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Abstract— In this paper, we propose a new dynamic IRS beam-
forming framework to boost the sum throughput of an intelligent
reflecting surface (IRS) aided wireless powered communication
network (WPCN). Specifically, the IRS phase-shift vectors across
time and resource allocation are jointly optimized to enhance the
efficiencies of both downlink wireless power transfer (DL WPT)
and uplink wireless information transmission (UL WIT) between
a hybrid access point (HAP) and multiple wirelessly powered
devices. To this end, we first study three special cases of the
dynamic IRS beamforming, namely user-adaptive IRS beamform-
ing, UL-adaptive IRS beamforming, and static IRS beamforming,
by characterizing their optimal performance relationships and
proposing corresponding algorithms. Interestingly, it is rigorously
proved that the latter two cases achieve the same throughput, thus
helping halve the number of IRS phase shifts to be optimized
and signalling overhead practically required for UL-adaptive
IRS beamforming. Then, we propose a general optimization
framework for dynamic IRS beamforming, which is applicable
for any given number of IRS phase-shift vectors available. Despite
of the non-convexity of the general problem with highly coupled
optimization variables, we propose two algorithms to solve it and
particularly, the low-complexity algorithm exploits the intrinsic
structure of the optimal solution as well as the solutions to the
cases with user-adaptive and static IRS beamforming. Simulation
results validate our theoretical findings, illustrate the practical
significance of IRS with dynamic beamforming for spectral and
energy efficient WPCNs, and demonstrate the effectiveness of our
proposed designs over various benchmark schemes.
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I. INTRODUCTION

FUTURE wireless networks are expected to support
massive connections for application scenarios such as

Internet-of-Things (IoT) where the devices can be electronic
tablets, sensors, wearables, and so on. This thus requires a
scalable and efficient solution for providing them perpetual
power supply, particularly to achieve the envisioned sustain-
able and green IoT. To this end, far-field radio-frequency
(RF) transmission enabled wireless power transfer (WPT)
has recently gained an upsurge of interest [1], [2], due to
its greater convenience as well as larger charging distance
than conventional battery replacement and inductive/magnetic
resonance coupling based wireless charging techniques. How-
ever, energy receivers generally require much higher receive
signal power than information receivers, due to their different
receiver sensitivities and design objectives in practice. As such,
the low efficiency of WPT for energy receivers over long
transmission distances fundamentally limits the performance
of practical WPT systems. Although exploiting the large
array/beamforming gain brought by deploying massive anten-
nas at the WPT transmitter can in principle boost the WPT
efficiency significantly, it faces various challenges in practical
implementation, e.g., exceedingly high energy consumption
and hardware cost [2], [3].

Recently, intelligent reflecting surface (IRS) has been pro-
posed as a low-cost technology to achieve spectral and energy
efficient wireless networks [4], [5]. Specifically, by smartly
coordinating the reflection phase shifts of a large number
of passive elements at IRS, wireless propagation channels
between transceivers can be reconfigured in real-time to
achieve different design objectives, such as signal focusing
and interference suppression. In particular, the fundamental
performance limit of IRS was firstly derived in [5] which
proves that IRS is able to provide an asymptotic squared power
gain in terms of the user receive power via passive beam-
forming. Such a promising power scaling law of IRS has then
motivated an intensive research interest in investigating joint
active and passive beamforming for various IRS-aided systems
(see [4]–[16] and the references therein). While the above
works focused on applying IRS to assist wireless information
transmission (WIT), it is also practically appealing to make use
of the high passive beamforming gain of IRS for improving the
WPT efficiency [4], [17]. Specifically, leveraging intelligent
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reflections over large aperture IRSs can effectively compensate
the severe distance-based signal attenuation and helps establish
local energy harvesting/charging zones in their vicinity, thus
leading to a largely extended service coverage of WPT. This
is of crucial importance for widening the practical use-cases
of WPT in multifarious application scenarios and unlocking
its full potential in achieving the promising battery-free IoT
networks in the future.

To reap the above benefits, two research lines have been
firstly identified in [17], namely IRS-aided simultaneous wire-
less information and power transfer (SWIPT) and IRS-aided
wireless powered communication networks (WPCNs). Specif-
ically, the first line of research aims at exploiting the high
passive beamforming gain to enlarge the rate-energy tradeoff
in IRS-aided SWIPT systems where information and energy
receivers are served concurrently using the same RF signals
sent from an access point (AP) [18]–[30]. To this end, subject
to the minimum signal-to-interference-plus-noise ratio (SINR)
requirements of information receivers, joint information and
energy beamforming design was studied in [18] to maxi-
mize the weighted sum-power of energy receivers. It was
later extended in [19] and [25] by considering the transmit
power minimization and sum-rate maximization problems,
respectively. In particular, the results in [19] showed that the
use of IRS not only lowers the transmit power required at
the AP but also effectively reduces the number of energy
beams as compared to the case without IRS, which thus
greatly simplifies the transmitter design. In contrast, IRS-aided
WPCNs focus on improving the communication performance
by exploiting IRS to assist WPT and WIT across differ-
ent time slots. It is mainly based on a “harvest and then
transmit” protocol where self-sustainable devices first harvest
energy in the downlink (DL) and then transmit informa-
tion in the uplink (UL) [31]–[34]. The sum throughput of
an IRS-aided WPCN was maximized in [31] for UL WIT
employing time-division multiple access (TDMA). Then, the
common throughput maximization problem of an IRS-aided
WPCN with user cooperation in the UL was studied in [32].
However, this study was limited to a WPCN with two
users and also increases the coordination complexity. In [33],
the extension to the multiuser case was presented, where
space-division multiple access (SDMA) was employed for UL
WIT by jointly optimizing the IRS phase shifts and transmit
powers.

Despite of the above works, some fundamental issues still
remain unsolved in IRS-aided WPCNs. First, does exploit-
ing more IRS phase-shift patterns/vectors over time for DL
WPT and UL WIT really bring throughput improvement of a
WPCN? Since DL WPT and UL WIT have different design
objectives and also occur in different time periods, it is
usually believed that exploiting dynamic IRS beamforming,
i.e., adopting different IRS phase-shift vectors in the above two
phases, is able to improve the system performance. As such, all
the above works on IRS-aided WPCNs naturally assumed that
different phase-shift vectors are adopted for DL WPT and UL
WIT, respectively, and then solved the corresponding problems
numerically with suboptimal solutions, which, however, does
not provide any concrete insights into this issue. Therefore,

Fig. 1. An IRS-aided WPCN where the IRS is deployed to boost the
efficiencies of both DL WPT and UL WIT.

it still remains an open problem when dynamic IRS beam-
forming is actually beneficial for maximizing the throughput
of WPCNs. To our best knowledge, the first attempt on
addressing this issue was made in [34], whereas the result is
limited to a two-phase transmission case with non-orthogonal
multiple access (NOMA) for UL WIT. Second, how to jointly
optimize the dynamic IRS beamforming and system resource
allocation for an arbitrary number of phase-shift vectors? This
question is motivated by the fact that even if dynamic IRS
beamforming is able to improve the performance, it also
incurs more signalling overhead. Specifically, due to the
limited computing capability of the low-cost IRS, the hybrid
access point (HAP) is typically in charge of the algorithmic
computations and then sends the optimized phase shifts to
the IRS controller for reconfiguring reflections. As such,
adopting more IRS phase-shift vectors not only increases the
computational complexity due to more optimization variables,
but also leads to more signalling overhead as well as the
associated delay for feeding them back to the IRS controller.
As such, it may not be preferable to excessively rely on
dynamic IRS beamforming considering the performance-cost
tradeoff, especially when the number of IRS’s elements is
practically large.

