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Task Offloading in Hybrid Intelligent Reflecting
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Abstract— This paper investigates the task offloading problem
in a hybrid intelligent reflecting surface (IRS) and massive
multiple-input multiple-output (MIMO) relay assisted fog com-
puting system, where multiple task nodes (TNs) offload their
computational tasks to computing nodes (CNs) nearby massive
MIMO relay node (MRN) and fog access node (FAN) via the
IRS for execution. By considering the practical imperfect channel
state information (CSI) model, we formulate a joint task offload-
ing, IRS phase shift optimization, and power allocation problem
to minimize the total energy consumption. We solve the resultant
non-convex optimization problem in three steps. First, we solve
the IRS phase shift optimization problem with the sequential
rank-one constraint relaxation (SROCR) algorithm and semi-
definite relaxation (SDR) algorithm for a given power- and
computational resource allocation. Then, we exploit a differential
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convex (DC) optimization framework to determine the power
allocation decision that minimizes the total energy consumption.
Given the IRS phase shifts, the computational resources, and
the power allocation, we propose an alternating optimization
algorithm for finding the jointly optimized results. The simulation
results demonstrate the effectiveness of the proposed scheme
as compared with other benchmark schemes, and the energy
efficient offloading strategy for the proposed fog computing
system can be chosen according to the asymptotic form of the
effective signal-to-interference-plus-noise ratio (SINR).

Index Terms— Task offloading, massive MIMO relay, intelli-
gent reflecting surface, energy efficiency.

I. INTRODUCTION

W ITH the rapid development of Internet of Things (IoT),
an exponentially increasing number of intelligent

devices are being connected to the network [1], [2]. Mean-
while, because of the striking growth of mobile computation-
intensive applications (e.g., online gaming), limited battery
capacity and finite computation capacity of mobile devices
pose critical challenges for the next generation wireless net-
works. By enabling flexible computation and communication
resource sharing, fog computing (FC) as a promising tech-
nique has been proposed to offload computation intensive
tasks to be executed by the nearby servers at the edge of
cellular networks [3], [4]. As mobile data traffic demand is
explosively increasing, massive multiple-input multiple-output
(MIMO) and ultra dense heterogeneous networks (HetNets)
have been proposed to enhance the system spectral effi-
ciency (SE) and energy efficiency (EE) [5]–[8]. In addition,
massive MIMO is capable of significantly improving the data
rate of computational task offloading as well as the task
execution efficiency. While massive MIMO has been mainly
regarded as a technology for large and costly cellular base
stations (BSs), the current technology trend considers higher
and higher carrier frequencies and mass production for dense
deployment, with corresponding decreasing size and costs. It is
therefore expected that, in the near future, it will be possible to
implement small and inexpensive massive MIMO nodes, each
of which serving on average a relatively small number of users.
However, massive MIMO systems generally require increased
energy consumption and hardware cost, due to the need of
installing increasingly more active antennas and/or more costly
radio frequency chains operating at higher frequency bands.

A variety of sophisticated wireless communication tech-
nologies have been proposed for next generation wireless
networks, including massive MIMO and intelligent reflecting
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surface (IRS). In the next generation new radio (NR) standard,
reaching out beyond 6 GHz, the coverage area of each base
station (BS) is significantly reduced [9], as high-frequency
signals are sensitive to blockage effects [10] of obstacles, e.g.,
trees and buildings. On the other hand, the devices at the
cell edge and/or behind line-of-sight (LoS) blockages usually
suffer from low offloading rates, which increases both the
latency and the energy consumption of computation offload-
ing [11]. In order to circumvent the above limitations, IRS
has been proposed as a cost-effective solution for potentially
achieving high spectrum and energy efficiency via only low-
cost reflecting elements [12]–[18]. Due to the combining of
array aperture gain and the reflection-aided beamforming gain,
IRS is capable of improving the success rate of the task
offloading, hence improving the potential of FC systems. For
the array aperture gain, it is generally achieved by combin-
ing both the direct and IRS-reflected signals. While for the
reflection-aided beamforming gain, it is realized by controlling
the phase shift of each IRS element. Given the potential gains,
if the direct LoS link between the task offloading nodes and
computing nodes is blocked by obstacles, the task can be
offloaded via the IRS reflected link. Explicitly, reflection-based
beamforming gain can be realized by jointly optimizing the
IRS’s phase shifts, for enhancing the offloading rate of the
devices at the cell edge. Thus, IRS and massive MIMO will
be the key technologies for next generation wireless networks,
and FC combining next generation wireless networks holds
great promise for many applications. In [19], [20], the authors
have studied the impact of the IRS and the massive MIMO
techniques on computational performance in a fog computing
system, which have demonstrated the benefits of the IRS and
massive MIMO to improve the computational offloading in
the fog computing system, in comparison to the benchmark
schemes. However, since most of the contributions on massive
MIMO and IRS have been considered separately, there is
a paucity of literature on hybrid massive MIMO and IRS.
In order to exploit the benefits of massive MIMO and IRS,
the multi-hop computing consists of massive MIMO relay
node (MRN) computing and fog access node (FAN) computing
will have new paradigm shifts for local intelligent services.
This new computing paradigm will largely enhance network
resilience, distributed computing and processing, and realize
lower latency. Motivated by the above, we focus on investi-
gating the role of massive MIMO and IRS in FC systems in
this paper.

