1,τ0−1
i )−∇G (̂v

t−1,τ0−1
)

∥∥∥ (169)

≤

∥∥∥vt−1,τ0−1
− ŵ

t−1,τ0−1
∥∥∥ (170)

+ βL ′
∑
i∈U

pi

∥∥∥vt−1,τ0−1
i − ŵ

t−1,τ0−1
∥∥∥ , (171)

where vt and v
t,τ
i are the global and local models in RDP-PFL

without data sampling and DP mechanism in the training
process, respectively. By invoking Lemma 3 in [25], we have∥∥∥vt−1,τ0

i − ŵ
t−1,τ0

∥∥∥ (172)

=

∥∥∥vt−1,τ0−1
i − β∇Gi (w

t−1,τ0−1
i ) (173)

− ŵ
t−1,τ0−1

+ β∇G(ŵ
t−1,τ0−1

)

∥∥∥ (174)

≤

∥∥∥vt−1,τ0−1
i − ŵ

t−1,τ0−1
∥∥∥+ β∥nS

i ∥ (175)

+ β

∥∥∥∇Gi (v
t−1,τ0−1
i )−∇G(ŵ

t−1,τ0−1
)

∥∥∥ (176)

≤

∥∥∥vt−1,τ0−1
i − ŵ

t−1,τ0−1
∥∥∥ (177)

+ β

∥∥∥∇Gi (v
t−1,τ0−1
i )−∇Gi (̂v

t−1,τ0−1
)

∥∥∥ (178)

+ β

∥∥∥∇Gi (ŵ
t−1,τ0−1

)−∇G(ŵ
t−1,τ0−1

)

∥∥∥ . (179)

Due to Lemma 1 and Lemma 2, we can obtain∥∥∥vt−1,τ0
i − ŵ

t−1,τ0
∥∥∥ (180)

≤ (1+ βL ′)
∥∥∥vt−1,τ0−1

i − ŵ
t−1,τ0−1

∥∥∥ (181)

+ β

∥∥∥∇Gi (ŵ
t−1,τ0−1

)−∇G(ŵ
t−1,τ0−1

)

∥∥∥ (182)

≤ (1+ βL ′)
∥∥∥vt−1,τ0−1

i − ŵ
t−1,τ0−1

∥∥∥ (183)

+ β(εi (1+ ηL)+ ηBγi ). (184)

Recursively, we have

E
{∥∥∥vt−1,τ0

i − ŵ
t−1,τ0

∥∥∥}
≤ E

{∥∥∥vt−1,0
i − ŵ

t−1,0
∥∥∥} (185)

+ β (εi (1+ ηL)+ ηBγi )

τ0−1∑
j=0

(1+ βL ′) j . (186)

Due to v
t−1,0
i = ŵ

t−1,0 and Eq. (161), we have

E
{∥∥∥wt−1,τ0

i − ŵ
t−1,τ0

∥∥∥} (187)

≤
εi (1+ ηL)+ ηBγi +2

L ′
((1+ βL ′)τ0 − 1). (188)

Substituting (187) into (165), we have

E
{∥∥∥vt
− ŵ

t−1,τ0
∥∥∥} (189)

≤ E
{∥∥∥vt−1,τ0−1

− ŵ
t−1,τ0−1

∥∥∥} (190)

+ βL ′
(
(1+ βL ′)τ0−1

− 1
)

(191)

·

∑
i∈U

pi (εi (1+ ηL)+ ηBγi )

L ′
(192)

≤ E
{∥∥∥vt−1,τ0−1

− ŵ
t−1,τ0−1

∥∥∥} (193)

+ β(ε(1+ ηL)+ ηBγ )
(
(1+ βL ′)τ0−1

− 1
)

. (194)

Recursively, we have

E
{∥∥∥vt
− ŵ

t−1,τ0
∥∥∥} ≜ h(τ0) (195)

≤ E
{∥∥∥vt−1,0

− ŵ
t−1,0

∥∥∥} (196)