Motivated by the above considerations, we study an
IRS-assisted WPCN where an IRS is deployed to assist the
TDMA-based DL WPT and UL WIT between an HAP and
multiple devices, as shown in Fig. 1. Our objective is to
maximize the weighted sum throughput of all devices by
jointly optimizing the resource allocation and IRS phase shifts
(i.e., passive beamforming). It is worth noting that unlike
traditional WPCNs where the channels of all devices are
generally random and remain static throughout each channel
coherence block [35], we are able to proactively generate
favourable time-varying channels by properly designing the
IRS phase-shift vectors over different time slots, which thus
enhances the multiuser diversity over time and also allows
more flexible resource allocation. The main contributions of
the paper are summarized as follows.

• We first study three special cases of dynamic IRS
beamforming in the WPCN, namely user-adaptive
IRS beamforming, UL-adaptive IRS beamforming, and
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static/constant IRS beamforming. For the user-adaptive
scheme, the IRS phase shifts can be optimized not only
for DL WPT but also for each of devices across their
WIT durations, whereas for the UL-adaptive scheme, all
the devices share the same set of IRS phase shifts during
their UL WIT. For static IRS beamforming, the IRS phase
shifts remain constant for both UL WPT and UL WIT
throughout the whole transmission duration. To provide
more flexibility to balance the performance-cost tradeoff,
we then propose a new and general optimization frame-
work for dynamic IRS beamforming where the IRS is
allowed to adjust its phase shifts by an arbitrary number
of times during DL and UL.

• For the three special cases of dynamic IRS beamforming,
we first unveil their inherent relationships by showing
that the user-adaptive scheme generally outperforms the
UL-adaptive scheme, while the latter is equivalent to
the static IRS beamforming scheme. This thus halves
the number of IRS phase shifts to be optimized and sig-
nalling overhead practically required for the UL-adaptive
scheme. Then, we propose two efficient algorithms
based on semidefinite relaxation and successive convex
approximation (SCA) techniques to solve the formu-
lated problems where all the variables are optimized
simultaneously.

• For the optimization problem considering general
dynamic IRS beamforming, we first propose an SCA
based algorithm by applying proper changes of variables
with exponential functions to solve it. To reduce the
computational complexity, we further propose an effi-
cient algorithm by deeply exploiting the special structure
of the optimal solution as well as the algorithms for
the above three special cases. In particular, we prove
that there exists a binary association between the UL
phase-shift vectors and devices, which implies that each
device performs UL WIT using only one IRS phase-shift
vector and at most K + 1 IRS phase-shift vectors suffice
to maximize the system throughput of WPCNs where
K denotes the number of devices.

• Simulation results verify our theoretical findings and
demonstrate the significant performance gains achieved
by the proposed algorithms compared to benchmark
schemes. It is also found that exploiting IRS with
dynamic beamforming for WPCNs not only improves
the system throughput but also reduces the system
energy consumption. Furthermore, it was shown that the
user unfairness issue induced by the so-called “doubly-
near-far” problem in traditional WPCNs can be effi-
ciently mitigated by exploiting the proper deployment
of IRS.

The rest of this paper is organized as follows. Section II
introduces the system model and problem formulations for a
WPCN with three special cases of dynamic IRS beamforming.
Sections III presents proposed algorithms for solving problems
in Section II. In Section IV, we propose a general optimization
problem for the IRS-aided WPCN and devise two algorithms
for solving it. Section V presents numerical results to evaluate

the performance of the proposed algorithms. Finally, we con-
clude the paper in Section VI.

Notations: Scalars are denoted by italic letters, vectors and
matrices are denoted by bold-face lower-case and upper-case
letters, respectively. C

x×y denotes the space of x × y
complex-valued matrices. For a complex-valued vector x, �x�
denotes its Euclidean norm and diag(x) denotes a diagonal
matrix with each diagonal entry being the corresponding entry
in x. The distribution of a circularly symmetric complex
Gaussian (CSCG) random vector with mean vector x and
covariance matrix Σ is denoted by CN (x,Σ); and ∼ stands
for “distributed as”. For a square matrix S, tr(S) and S−1

denote its trace and inverse, respectively, while S � 0 means
that S is positive semi-definite, where 0 is a zero matrix of
proper size. For any general matrix A, AH , rank(A), and
A(i, j) denote its conjugate transpose, rank, and (i, j)th entry,
respectively. IM denotes an identity matrix of size M ×M .
j denotes the imaginary unit, i.e., j2 = −1. E(·) denotes the
statistical expectation. Re{·} denotes the real part of a complex
number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As depicted in Fig. 1, we consider an IRS-assisted
WPCN, which is composed of an HAP, an IRS, and
K wireless-powered IoT devices. It is assumed that the IRS
is equipped with N reflecting elements and the HAP and
IoT devices are all equipped with a single antenna. In par-
ticular, the HAP with constant power supply (e.g., power
grid) coordinates the DL WPT and UL WIT to and from the
IoT devices with the assistance of the IRS. For the ease of
practical implementation, the HAP and all devices are assumed
to operate over the same frequency band, with the total
available transmission time denoted by Tmax. Specifically, the
typical “harvest and then transmit” protocol is adopted for the
WPCN [35], [36] where the IoT devices first harvest energy
from the signal emitted by the HAP in the DL and then use
the harvested energy to transmit their own information to the
HAP in the UL. For notation convenience, the UL and DL
channel reciprocity is assumed for all the channels and they
follow the quasi-static flat-fading model. In other words, the
channel coefficients remain constant during each transmission
block, but can vary from one to another. This also facilitates
the DL channel state information (CSI) acquisition based on
the UL training. In practice, since the IRS is supposed to be
implemented with low cost and low energy consumption, its
computational capability is usually limited, which may not be
able to afford the computational task for periodically executing
the algorithm. As such, the HAP is assumed to be in charge
of executing the algorithm and then feedback its optimized
phase-shift vectors to the IRS for setting the reflection over
time.

To characterize the performance upper bound of the
IRS-aided WPCN system via joint dynamic beamforming
design and resource allocation, it is assumed that the CSI
of all channels involved is perfectly known at the HAP,
based on the various channel acquisition methods discussed
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Fig. 2. Then transmission protocol for the proposed WPCN with three IRS beamforming configurations.

in [4]. Signalling overhead and incomplete CSI will result in
performance loss and the study of their impacts on the system
performance is beyond the scope of this paper. The equivalent
baseband channels from the HAP to the IRS, from the IRS
to device k, and from the HAP to device k are denoted by
g ∈ CN×1, hH

r,k ∈ C1×N , and hH
d,k ∈ C, respectively, where

k = 1, . . . ,K .

B. Dynamic IRS Beamforming for DL WPT and UL WIT

For DL WPT, the HAP broadcasts an energy signal with
constant transmit power PA for a duration of τ0. The energy
harvested from the noise is assumed to be negligible as in [35],
since the noise power is much smaller than the power received
from the HAP. Let Θ0 = diag(ejθ0,1 , . . . , ejθ0,N ) denote the
reflection phase-shift matrix1 of the IRS for DL WPT where
θn ∈ [0, 2π), ∀n. Thus, the amount of harvested energy at
device k can be expressed as2

Eh
k = ηkPA|hH

d,k + hH
r,kΘ0g|2τ0

= ηkPA|hH
d,k + qH

k v0|2τ0, (1)

where ηk ∈ (0, 1] is the energy conversion efficiency of device
k, qH

k = hH
r,kdiag(g), and v0 = [ejθ0,1 , . . . , ejθ0,N ]T .