+ β(ε(1+ ηL)+ ηBγ )

τ0∑
j=1

(
(1+ βL ′) j−1

− 1
)

(197)

≤ β(ε(1+ ηL)+ ηBγ )

(
(1+ βL ′)τ0 − 1

βL ′
− τ0

)
. (198)

This completes the proof. □

APPENDIX G
PROOF OF LEMMA 6

According to the definition of Gi (w), we have

[∇Gi (w)−∇Gi (w
′)]⊤(w − w′) (199)

≥ −ηρB∥w − w′∥2 + (1− ηL)(w − w′)⊤ (200)
[∇Fi (w − η∇Fi (w))−∇Fi (w

′
− η∇Fi (w

′))] (201)

= −ηρB∥w − w′∥2 + (1− ηL)(w − w′)⊤ (202)
[∇Fi (w − η∇Fi (w))−∇Fi (w − η∇Fi (w

′)) (203)
+∇Fi (w − η∇Fi (w

′))−∇Fi (w
′
− η∇Fi (w

′))]. (204)

Because Fi (w) is l-strongly convex, we can obtain

[∇Gi (w)−∇Gi (w
′)]⊤(w − w′) (205)

≥ −ηρB∥w − w′∥2 + (1− ηL)(l − ηL2)∥w − w′∥2 (206)

≥ l ′∥w − w′∥2, (207)

where

l ′ = (1− ηL)(l − ηL2)− ηρB. (208)

This completes the proof. □
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APPENDIX H
PROOF OF THEOREM 2

First, we can derive a convergence bound on the loss
function of the centralized learning. Because G(·) is L ′-
Lipschitz smooth, we have

G(ŵ
t,τ+1

)− G(ŵ
t,τ

) (209)

≤ ∇G(ŵ
t,τ

)⊤(ŵ
t,τ+1
− ŵ

t,τ
)+

L ′

2
∥ŵ

t,τ+1
− ŵ

t,τ
∥

2 (210)

= −β∇G(ŵ
t,τ

)⊤∇G(ŵ
t,τ

)+
L ′β2

2
∥∇G(ŵ

t,τ
)∥2 (211)

≤ −β

(
1−

L ′β
2

)
∥∇G(ŵ

t,τ
)∥2. (212)

Moreover, G(w) is l ′-strongly convex, and it follows that

G(ŵ
t,τ+1

)− G(w⋆) ≤
1

2l ′
∥∇G(ŵ

t,τ+1
)∥2. (213)

Substituting (213) into (209), we obtain

G(ŵ
t,τ+1

)− G(w⋆) ≤ G(ŵ
t,τ

)− G(w⋆) (214)

− β

(
1−

L ′β
2

)
∥∇G(ŵ

t,τ
)∥2 (215)

≤

(
1+ 2l ′β − L ′l ′β2

)
(G(ŵ

t,τ
)− G(w⋆)). (216)

Recursively, we have

G(ŵ
t,τ0)− G(w⋆) (217)

≤

(
1− 2l ′β + L ′l ′β2

)τ0
(G(ŵ

t,0
)− G(w⋆)). (218)

Due to ŵ
t,0
= wt , we obtain

G(ŵ
t,τ0)− G(w⋆) (219)

≤

(
1− 2l ′β + L ′l ′β2

)τ0
(G(ŵ

t−1,τ0)− G(w⋆)) (220)

+

(
1− 2l ′β + L ′l ′β2

)τ0
(G(wt )− G(ŵ

t−1,τ0)). (221)

Then we want to bound ∥G(wt )− G(ŵ
t−1,τ0)∥ as follows:

∥G(wt )− G(ŵ
t−1,τ0)∥ (222)

≤ ∥G(wt )− G(vt )∥ + ∥G(vt )− G(ŵ
t−1,τ0)∥, (223)

where vt is the model without data sampling and DP mecha-
nism in the training process. We first bound ∥G(wt )−G(w̃

t
)∥

as

∥G(wt )− G(vt )∥

≤ λ(1+ ηL)∥wt
− vt
∥ (224)

= λ(1+ ηL)

∥∥∥∥∑
i∈U

pi (w
t−1,τ0
i − v

t−1,τ0
i )

∥∥∥∥ (225)

(a)
≤ λ(1+ ηL)

∑
i∈U

pi ∥w
t−1,τ0
i − v

t−1,τ0
i ∥︸ ︷︷ ︸

H1

, (226)

where (a) is due to Jensen’s inequation. Then we bound H1 as

H1 ≤

∥∥∥∥ τ0−1∑
τ=0

(w
t−1,τ
i − β∇Gi (w

t−1,τ
i ) (227)

− v
t−1,τ
i + β∇Gi (v

t−1,τ
i ))

∥∥∥∥ (228)

(b)
≤ β

τ0−1∑
τ=0

∥∇Gi (w
t−1,τ
i )−∇Gi (v

t−1,τ
i )∥︸ ︷︷ ︸

H2

(229)

+

τ0−1∑
τ=0

∥w
t−1,τ
i − v

t−1,τ
i ∥, (230)

where (b) is due to triangle inequality. We can bound H2 as

H2
(c)
≤ ∥∇Gi (w

t−1,τ
i )− ∇̃Gi (w

t−1,τ
i )∥ (231)

+ ∥∇̃Gi (w
t−1,τ
i )−∇Gi (w

t−1,τ
i )∥ (232)

+ ∥∇Gi (w
t−1,τ
i )−∇Gi (v

t−1,τ
i )∥ (233)

(d)
≤

η(1+ ηL)LσG√
|DS

i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

(234)

+4(C, S, σ )+ ∥∇Gi (w
t−1,τ
i )−∇Gi (v

t−1,τ
i )∥ (235)

(e)
≤

η(1+ ηL)LσG√
|DS

i |

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

(236)

+4(C, S, σ )+ L ′∥wt−1,τ
i − v

t−1,τ
i ∥, (237)

where (c) is due to triangle inequality, (d) is from Lemma 3
and Lemma 4, and (e) is due to the L ′-Lipschitz smoothness.
Substituting (231) into (227), we obtain

H1 ≤ (1+ βL ′)
τ0−1∑
τ=0

∥w
t−1,τ
i − v

t−1,τ
i ∥ (238)

+ βτ0

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(239)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

)
. (240)

Recursively, we obtain

H1 ≤ βτ0

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(241)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j .

(242)

Substituting Eq. (241) into Eq. (224), we obtain

∥G(wt )− G(vt )∥ (243)

≤ βτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(244)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j . (245)

Substituting Eqs. (243) and (195) into Eq. (224), we obtain

∥G(wt )− G(ŵ
t−1,τ0)∥ (246)
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≤ βτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(247)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j (248)

+ λ(1+ ηL)h(τ0). (249)

Substituting (246) into (217), we have

G(ŵ
T−1,τ0)− G

(
w⋆
)

(250)

≤

(
1− 2l ′β + L ′l ′β2

)τ0
(

G(ŵ
T−2,τ0)− G(w⋆)

)
(251)

+

(
1− 2l ′β + L ′l ′β2

)τ0
λ

(
(1+ ηL)h(τ0) (252)

+ βτ0(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(253)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

.

(254)

Recursively, we obtain

G(ŵ
T−1,τ0)− G

(
w⋆
)
≤ ζ T τ0(G(w0)− G(w⋆)) (255)

+

T−1∑
k=1

ζ kτ0λ

(
(1+ ηL)h(τ0) (256)

+ βτ0(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(257)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

,

(258)

where ζ = 1−2l ′β+L ′l ′β2. Further, Due to G(wT )−G(w⋆) =

G(ŵ
T−1,τ0)−G(wT )+G(wT )−G(w⋆) and Eq. (246), we have

G(wT )− G(w⋆)

≤ ζ T τ0(G(w0)− G(w⋆)) (259)

+
1− ζ T τ0

1− ζ τ0
λ

(
(1+ ηL)h(τ0) (260)

+ βτ0(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(261)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

.