For UL WIT, each energy harvesting device transmits its
own information signal to the HAP for a duration of τk
with transmit power pk. Furthermore, as shown in Fig. 2,
we propose three IRS beamforming setups depending on how
the IRS sets its phase shifts over time during UL WIT,
as detailed below.

1) User-adaptive dynamic IRS beamforming: In this
case, the IRS is allowed to reconfigure its phase-shift pat-
terns/vectors K times in UL WIT and each vector is dedicated
to one device. Accordingly, the achievable rate of device k in
bits/Hz can be expressed as

rk = τk log2

�
1 +

pk|hH
d,k + qH

k vk|2
σ2

�
, (2)

1Note that we consider the unit reflection amplitude for the IRS elements in
this paper. While other IRS reflection coefficient models such as phase-shift
dependent amplitude model, can be similarly considered for the proposed
dynamic IRS beamforming schemes, which are left for future work.

2In this paper, we consider a linear energy harvesting model for simplicity.
By replacing (1) with its non-linear counterpart, the three dynamic IRS
beamforming schemes and also the general optimization framework proposed
in the paper are still applicable to the case with a non-linear energy harvesting
model [26], whereas new transformations and approximations may be required
for the specific algorithm design, which are left for future work.

where vk = [ejθk,1 , . . . , ejθk,N ]T denotes the IRS phase shift
vector for device k during τk, and σ2 is the additive white
Gaussian noise power at the HAP.

2) UL-adaptive dynamic IRS beamforming: In this case,
the IRS is allowed to reconfigure its phase-shift vector only
one time in UL WIT and thus all the devices share the common
IRS phase-shift vector. Accordingly, the achievable rate of
device k in bits/Hz can be expressed as

rk = τk log2

�
1 +

pk|hH
d,k + qH

k v1|2
σ2

�
, (3)

where v1 = [ejθ1,1, . . . , ejθ1,N ]T denotes the common IRS
phase-shift vector for a total time of

�K
k=1 τk.

3) Static IRS beamforming: In this case, the IRS is not
allowed to reconfigure its phase-shift vector in UL WIT and
thus all the devices need to share the same IRS phase-shift
vector as that in DL WPT. Accordingly, the achievable rate of
device k in bits/Hz can be expressed as

rk = τk log2

�
1 +

pk|hH
d,k + qH

k v0|2
σ2

�
, (4)

where v0 is given in (1).
Remark 1: Note that the above three cases strike a balance

between the degrees of freedom to adjust the IRS phase-shift
vector and the number of optimization variables as well as the
feedback signalling overhead. Specifically, the user-adaptive
IRS beamforming requires the HAP to optimize and feedback
(K + 1)N IRS phase shifts (including N IRS phase shifts in
DL WPT) to the IRS, which linearly increases with the number
of devices. Whereas these required for UL-adaptive dynamic
IRS beamforming and static beamforming cases are 2N and
N , respectively, which may be more cost-effective especially
when K is practically large.

C. Problem Formulations

Our objective is to maximize the weighted sum throughput
of the considered WPCN by jointly optimizing the IRS phase
shifts, the time allocation, and the transmit powers. For the
user-adaptive dynamic IRS beamforming case, the optimiza-
tion problem is formulated as

(P1) : max
τ0,{τk},{pk},

v0,{vk}

K�
k=1

wkτk log2

�
1 +

pk|hH
d,k + qH

k vk|2
σ2

�

(5a)
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TABLE I

SUMMARY OF THE PROPOSED IRS BEAMFORMING SETUPS AND ALGORITHMS

s.t. pkτk ≤ ηkPA|hH
d,k + qH

k v0|2τ0, ∀ k, (5b)

|[v0]n| = 1, n = 1, . . . , N, (5c)

|[vk]n| = 1, n = 1, . . . , N, ∀k, (5d)

τ0 +
K�

k=1

τk ≤ Tmax, (5e)

τ0 ≥ 0, τk ≥ 0, pk ≥ 0, ∀k. (5f)

where wk denotes the weight of device k. By varying the
values of these weights, the system designer is able to set
different priorities and enforce certain notions of fairness
among devices. Since the weights do not affect the algorithm
design, we assume that all the devices are equally weighted
in this paper without loss of generality, i.e., wk = 1, ∀k. In
(P1), (5b) is the energy causality constraint which ensures
that the energy consumed by each device for WIT does not
exceed its total energy harvested during WPT. (5e) and (5f)
are the total time constraint and the non-negativity constraints
on the optimization variables, respectively. The optimization
problems with UL-adaptive dynamic IRS beamforming and
static IRS beamforming can be similarly formulated as

(P2) : max
τ0,{τk},{pk},

v0,v1

K�
k=1

τk log2

�
1 +

pk|hH
d,k + qH

k v1|2
σ2

�

(6a)

s.t. (5b), (5e), (5f), (6b)

|[v0]n| = 1, n = 1, . . . , N, (6c)

|[v1]n| = 1, n = 1, . . . , N. (6d)

(P3) : max
τ0,{τk},{pk},

v0

K�
k=1

τk log2

�
1 +

pk|hH
d,k + qH

k v0|2
σ2

�

(7a)

s.t. (5b), (5e), (5f), (7b)

|[v0]n| = 1, n = 1, . . . , N. (7c)

D. Impact of Dynamic IRS Beamforming

Before proceeding to solving the problems, we provide the
following proposition to unveil the effectiveness of dynamic
IRS beamforming. Denote the optimal objective values of
(P1), (P2), and (P3) by R∗

U−adp, R∗
UL/DL−adp, and R∗

sta,
respectively.

Proposition 1: In the optimal solutions to (P1), (P2), and
(P3), it follows that

R∗
User−adp ≥ R∗

UL−adp = R∗
Static. (8)

Proof: Please refer to Appendix A.

Proposition 1 provides two interesting insights into the
effect of dynamic IRS beamforming on the system sum
throughput, summarized as follows.

• First, the user-adaptive scheme generally outperforms its
two special cases. This can be intuitively understood by
considering a simple two-device system where employing
two independent IRS phase-shift vectors each for assist-
ing the UL WIT of one device generally outperforms the
case applying the same phase-shift vector for UL WIT
of both device (and DL WPT), due to the higher design
flexibility of the former than that of the latter.

• Second, it is somehow surprisingly to note that the
UL-adaptive beamforming scheme does not bring perfor-
mance improvement over the static beamforming scheme,
which implies that employing the constant IRS beam-
forming suffices to maximize the sum throughput, even
when two IRS phase-shift vectors can be applied. Based
on this result, if the HAP is in charge of computing the
IRS phase shifts, it only needs to feed back N phase-shift
values (i.e., v0) to the IRS, rather than 2N (i.e., v0

and v1), which reduces the signalling overhead and the
associated delay, especially for practically large N .

Exploiting Proposition 1, we only need to solve (P1) and (P3)
next, since the latter involves a smaller number of optimization
variables than (P2). In Table I, we summarize the considered
IRS beamforming setups and their corresponding algorithms
to be elaborated.