(262)

This completes the proof. □

APPENDIX I
PROOF OF THEOREM 3

Based on Eq. (209), we obtain

G(ŵ
t,τ0)− G(ŵ

t,0
) (263)

≤ −β

(
1−

L ′β
2

) τ0−1∑
τ=0

∥∇G(ŵ
t,τ

)∥2. (264)

Due to ŵ
t,0
= wt and Eq. (246), we have

G(wt+1)− G(wt ) (265)

≤ −β

(
1−

L ′β
2

) τ0−1∑
τ=0

∥∇G(ŵ
t,τ

)∥2 (266)

+ βτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(267)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j (268)

+ λ(1+ ηL)h(τ0). (269)

Now summing above equation over t = 0, 1, . . . , T − 1 and
rearranging the terms yield that

β

(
1−

L ′β
2

) T−1∑
t=0

τ0−1∑
τ=0

∥∇G(ŵ
t,τ

)∥2

≤ G(w0)− G(wT ) (270)

+ Tβτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(271)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j (272)

+ T λ(1+ ηL)h(τ0). (273)

Because G(w0)−G(wT ) ≤ G(w0)−G(w⋆), we can conclude
that

1
T

T−1∑
t=0

τ0−1∑
τ=0

∥∇G(ŵ
t,τ

)∥2 ≤
G(w0)− G(w⋆)

Tβ
(

1− βL ′
2

) (274)

+
λ

β
(

1− βL ′
2

)((1+ ηL)h(τ0) (275)

+ βτ0λ(1+ ηL)
∑
i∈U

pi

(
4(C, S, σ )+

η(1+ ηL)LσG√
|DS

i |

(276)

+
ηBσH√
|DS

i |

+
η2LσGσH

|DS
i |

) τ0−1∑
j=0

(τ0 − j)(1+ βL ′) j
)

.

(277)

This completes the proof. □

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 01,2024 at 13:41:05 UTC from IEEE Xplore.  Restrictions apply. 



4502 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

REFERENCES

[1] Y. Deng, F. Bao, Q. Dai, L. F. Wu, and S. J. Altschuler, “Scalable
analysis of cell-type composition from single-cell transcriptomics using
deep recurrent learning,” Nature Methods, vol. 16, no. 4, pp. 311–314,
Apr. 2019.

[2] X. Deng et al., “Blockchain assisted federated learning over wireless
channels: Dynamic resource allocation and client scheduling,” IEEE
Trans. Wireless Commun., vol. 22, no. 5, pp. 3537–3553, May 2023.

[3] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1773–1777, Oct. 2019.

[4] D. Feng et al., “Deep multi-modal object detection and semantic segmen-
tation for autonomous driving: Datasets, methods, and challenges,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1341–1360, Mar. 2021.

[5] D. C. Nguyen et al., “Enabling AI in future wireless networks: A data
life cycle perspective,” IEEE Commun. Surveys Tuts., vol. 23, no. 1,
pp. 553–595, 1st Quart., 2021.

[6] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 317–333, Jan. 2020.

[7] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, “Reli-
able federated learning for mobile networks,” IEEE Wireless Commun.,
vol. 27, no. 2, pp. 72–80, Apr. 2020.

[8] X. Deng et al., “Low-latency federated learning with DNN partition
in distributed industrial IoT networks,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 3, pp. 755–775, Mar. 2023.

[9] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[10] K. Wei et al., “Low-latency federated learning over wireless channels
with differential privacy,” IEEE J. Sel. Areas Commun., vol. 40, no. 1,
pp. 290–307, Jan. 2022.

[11] M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen, “Local
learning matters: Rethinking data heterogeneity in federated learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
New Orleans, LA, USA, Jun. 2022, pp. 8387–8396.

[12] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parameterized
knowledge transfer for personalized federated learning,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), 2021, pp. 10092–10104.

[13] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Proc. Int.
Conf. Mach. Learn. (ICML), Jul. 2021, pp. 2089–2099.

[14] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 1126–1135.

[15] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-
learning with fast convergence and efficient communication,” 2018,
arXiv:1802.07876.

[16] K. Ji, J. Yang, and Y. Liang, “Theoretical convergence of multi-step
model-agnostic meta-learning,” J. Mach. Learn. Res., vol. 23, pp. 1–41,
Jan. 2022.

[17] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Proc. NeurIPS Conf., vol. 33, Dec. 2020, pp. 3557–3568.

[18] S. Lin, G. Yang, and J. Zhang, “A collaborative learning framework via
federated meta-learning,” in Proc. IEEE 40th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Singapore, Nov. 2020, pp. 289–299.

[19] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization
techniques for federated learning,” in Proc. 4th World Conf. Smart
Trends Syst., Secur. Sustainability, Jul. 2020, pp. 794–797.

[20] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[21] J. Li, M. Khodak, S. Caldas, and A. Talwalkar, “Differentially private
meta-learning,” in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2020.

[22] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Privacy-preserving
personalized federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[23] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated
learning with differential privacy,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9530–9539, Oct. 2020.

[24] I. Mironov, “Rényi differential privacy,” in Proc. IEEE Comput. Secur.
Found. Symp. (CSF), Santa Barbara, CA, USA, Aug. 2017, pp. 263–275.

[25] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Mar. 1998.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” M.S. thesis, Dept. Comput. Sci.,
Univ. Toronto, Toronto, ON, Canada, 2009. [Online]. Available:
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[29] W. Zhuang, Y. Wen, and S. Zhang, “Divergence-aware federated self-
supervised learning,” in Proc. Int. Conf. Learn. Represent. (ICLR),
Kigali, Rwanda, May 2022.

[30] R. Hu, Y. Gong, and Y. Guo, “Federated learning with sparsification-
amplified privacy and adaptive optimization,” in Proc. 30th Int. Joint
Conf. Artif. Intell., Aug. 2021, pp. 1463–1469.

[31] C. Ma et al., “On safeguarding privacy and security in the framework of
federated learning,” IEEE Netw., vol. 34, no. 4, pp. 242–248, Jul. 2020.

[32] Z. Luo, D. J. Wu, E. Adeli, and L. Fei-Fei, “Scalable differential privacy
with sparse network finetuning,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 5057–5066.

[33] K. Wei et al., “User-level privacy-preserving federated learning: Analysis
and performance optimization,” IEEE Trans. Mobile Comput., vol. 21,
no. 9, pp. 3388–3401, Sep. 2022.

[34] A. Martin et al., “Deep learning with differential privacy,” in Proc.
ACM Conf. Comput. Commun. Secur. (CCS), Vienna, Austria, Oct. 2016,
pp. 308–318.

[35] J. Lee and D. Kifer, “Concentrated differentially private gradient descent
with adaptive per-iteration privacy budget,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 1656–1665.

[36] N. Wu, F. Farokhi, D. Smith, and M. A. Kaafar, “The value of
collaboration in convex machine learning with differential privacy,”
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2020, pp. 304–317.

[37] T. Li, Z. Liu, V. Sekar, and V. Smith, “Privacy for free: Communication-
efficient learning with differential privacy using sketches,” 2019,
arXiv:1911.00972.

[38] J. Wu et al., “Hierarchical personalized federated learning for user
modeling,” in Proc. Web Conf., Apr. 2021, pp. 957–968.

[39] B. Balle, G. Barthe, M. Gaboardi, J. Hsu, and T. Sato, “Hypothesis
testing interpretations and Renyi differential privacy,” in Proc. Int. Conf.
Artif. Intell. Statist. (AISTATS), Aug. 2020, pp. 2496–2506.