III. PROPOSED ALGORITHMS FOR (P1) AND (P3)

A. Proposed Algorithm for (P1)

For (P1), it is first observed that besides the unit-modulus
phase-shift constraints, vk’s are only involved in the objec-
tive function and each of them appears exclusively in its
own achievable throughput without mutual coupling. In other
words, all vk’s are separable in (P1), which suggests that the
optimal vk’s can be independently obtained by solving K
subproblems in parallel, each with only one phase-shift vector.
Specifically, for vk, the optimal solution can be obtained by
solving the following problem (by ignoring constant terms)

max
vk

|hH
d,k + qH

k vk|2 (9)

s.t. |[vk]n| = 1, n = 1, . . . , N. (10)

It has been shown in [5] that the optimal phase shifts should
align all IRS-reflected and non-IRS-reflected signals to max-
imize its effective UL channel power gain, which are given
by [v�

k]n = ej(arg{hH
d,k}−arg{[qH

k ]n}), ∀n. Define γk � |hH
d,k +

qH
k v�

k|2 and |q̄H
k v̄0| � |hH

d,k + qH
k v0|, where v̄0 = [vH

0 1]H
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and q̄H
k = [qH

k hH
d,k]. Then, (P1) can be written as

max
τ0,{τk},{pk},v̄0

K�
k=1

τk log2

�
1 +

pkγk

σ2

�
(11a)

s.t. pkτk ≤ ηkPA|q̄H
k v̄0|2τ0, ∀k, (11b)

(5e), (5f), |[v̄0]n| = 1, n = 1, . . . , N + 1. (11c)

Define Qk = q̄kq̄H
k and V0 = v̄0v̄

H
0 which needs to satisfy

V0 � 0 and rank(V0) = 1. Then, for constraints (11b),
it follows that |q̄H

k v̄0|2 = q̄H
k v̄0v̄

H
0 q̄k = Tr(QkV0), ∀k.

Furthermore, the unit-modulus constraints, i.e., |[v̄0]n| = 1,
are equivalent to [V0]n,n = 1, n = 1, . . . , N + 1. For
problem (11), we apply a change of variables as ek = τkpk

and W0 = τ0V0, which yields

(P1’) : max
τ0,{τk},{ek},W0

K�
k=1

τk log2

�
1 +

ek

τk

γk

σ2

	
(12a)

s.t. ek ≤ ηkPATr(QkW0), ∀k, (12b)

[W0]n,n = τ0, n = 1, . . . , N + 1,
(12c)

rank(W0) = 1, (12d)

(5e), τ0 ≥ 0, τk ≥ 0, ek ≥ 0, ∀k.
(12e)

Note that in (P1’), τk log2

�
1 + ek

τk

γk

σ2

�
in the objective func-

tion is jointly concave with respect to τk and ek, since
its corresponding Hessian matrix is negative semidefinite.
Furthermore, the constraints except (12d) are all affine. Then,
it is not difficult to verify that by relaxing the rank-one
constraint (12d), (P1’) becomes a convex optimization prob-
lem and can be solved using existing convex optimization
solvers such as CVX. Such an approach which relaxes the
rank-one constraint helps obtain an upper bound for eval-
uating the performance loss of other suboptimal algorithm.
Whereas in the case that the eventually obtained solution for
solving (P1’) is not rank-one, Gaussian randomization can
be applied to attain a rank-one solution, based on which
the rest optimization variables can be obtained optimally by
solving (P1). More importantly, it also helps evaluate the
performance of dynamic IRS beamforming with an arbi-
trary given number of phase-shift vectors, as detailed later
in Section IV.

B. Proposed Algorithm for (P3)

Different from (P1), v0 in (P3) is coupled not only in the
energy harvesting constraints (5b), but also in all derives’
achievable throughput in the objective function. As such, the
above algorithm proposed for (P1) is not applicable to the
more challenging (P3), which thus calls for new algorithm
design. To this end, we observe that in the optimal solution
to (P3), the energy harvesting constraints (5b) are met with
equalities since otherwise pk can be always increased to
improve the objective value until (5b) becomes active. Then,
substituting (5b) into the objective function eliminates {pk},

which yields

max
τ0,{τk},{pk},v̄0

K�
k=1

τk log2

�
1 +

ηkPAτ0|q̄H
k v̄0|4

τkσ2

	
(13a)

s.t. (5e), (5f), |[v̄0]n| = 1, n = 1, . . . , N + 1, (13b)

where |q̄H
k v̄0| = |hH

d,k + qH
k v0| as in Section III-A. To deal

with the non-convex objective function (13a), we introduce a
set of slack variables Sk’s and reformulate problem (13) as
follows

max
τ0,{τk},v̄0,Sk

K�
k=1

τk log2

�
1 +

Sk

τkσ2

	
(14a)

s.t. Sk ≤ PAηk|q̄H
k v̄0|4τ0, ∀k, (14b)

(5e), (5f), (14c)

|[v̄0]n| = 1, n = 1, . . . , N + 1. (14d)

Note that for the optimal solution of problem (14), constraint
(14b) is met with equality, since otherwise we can always
increase the objective value by increasing Sk until (14b)
becomes active. However, constraints (14b) and (14d) are still
non-convex. To deal with constraints (14b), we introduce the
following lemma.

Lemma 1: For τ0 > 0, τ0|q̄H
k v̄0|4 is jointly convex with

respect to v̄0 and 1∘
τ0

.
Proof: For x ≥ 0 and y > 0, it is not difficult to show

that x2

y is jointly convex with respect to x and y. Furthermore,

for x2

y ≥ 0 and p ≥ 1, it follows that (x2

y )p is jointly convex
with respect to x and y by invoking the composition rule of
convexity [37] [Chapter 3.2, Page 84]. Setting p = 2, x =
|q̄H

k v̄0|, and y = 1∘
τ0

, we obtain the convexity of τ0|q̄H
k v̄0|4

with respect to v̄0 and 1∘
τ0

.
Recall that any convex function is globally lower-bounded

by its first-order Taylor expansion at any point. This thus
motivates us to apply the SCA technique for solving problem
(14). Therefore, with given local point w0 and t0, we obtain

the following lower bound for τ0|q̄H
k v̄0|4 =

�
|q̄H

k v̄0|2/ 1∘
τ0

�2

as�
|q̄H

k v̄0|2
1∘
τ0

�2

≥ t0|q̄H
k w0|4+2

�
|q̄H

k w0|2
1∘
t0

��
2Re{wH

0 q̄kq̄H
k v̄0}

1∘
t0

−wH
0 q̄kq̄H

k w0
1
t0

1√
τ0

− wH
0 q̄kq̄H

k w0
1∘
t0

�

= 4t0|q̄H
k w0|2Re{wH

0 q̄kq̄H
k v̄0}

−2(wH
0 q̄kq̄H

k w0)2t
3
2
0√

τ0
− (wH

0 q̄kq̄H
k w0)2t0

� f(v̄0, τ0). (15)

Note that f(v̄0, τ0) is a jointly concave function with respect
to v̄0 and τ0. As such, with the lower bound in (15), constraint
(14b) is transformed to

Sk ≤ PAηkf(v̄0, τ0), ∀k, (16)
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which is now a convex constraint. The remaining challenge to
solving problem (14) is the unit modulus constraints in (14d).
To make it tractable, we relax this constraint as

|[v̄0]n| ≤ 1, n = 1, . . . , N + 1. (17)

Then, problem (14) is approximated as the following problem

max
τ0,{τk},v̄0,Sk

K�
k=1

τk log2

�
1 +

Sk

τ1σ2

	
(18a)

s.t. (5e), (5f), (16), (17), (18b)

which is a convex optimization problem. Thus, we can apply
existing convex optimization solvers such as CVX, to succes-
sively solve it until the convergence is achieved. However, the
converged solution, denoted by v̄�

0 , may not be able to satisfy
the unit-modulus constraints in (14d). In this case, one feasible
suboptimal phase-shift vector of problem (14), denoted by v̄∗

0 ,
can be obtained as

[v̄∗
0 ]n = [v̄�

0 ]n/|[v̄�
0 ]n|, ∀n. (19)

With given v̄∗
0 , problem (14) becomes a convex optimization

problem and the remain optimization variables can be obtained
in closed-form expressions as in [35].