[40] I. Mironov, K. Talwar, and L. Zhang, “Rényi differential privacy of the
sampled Gaussian mechanism,” 2019, arXiv:1908.10530.

[41] A. Yousefpour et al., “Opacus: User-friendly differential privacy library
in PyTorch,” in Proc. NeurIPS Workshop Privacy Mach. Learn.,
Dec. 2021.

Kang Wei (Member, IEEE) received the B.S. degree
in information engineering from Xidian University,
Xi’an, China, in 2014, and the Ph.D. degree from the
Nanjing University of Science and Technology. He is
currently a Post-Doctoral Fellow with The Hong
Kong Polytechnic University. He mainly focuses
on privacy protection and optimization techniques
for edge intelligence, including federated learning,
differential privacy, and network resource allocation.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 01,2024 at 13:41:05 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: PERSONALIZED FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY AND CONVERGENCE GUARANTEE 4503

Jun Li (Senior Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2009. From
January 2009 to June 2009, he worked with the
Department of Research and Innovation, Alcatel
Lucent Shanghai Bell, as a Research Scientist. From
June 2009 to April 2012, he was a Post-Doctoral
Fellow with the School of Electrical Engineering
and Telecommunications, The University of New
South Wales, Australia. From April 2012 to June
2015, he was a Research Fellow with the School

of Electrical Engineering, The University of Sydney, Australia. Since June
2015, he has been a Professor with the School of Electronic and Optical
Engineering, Nanjing University of Science and Technology, Nanjing, China.
He was a Visiting Professor with Princeton University from 2018 to 2019. His
research interests include network information theory, game theory, distributed
intelligence, multiple agent reinforcement learning and their applications in
ultra-dense wireless networks, mobile edge computing, network privacy and
security, and the Industrial Internet of Things. He has coauthored more than
200 papers in IEEE journals and conferences and holds one U.S. patent and
more than ten Chinese patents in these areas. He is serving as an Editor for
IEEE TRANSACTIONS ON WIRELESS COMMUNICATION and a TPC member
for several flagship IEEE conferences.

Chuan Ma (Member, IEEE) received the B.S.
degree from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2013, and
the Ph.D. degree from The University of Sydney,
Australia, in 2018. From 2018 to 2022, he worked
as a Lecturer with the Nanjing University of Sci-
ence and Technology. He is currently a Principal
Investigator with the Zhejiang Laboratory. He has
published more than 40 journals and conference
papers, including a best paper in WCNC 2018 and
the Best Paper Award of IEEE Signal Processing

Society in 2022. His research interests include stochastic geometry, wireless
caching networks, and distributed machine learning, with a focus on the big
data analysis and privacy-preserving.

Ming Ding (Senior Member, IEEE) received the
B.S. and M.S. degrees (Hons.) in electronics engi-
neering and the Doctor of Philosophy (Ph.D.)
degree in signal and information processing from
Shanghai Jiao Tong University (SJTU), Shanghai,
China, in 2004, 2007, and 2011, respectively. From
April 2007 to September 2014, he worked with
the Sharp Laboratories of China, Shanghai, as a
Researcher/Senior Researcher/Principal Researcher.
Currently, he is a Principal Research Scientist with
Data61, CSIRO, Sydney, NSW, Australia. He has

authored more than 200 papers in IEEE journals and conferences, all in
recognized venues, and around 20 3GPP standardization contributions and
two books, i.e., Multi-Point Cooperative Communication Systems: Theory
and Applications (Springer, 2013) and Fundamentals of Ultra-Dense Wire-
less Networks (Cambridge University Press, 2022). Also, he holds 21 U.S.
patents and has co-invented another more than 100 patents on 4G/5G
technologies. His research interests include information technology, data
privacy and security, and machine learning and AI. Currently, he is an
Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS. He has served as a
guest editor/co-chair/co-tutor/TPC member for multiple IEEE top-tier jour-
nals/conferences. He received several awards for his research work and
professional services, including the prestigious IEEE Signal Processing Soci-
ety Best Paper Award in 2022.