IV. GENERAL OPTIMIZATION FRAMEWORK

FOR DYNAMIC IRS BEAMFORMING

Motivated by the above two special cases, we consider in
this section the general case of dynamic IRS beamforming for
WPCNs. Specifically, we first propose a unified optimization
framework for an arbitrary number of IRS phase-shift vec-
tors and then propose two algorithms to solve the resulting
problem.

A. General Transmission Protocol and Problem Formulation

Without loss of generality, we assume that reflecting ele-
ments at the IRS can be reconfigured J times in total in
UL WIT, where J ≥ 0 can be either smaller or larger
than K , corresponding to J + 1 IRS phase-shift vectors, i.e.,
vj , j = 0, . . . , J . In particular, J = 0 implies that the UL WIT
employs the same IRS phase-shift vector as the DL WPT, i.e.,
v0, which is the case of static IRS beamforming described
in Section II-B. The detailed transmission protocol is illus-
trated in Fig. 3 where the DL WPT setup and other system
assumptions are the same as those described in Section II.
As such, the HAP in charge of executing the algorithm
needs to send (J + 1)N phase-shift values (including that
for DL WPT) to the IRS for setting the reflection over
time. By controlling J , we are able to control the resulting
signalling overhead as well as associated delay. Furthermore,
to fully unleash the potential of dynamic IRS beamforming
for WPCNs in UL WIT, it is assumed that each device can
transmit during any of the J IRS phase-shift vectors with loss
of generality, as shown in Fig. 3.

Denote by tk,j and pk,j the time and transmit power of
device k allocated to the jth phase-shift vector, i.e., vj .

Fig. 3. General transmission protocol for the proposed WPCNs with dynamic
IRS beamforming.

Then, the device k’s sum throughput in UL WIT can be
expressed as

Rk =
J�

j=0

rk,j =
J�

j=0

tk,j log2

�
1 +

pk,j |hH
d,k + qH

k vj |2
σ2

�
,

(20)

with its total transmit energy consumption given by�J
j=0 pk,jtk,j . Accordingly, the system sum throughput max-

imization problem can be formulated as (P4)

max
τ0,{tk,j},v0,

{pk,j},{vj}

K�
k=1

J�
j=0

tk,j log2

�
1 +

pk,j |hH
d,k+qH

k vj |2
σ2

�

(21a)

s.t.
J�

j=0

pk,jtk,j ≤ ηkPA|hH
d,k + qH

k v0|2τ0, ∀k,

(21b)

|[vj ]n| = 1, n = 1, . . . , N, j = 0, . . . , J,
(21c)

τ0 +
K�

k=1

J�
j=0

tk,j ≤ Tmax, (21d)

τ0 ≥ 0, tk,j ≥ 0, pk,j ≥ 0, ∀k, j. (21e)

Note that the non-convex problem (P4) is more challenging
to solve than problems (P1)-(P3) in Section II-C. Specifically,
different from (P1) that assigns each device with a dedicated
IRS phase-shift vector in UL WIT or (P2)/(P3) that assigns all
devices with the same IRS phase-shift vector as the one used in
DL WPT, it remains unknown how the J phase-shift vectors
are shared among all the devices in the optimal solution of
(P4). Furthermore, when J = 0, it can be readily verified that
(P4) is reduced to (P3) and hence (P2) due to the equivalence
of (P3) and (P2); whereas when J = K , it remains unknown
whether (P4) is equivalent to (P1) or not.

B. Proposed Generic Joint Optimization Algorithm

Before answering the above questions, we first propose a
generic optimization algorithm to solve (P4), elaborated as
follows. Define |q̄H

k v̄j | � |hH
d,k + qH

k vj | with v̄j = [vH
j 1]H .

Then, introducing two sets of new variables as ek,j = pk,jtk,j
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and Sk,j = ek,j |q̄H
k v̄j |2, we can equivalently transform (P4)

into the following problem

max
τ0,{tk,j},{ek,j}
{Sk,j},{v̄j}

K�
k=1

J�
j=0

tk,j log2

�
1 +

Sk,j

tk,jσ2

	
(22a)

s.t. Sk,j ≤ ek,j |q̄H
k v̄j |2, ∀k, j, (22b)

J�
j=0

ek,j ≤ ηkPA|q̄H
k v̄0|2τ0, ∀k, (22c)

τ0 ≥ 0, tk,j ≥ 0, ek,j ≥ 0, ∀k, j, (22d)

(21d), |[v̄j ]n| = 1, n = 1, . . . , N + 1, ∀j.
(22e)

Note that similar to problem (14), constraints (22b) have been
relaxed to inequalities without loss of optimality. The objective
function is convex now while constraints (22b) and (22c) are
still non-convex, besides the unit-modulus constraints in (22e).

We next transform (22b) and (22c) into approximate convex
constraints respectively by exploiting the SCA technique and
proper change of variables. First, we introduce new variables
xk,j and yk,j , ∀k, j. Then, constraints (22b) are equivalent to

Sk,j ≤ exk,j+yk,j , (23)

exk,j ≤ ek,j , (24)

eyk,j ≤ |q̄H
k v̄j |2. (25)

Despite the non-convexity of constraints (23) and (25), the
right-hand sides (RHSs) of them, i.e., exk,j+yk,j and |q̄H

k v̄j |2,
are convex functions with respect to the corresponding vari-
ables. This allows us to apply first-order Taylor expansion
based SCA technique to linearize them as convex constraints
given by

Sk,j ≤ ex̂k,j+ŷk,j (1 + xk,j + yk,j − x̂k,j − ŷk,j), (26)

eyk,j ≤ 2Re{wH
j Qkv̄j} − wH

j Qkwj , (27)

where x̂k,j , ŷk,j , and wj are the given local points of xk,j ,
yk,j , and v̄j , respectively. Second, for constraints (22c), it can
be similarly shown as Lemma 1 that |q̄H

k v̄0|2τ0 is jointly
convex with respect to v̄0 and 1

τ0
. As such, with given local

points w0 and t0, we obtain the following lower bound for
|q̄H

k v̄0|2τ0 = |q̄H
k v̄0|2/( 1

τ0
) as

|q̄H
k v̄0|2τ0 ≥ 2Re{wH

0 Qkv̄0t0} − t20w
H
0 Qkw0

τ0
. (28)

Accordingly, constraint (22c) becomes

J�
j=0

ek,j ≤ηkPA

�
2Re{wH

0 Qkv̄0t0}− t20w
H
0 Qkw0

τ0

	
, (29)

which is convex constraint now. As a result, problem (22) is
approximated as

max
τ0,{tk,j},{ek,j},

{Sk,j},{v̄j}

K�
k=1

J�
j=0

tk,j log2

�
1 +

Sk,j

tk,jσ2

	
(30a)

s.t. (22e), (21d), (22d), (24), (26), (27), (29). (30b)

By relaxing the unit-modulus constraints in (22e) to
|[v̄j ]n| ≤ 1, ∀j, n, as in Section III-B, problem (30) becomes

a convex optimization problem and thus can be successively
solved by standard solvers, e.g. CVX, until convergence is
achieved. Since the objective value achieved by successively
solving problem (30) is non-decreasing over iterations and the
optimal objective value is bounded from below, the proposed
algorithm is guaranteed to converge. After obtaining the con-
verged solution, we reconstruct the unit-modulus phase-shift
vectors by subtracting the phases as (19).

C. Proposed Generic Low-Complexity Algorithm

Although the algorithm proposed in the previous section is
generic, it does not provide sufficient useful insights into the
optimal solution of (P4) and the computational complexity
is also relatively high as the numbers of constraints and
optimization variables scale linearly with KJ . Next, by deeply
exploiting the special structure of the optimal solution to (P4),
we propose a low-complexity algorithm based on the proposed
algorithms for (P1) and (P3). To this end, we first provide the
following proposition to shed light on how theK devices make
use of the J + 1 phase-shift vectors for UL WIT.

Proposition 2: Denote the optimal UL phase-shift vectors
to (P4) by v∗

j , j = 0, . . . , J . Then, (P4) is equivalent to the
following problem (P4’)

max
τ0,{t

k,k� }
{pk,k�}

K�
k=1

tk,k� log2

�
1 +

pk,k� |hH
d,k + qH

k v∗
k� |2

σ2

�

(31a)

s.t. pk,k�tk,k� ≤ ηkPA|hH
d,k + qH

k v∗
0 |2τ0, ∀k,

(31b)

τ0 +
K�

k=1

tk,k� ≤ Tmax, (31c)

τ0 ≥ 0, tk,k� ≥ 0, pk,k� ≥ 0, ∀k, (31d)

where k� = arg max
j∈{0,...,J}

|hH
d,k + qH

k v∗
j |.

Proof: Please refer to Appendix B.
Proposition 2 provides an important insight into the optimal
solution of (P4): the optimal association between the UL
phase-shift vectors (v∗

j ’s) and the devices is binary. Specif-
ically, each device only needs to employ one IRS phase-shift
vector in UL WIT and exhausts all of its harvested energy dur-
ing the corresponding period, as indicated by constraints (31b).
However, since J may be smaller than K , multiple devices
may share the same IRS phase-shift vector. For example, when
J = 2 and K = 3, Proposition 2 implies that one of the three
devices will be scheduled under a dedicated IRS phase-shift
vector and the remaining two devices will share the other
one. Based on this conclusion, it is not difficult to conclude
that when J = K in (P4), each device will be assigned with
a dedicated phase-shift vector that exclusively maximizes its
own effective channel power gain, thus rendering (P4) to be
simplified to (P1) in Section II. Furthermore, it also implies
that exploiting dynamic IRS beamforming in UL WIT under
J > K will provide no system throughput improvement.
In other words, at most J = K IRS phase-shift vectors are
sufficient for the considered IRS-aided WPCN and this is also
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why (P1) is able to provide the performance upper bound for
any arbitrary J . Thus, we only need to consider the case of
(P4) with J ≤ K in the following.

Nevertheless, the optimal UL phase-shift vectors v∗
j ’s

remains unknown yet and (P4’) is also a non-convex optimiza-
tion problem. Motivated by Proposition 2, we next propose an
efficient algorithm to solve (P4). Specifically, Proposition 2
indicates that all the K devices need to be partitioned into J
groups where each device belongs exclusively to one group
and the devices in the same group employ the common
IRS phase-shift vector for UL WIT, as shown in Fig. 2.
Unfortunately, this is a combinatorial optimization task and
the optimal partition strategy requires an exhaustive search for
all the possible cases, i.e., JK , which leads to an exponential
computational complexity that is prohibitive in practice.

Inspired by the user-adaptive dynamic IRS beamforming
and static beamforming described in Section II-B, we propose
an efficient hybrid scheme. Specifically, we first sort all the
devices in descending order according to their respective effec-
tive channel power gains suppose that each can be assigned
with a dedicated phase-shift vector as in the user-adaptive
case in Section III-A, i.e., γΨ(k) � |hH

d,Ψ(k) + qH
Ψ(k)v

�
Ψ(k)|2

and [v�
Ψ(k)]n = ej(arg{hH

d,Ψ(k)}−arg{[qH
Ψ(k)]n}), ∀n, where Ψ(k)

denotes the order of device k. Second, each of the first J
devices, i.e., Ψ(k) = 1, . . . , J , is assigned with a dedicated
phase-shift vector for UL WIT and all the rest K − J devices
are assumed to employ the DL phase-shift vector for UL WIT.
Based on this scheme, (P4’) is transformed into the following
optimization problem (P5)

max
τ0,{tk},{pk},v0

J�
Ψ(k)=1

tΨ(k) log2

�
1 +

pΨ(k)γΨ(k)

σ2

�

+
K�

Ψ(k)=J+1

tΨ(k) log2

×
�

1 +
pΨ(k)|hH

d,Ψ(k) + qH
Ψ(k)v0|2

σ2

�
(32a)

s.t. pΨ(k)tΨ(k)

≤ ηΨ(k)PA|hH
d,Ψ(k) + qH

Ψ(k)v0|2τ0, ∀k,
(32b)

|[v0]n| = 1, n = 1, . . . , N, (32c)

τ0 +
K�

Ψ(k)=1

tΨ(k) ≤ Tmax, (32d)

τ0 ≥ 0, tΨ(k) ≥ 0, pΨ(k) ≥ 0, ∀k. (32e)

Note that objective function of (P5) is a combination of
those in problem (11) and problem (13) with the same set of
constraints. In particular, when J = K or J = 0/J = 1, (P5)
is exactly the same as (P3) or (P1)/(P2). By substituting (32b)
into the objective function to eliminate pΨ(k)’s and introducing
slack variables SΨ(k) and UΨ(k), we can transform (P5) to

max
τ0,{tΨ(k)},v̄0
SΨ(k),UΨ(k)

J�
Ψ(k)=1

tΨ(k) log2

�
1 +

SΨ(k)

tΨ(k)σ2

	

Fig. 4. Sum throughput versus the HAP transmit power.

+
K�

Ψ(k)=J+1

tΨ(k) log2

�
1 +

UΨ(k)

tΨ(k)σ2

	

(33a)

s.t. SΨ(k) ≤ ηΨ(k)PAγΨ(k)|q̄H
Ψ(k)v̄0|2τ0, ∀k, j, (33b)

UΨ(k) ≤ ηΨ(k)PA|q̄H
Ψ(k)v̄0|4τ0, ∀k, j, (33c)

τ0 ≥ 0, tΨ(k) ≥ 0, ∀k, (32d), (33d)

|[v̄0]n| = 1, n = 1, . . . , N + 1, (33e)

where v̄0 = [vH
0 1]H and q̄H

Ψ(k) = [qH
Ψ(k) h

H
d,Ψ(k)]. Note that

non-convex constraints (33b) and (33c) have the same form
as constraints (22c) and (14b), respectively, thus they can be
similarly transformed into approximate convex constraints by
exploiting the aforementioned SCA based techniques. Then,
by relaxing the unit-modulus constraints in (33e), we can
successively solve the resulting convex optimization prob-
lem until convergence is achieved and then reconstruct the
unit-modulus phase-shift vectors by subtracting the phases
as (19) in Section II-B.

D. Complexity Analysis

The computational complexities of the above two algorithms
are analyzed as follows. Specifically, the general algorithm
needs to optimize more optimization variables and its com-
plexity is given by O 
(N + 3K)0.5(N + 5K)3(J + 1)3.5

�
based on the analytical results in [38], whereas the
low-complexity algorithm mainly needs to solve (P5) with
only one IRS phase-shift vector, which results in a complexity
given by O((N+2.5K)0.5(N+3K)3). As such, the computa-
tional complexity is reduced by about (J +1)3.5 times, which
is significant especially when J is large. This is attributed to
the idea drawn from Proposition 2.