Wen Chen (Senior Member, IEEE) is currently a
tenured Professor with the Department of Electronic
Engineering, Shanghai Jiao Tong University, China,
where he is also the Director of the Broadband
Access Network Laboratory. He has published more
than 130 papers in IEEE journals and more than
120 papers in IEEE conferences, with citations of
more than 9000 in Google Scholar. His research
interests include multiple access, wireless AI, and
meta-surface communications. He is a fellow of the
Chinese Institute of Electronics and a Distinguished

Lecturer of IEEE Communications Society and IEEE Vehicular Technology
Society. He is also the Shanghai Chapter Chair of IEEE Vehicular Technology
Society and an Editor of IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS, IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE ACCESS,
and IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY.

Jun Wu (Senior Member, IEEE) received the B.S.
degree in information engineering and the M.S.
degree in communication and electronic system from
Xidian University in 1993 and 1996, respectively,
and the Ph.D. degree in signal and information
processing from the Beijing University of Posts and
Telecommunications in 1999. He was a Professor
with the Department of Computer Science and Tech-
nology, Tongji University. He was also a Principal
Scientist with Broadcom before he joined Tongji
University. He is currently a Full Professor with the

School of Computer Science, Fudan University. His research interests include
wireless networks, machine learning, and signal processing.

Meixia Tao (Fellow, IEEE) received the B.S. degree
in electronic engineering from Fudan University,
Shanghai, China, in 1999, and the Ph.D. degree
in electrical and electronic engineering from The
Hong Kong University of Science and Technology
in 2003.

She is currently a Professor with the Depart-
ment of Electronic Engineering, Shanghai Jiao
Tong University, China. Her current research inter-
ests include wireless edge learning, coded caching,
reconfigurable intelligence surfaces, and semantic

communications.
Dr. Tao received the 2019 IEEE Marconi Prize Paper Award, the 2013 IEEE

Heinrich Hertz Award for Best Communications Letters, the IEEE/CIC
International Conference on Communications in China (ICCC) 2015 Best
Paper Award, and the International Conference on Wireless Communications
and Signal Processing (WCSP) 2012 and 2022 Best Paper Award. She also
received the 2009 IEEE ComSoc Asia–Pacific Outstanding Young Researcher
Awards. She is an Associate Editor of the IEEE TRANSACTIONS ON INFOR-
MATION THEORY and an Editor-at-Large of the IEEE OPEN JOURNAL OF
THE COMMUNICATIONS SOCIETY. She served as a member of the Executive
Editorial Committee for the IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS from 2015 to 2019. She was also an Editorial Board Member
of several other journals as an Editor or a Guest Editor, including the IEEE
TRANSACTIONS ON COMMUNICATIONS and IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS. She also served as the TPC Co-Chair for
IEEE ICC 2023.

H. Vincent Poor (Life Fellow, IEEE) received the
Ph.D. degree in EECS from Princeton University in
1977. From 1977 to 1990, he was on the faculty
of the University of Illinois at Urbana–Champaign.
Since 1990, he has been on the faculty at Princeton,
where he is currently the Michael Henry Strater
University Professor. From 2006 to 2016, he served
as the Dean of Princeton’s School of Engineering
and Applied Science. He has also held visiting
appointments at several other universities, includ-
ing most recently at Berkeley and Cambridge. His

research interests are in the areas of information theory, machine learning
and network science and their applications in wireless networks, and energy
systems and related fields. Among his publications in these areas is the recent
book Machine Learning and Wireless Communications (Cambridge University
Press, 2022). Dr. Poor is a member of the National Academy of Engineering
and the National Academy of Sciences, and is also a foreign member of
the Chinese Academy of Sciences, the Royal Society, and other national and
international academies. He received the IEEE Alexander Graham Bell Medal
in 2017.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 01,2024 at 13:41:05 UTC from IEEE Xplore.  Restrictions apply. 