V. SIMULATION RESULTS

In this section, numerical results are provided to validate the
effectiveness of the proposed algorithms and to draw useful
insights into IRS-aided WPCNs. The HAP and IRS are located
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Fig. 5. Impact of transmit power at the HAP on WPCNs.

at (0, 0, 0) meter (m) and (10, 0, 4) m, respectively, and
the devices are randomly and uniformly distributed within
a radius of 1.5 m centered at (10, 0, 0) m. The pathloss
exponents of both the HAP-IRS and IRS-device channels
are set to 2.2, while those of the HAP-device channels are
set to 3.4. Furthermore, Rayleigh fading is adopted as the
small-scale fading for all channels. The signal attenuation
at a reference distance of 1 m is set as 30 dB. Unless
otherwise stated, other system parameters are set as follows:
ηk = 0.8, ∀k, σ2 = −80 dBm, Tmax = 1 s, N = 50, K = 10,
and PA = 40 dBm.

A. Impact of HAP’s Transmit Power

In Fig. 4, we plot the system sum throughput versus
the transmit power at the HAP. For comparison, we con-
sider the following schemes: 1) Upper bound: By relaxing
rank(W0) = 1, we solve (P1’) Section III-A successively
until convergence, which serves as a performance upper
bound; 2) User-adaptive beamforming: Gaussian random-
ization is applied to obtain a rank-one W0 to (P1’) based
on the solution of the scheme in 1); 3) UL-adaptive/Static
IRS beamforming: the approach in Section III-B; 4) Generic
joint optimization algorithm: the approach in Section IV-B;
5) Generic low-complexity algorithm: the approach in
Section IV-C; 6) Random IRS phase shifts: time allocation
is optimized with random phase shifts; and 7) Without IRS.

From Fig. 4, it is observed that our proposed designs
can significantly improve the sum throughput as compared to
the cases with random phase shifts at the IRS and without
IRS, with the performance gap increasing as PA increases.
This is expected since the efficiencies of both DL WPT and
UL WIT can be boosted by exploiting the smart reflection
of IRS. In particular, the scheme with random IRS phase
shifts only achieves a negligible throughput gain over the
scheme without IRS. Furthermore, it is also observed that our
proposed generic designs in the case of J = K can achieve the

Fig. 6. Sum throughput versus the number of IRS elements.

same performance as the special case with user-adaptive IRS
beamforming and near-optimal performance as compared to
the upper bound. This demonstrates the generality of proposed
dynamic IRS beamforming optimization framework and also
the effectiveness of the proposed algorithms. Finally, compared
to the user-adaptive IRS beamforming scheme, the static IRS
beamforming scheme suffers performance loss due to its use
of the same phase-shift vector for both DL WPT and UL
WIT of multiple devices, which is less flexible in channel
reconfiguration.

In Figs. 5(a) and 5(b), we show the effect of PA on the
optimized DL WPT duration and system energy consumption
at the HAP, respectively. It is noted that although increasing
PA can reduce the DL WPT duration τ0 (shown in Fig. 5(a)),
the total transmit energy consumption at the HAP given by
EHAP = PAτ0 is increased significantly (shown in Fig. 5(b)),
especially for large PA. This suggests that increasing PA to
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Fig. 7. Impact of number of IRS elements on WPCNs.

improve the sum throughput improvement in Fig. 4 is in fact at
the cost of excessive transmit energy consumption at the HAP,
which, however, may not be a green and sustainable approach
to support the throughput growth of future WPCNs, especially
considering the practical limitation on PA.

B. Impact of Number of IRS Elements

In Fig. 6, we plot the system sum throughput versus
the number of IRS elements. First, it is observed that the
sum throughput of IRS-aided WPCNs achieved by our pro-
posed designs increases as N becomes larger and our pro-
posed low-complexity algorithm is able to achieve almost
the same performance as the general algorithm for a wide
range of N . Moreover, the sum throughput gap between the
user-adaptive and static IRS beamforming schemes becomes
large as N increases. This is expected since employing the
same phase-shift vector in both DL and UL prevents the
IRS unleashing its full potential beamforming gain over time,
which becomes more pronounced for large N . This demon-
strates the necessity of well-optimized IRS phase shifts for
WPCNs with large IRSs.

However, it is worth pointing out that different from the
approach of increasing PA in Section V-A, increasing N not
only significantly improves the system throughput, but also
reduces the transmit energy consumption at the HAP, regard-
less of employing different dynamic beamforming schemes
with our proposed designs. This can be observed explicitly
in Fig. 7(a) where we plot the optimized DL WPT duration
τ0 versus N under different schemes. Since PA is a fixed
value here, a decreased DL WPT duration τ0 suggests a lower
transmit energy consumption at the HAP, i.e., EHAP = PAτ0.
Meanwhile, reducing the DL WPT duration τ0 also allows
wireless-powered devices to have more available time for
UL WIT, which helps increase the system throughput as
well. Moreover, despite the decrease of τ0, one can observe
from Fig. 7(b) that the users’ harvested energy, i.e., Eh

k =
ηkPA|hH

d,k +qH
k v0|2τ0, even increases as N increases. This is

solely attributed to the deployment of IRS for improving the
WPT efficiency in DL via strengthening the effective channel
power gain |hH

d,k +qH
k v0|2. All the above discussions indicate

that incorporating IRS into WPCNs leads to a highly spectral
and energy efficient architecture.

C. Impact of Dynamic IRS Beamforming

In Fig. 8, we study the impact of dynamic IRS beamforming
on WPCNs, by plotting the sum throughput and the DL
WPT duration versus the number of IRS phase-shift vectors
available, i.e., J , respectively. It is first observed from Fig. 8(a)
that for both cases with K = 5 and K = 10, the throughput
achieved by our proposed algorithm increases as J increases
when J ≤ K , which demonstrates that exploiting dynamic
IRS beamforming is indeed beneficial for the throughput
improvement of WPCNs. Furthermore, one can observe that
the proposed low-complexity algorithm is able to achieve
similar throughput as the joint optimization approach, which
thus it a more appealing for practical systems, considering its
significantly reduced computational complexity as analyzed
in Section IV-D. In particular, when J is sufficiently large,
e.g., J > 8 for K = 10, our proposed low-complexity algo-
rithm even achieves slightly higher throughput than the joint
optimization approach. This is mainly because the joint opti-
mization approach does not capture the fundamental insights
provided in Proposition 2.

However, one can observe that as J increases, the through-
put gain obtained by dynamic IRS beamforming becomes
gradually saturated. In particular, for K = 10 (K = 5),
employing a total number of J = 5 (J = 3) phase-shift
vectors is almost able to achieve the maximum throughput for
IRS-aided WPCNs and further increasing J only brings mar-
ginal performance gain. Note that the number of phase-shift
coefficients to be sent from the HAP to the IRS controller
is given by JN , which linearly increases with J . This thus
suggests a fundamental performance-cost tradeoff in exploiting
the dynamic IRS beamforming, which needs to be properly
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Fig. 8. Impact of dynamic IRS beamforming on WPCNs.

Fig. 9. System sum/individual user throughput versus IRS’s horizontal
location.

compromised especially for practically large N . Finally, for
K = 5, we observe that the throughput achieved by the joint
optimization algorithm with J > 5 remains constant, which
is consistent with the discussion following Proposition 2 in
Section IV-C that at most J = K phase-shift vectors are
sufficient to maximize the throughput of IRS-aided WPCNs.

From Fig. 8(b), it is observed that as J increases, the
optimized DL WPT duration decreases, which means that
the total system energy consumption at the HAP can also be
accordingly reduced. This further demonstrates the usefulness
of dynamic IRS beamforming, besides its capability of improv-
ing the sum throughput of IRS-aided WPCNs.

D. Impact of IRS Deployment on Doubly-Near-Far Problem

One fundamental problem residing in a WPCN is the
well-known “doubly-near-far” phenomenon [35] where a

device that is far away from the HAP harvests less energy in
the DL WPT but consumes more to transmit information in the
UL WIT than that of a device nearer to the HAP. As a result,
the throughput of a far device may only have significantly
lower throughput than a nearby device, leading to a severe user
unfair issue in WPCNs. Fortunately, it can be well alleviated
by properly deploying the IRS. To illustrate this, we show in
Fig. 9 the sum throughput and devices’ throughput versus the
IRS’s horizontal location, i.e., (x, 0, 0) m, by considering a
WPCN with two devices, namely D1 and D2, who are located
in (7, 0, 0) m and (10, 0, 0) m, respectively. It is observed from
Fig. 9 that without IRS, the throughput of D1 outperforms that
of D2 significantly as expected, whereas by deploying the IRS
around the far device (D2), the throughputs of the two devices
can be well compromised and both of them are much higher
that those in the case without IRS. This is because the IRS is
able to effectively compensate more path loss for the device
far from the HAP as compared to the nearby device, which
helps resolve the user unfairness issue incurred by “doubly-
near-far” phenomenon.

VI. CONCLUSION

In this paper, we aimed at a novel dynamic IRS beamform-
ing framework to maximize the system sum throughput by
jointly optimizing the IRS phase shifts and resource allocation
for DL WPT and UL WIT. Specifically, we first studied three
special cases of dynamic IRS beamforming and established
their fundamental relationships. In particular, the UL-adaptive
IRS beamforming and static IRS beamforming schemes were
unveiled to achieve the same performance whereas the latter
involves a smaller number of optimization variables with less
signalling overhead. Furthermore, to provide high flexibility
in balancing between the performance gain of dynamic IRS
beamforming and its resulting signalling overhead as well
as computational complexity, we propose two algorithms to
address the general optimization problem with any given
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number of IRS phase-shift vectors. Numerical results demon-
strated the effectiveness of the proposed designs with IRS
over various benchmark schemes. Moreover, it was found that
exploiting the large-size IRS with dynamic beamforming not
only significantly improves the system throughput but also
effectively reduces the transmit energy consumption at the
HAP at the same time, thus rendering IRS-aided WPCN a
promising architecture with high spectral and energy effi-
ciency. Finally, using partially dynamic IRS beamforming with
a limited number of phase-shifts vectors can be a practically
appealing approach considering the performance-cost tradeoff,
especially for WPCNs with practically large IRSs.

APPENDIX A
PROOF OF PROPOSITION 1

To prove Proposition 1, we only need to prove R∗
User−adp ≥

R∗
UL−adp and R∗

UL−adp = R∗
Static, respectively. Note that (P2)

is a special case of (P1) with vk = vm, ∀k 
= m, k ≥ 1,
m ≥ 1. As such, the optimal solution to (P2) is also a feasible
solution to (P1), which yields R∗

User−adp ≥ R∗
UL−adp.

We next prove R∗
UL−adp = R∗

Static. First, it can be readily
shown that in the optimal solution to (P2), constraint (5b) is
met with equality. Then, the objective function of (P2) can be
written as
K�

k=1

τk log2

�
1 +

ηkPAτ0|hH
d,k + qH

k v0|2|hH
d,k + qH

k v1|2
σ2τk

�
.

(34)

The key to proving R∗
UL−adp = R∗

Static lies in splitting
the upper bound of the objective function in (P2) into two
independent terms, which are the functions of v0 and v1,
respectively. To this end, we provide the following lemma
to facilitate the proof, which can be obtained with simple
algebraic operations.

Lemma 2: For any arbitrary numbers a ≥ 0 and b ≥ 0,
it follows that 1 + ab ≤ �(1 + a2)(1 + b2) and the equality
holds if and only if a = b.
Let f(v) � |hH

d,k + qH
k v|2/�ηkPAτ0/(σ2τk) and denote by

v∗ the vector maximizing f(v) subject to constraints |[v]n| =
1, ∀n. Then, we can establish the following inequalities for the
objective function in (34)
K�

k=1

τk log2 (1 + f(v0)f(v1))

(a)

≤
K�

k=1

τk log2

��
(1 + f2(v0))(1 + f2(v1))

�

=
K�

k=1

τk log2

��
1 + f2(v0)

�

+
K�

k=1

τk log2

��
1 + f2(v1)

�
(b)

≤
K�

k=1

τk log2



1 + f2(v∗)

�
, (35)

where (a) is based on Lemma 2 and the equality holds when
v0 = v1, and (b) holds due to the optimality of v∗ in

maximizing f(v) and the equality holds when v0 = v1 = v∗.
Based on (35), we have v0 = v1 holds in the optimal solution
to (P2), which means that (P2) is simplified to (P3) with
R∗

UL−adp = R∗
Static. This thus completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

We show this proof by contradiction. Suppose that S∗ =
τ∗0 , {t∗k,j}, {p∗k,j},v∗

0 , {v∗
j }
�

achieves the optimal solution
to (P4) and there exists a device m who performs its UL
WIT employing two IRS phase-shift vectors indexed by m�

and 	, 	 
= m�, i.e., t∗m,m� > 0, p∗m,m� > 0 and t∗m,� > 0,
p∗m,� > 0, with ψm,m� � |hH

d,m + qH
mv∗

m� |2 > ψm,� �
|hH

d,m +qH
mv∗

� |2. Then, we construct a different solution S� =
τ�
0 , {t�k,j}, {p�

k,j},v�
0 , {v�

j }
�

where τ�
0 = τ∗0 , v�

0 = v∗
0 ,

v�
j = v∗

j , and

t�k,j =

⎧⎪⎨
⎪⎩
t∗m,m� + t∗m,�, k = m, j = m�,

0, k = m, j 
= m�,
t∗k,j , k 
= m, 0 ≤ j ≤ J,

(36)

p�
k,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗m,m�t∗m,m� + p∗m,�t
∗
m,�

t∗m,m� + t∗m,�

, k = m, j = m�,

0, k = m, j 
= m�,
p∗k,j , k 
= m, 0 ≤ j ≤ J.

(37)

It can be verified that the newly constructed solution S� is
also a feasible solution to (P4) as it satisfies all the constraints
therein. Since the time and transmit power solutions in UL
WIT for any device k 
= m remain unchanged in (36) and (37),
the UL throughput of device m achieved by S� is the same
as that achieved by S∗. Thus, we only focus on the UL
throughput of device m via phase-shift vector m�, which
satisfies the following inequalities

t�m,m� log2

�
1 +

p�
m,m�ψm,m�

σ2

	

= (t∗m,m� + t∗m,�) log2

�
1 +

(p∗m,m� + p∗m,�)ψm,m�

(t∗m,m� + t∗m,�)σ2

�

(a)

≥ t∗m,m� log2

�
1 +

p∗m,m�ψm,m�

t∗m,m�σ2

�

+ t∗m,� log2

�
1 +

p∗m,�ψm,m�

t∗m,�σ
2

�

(b)
> t∗m,m� log2

�
1 +

p∗m,m�ψm,m�

t∗m,m�σ2

�

+ t∗m,� log2

�
1 +

p∗m,�ψm,�

t∗m,�σ
2

�
, (38)

where inequality (a) holds due to the concavity of x log2(1+
y
x) and strict inequality (b) holds due to ψm,m� > ψm,�,
	 
= m�. This means that the constructed solution S� achieves a
higher sum throughput than S∗ which contradicts the assump-
tion that S∗ is optimal. This thus completes the proof.
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