A. Related Works

In order to address the latency and energy efficiency issues,
FC has been proposed to offload the computational tasks to be
executed by the nearby servers with the powerful computing
capability. Recently, task offloading has gained increasing
attention in a diverse range of FC scenarios [3], [4], [21].
In particular, Chen et al. [22] proposed a game theoretic
approach for the computation offloading decision making
problem among multiple devices for mobile-edge cloud com-
puting. As a further extension, Wang et al. [23] presented
an alternating direction method of multipliers (ADMM)-based
decentralized algorithm for computation offloading, resource

allocation and content caching optimization in heterogeneous
wireless cellular networks. Wang et al. [3] proposed a non-
orthogonal multiple access (NOMA)-based FC framework for
industrial Internet of things (IIoT) systems, where multiple
task nodes offload their tasks via NOMA to multiple nearby
helper nodes for execution. Yang et al. [24], [25] formulated
and studied a generalized Nash equilibrium problem (GNEP)
for task offloading, which effectively mapped multiple tasks or
task nodes (TNs) into multiple helper nodes (HNs) to minimize
every task’s service delay in a distributed manner.

Leveraging a very large number of antennas at the BS, mas-
sive MIMO can significantly improve cell-throughput along
with energy efficiency [26]. As expected, the integration of
FC and massive MIMO can enhance the performance of
task offloading in multi-user FC systems [20], [27], [28].
Resource allocation for peer offloading in fog-assisted massive
MIMO networks has been widely studied. Wang et al. [20]
proposed a massive MIMO-enabled task offloading frame-
work, where multiple task nodes rely on task offloading via
a massive MIMO-aided FAN to multiple computing nodes.
Hao et al. [27] studied an energy-efficient multi-user compu-
tation offloading problem in massive MIMO enabled hetero-
geneous networks, and proposed a low-complexity alternating
optimization algorithm for the joint optimization of the com-
putational frequency of mobile devices, uplink transmit power,
computational task offloading ratio and uplink transmit dura-
tion. Zeng et al. [28] employed massive MIMO to minimize
the maximum delay for offloading and computing among all
users, which requires a joint allocation of communication and
computational resources. More specifically, the authors in [29]
explored an edge computing-enabled cell-free massive MIMO
system and analyzed the impact of the successful computation
probability on the total energy consumption using queueing
theory and stochastic geometry.

Although the aforementioned studies have demonstrated the
benefits of massive MIMO-based FC, they have not taken into
account the IRS in resource allocation and task offloading.
By combining the array aperture gain and the reflection-
aided beamforming gain, IRS is capable of boosting the data
offloading success rate, and improving the potential of FC
systems [30]. In order to exploit the benefits of IRS in wireless
communications, extensive research efforts have been invested
into ergodic capacity analysis [31], channel estimation [32],
and practical reflection phase shift modeling [33], as well as
the associated passive beamforming design in various appli-
cations [12], [34], [35]. However, the resultant optimization
problems are challenging to be solved, as the optimization
variables are intricately coupled. Furthermore, all the existing
contributions consider the single-antenna and multiple-antenna
aided IRS scenario. Owing to the rapid developments in
massive MIMO FC [36], which is being increasingly adopted
in IRS framework.

B. Main Contributions

In this contribution, we propose a novel hybrid FC archi-
tecture that amalgamates the benefits of both the IRS and
the MRN. The nodes referred to the parlance as TNs
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have computationally-intensive applications to run, and hence
request the multi-hop offloading of their computational tasks
via the IRS to the MRN and remote FAN. After establishing
the total offloading energy consumption, we formulate a joint
task offloading, IRS phase shift optimization, and power allo-
cation problem. The objective is to minimize the total energy
consumption including the transmit and computation energy
consumptions. Since the optimization problem is non-convex
and the variables are intricately coupled, it is challenging
to obtain an optimal solution with a polynomial complexity.
To this end, we solve the task offloading, IRS phase shift, and
power allocation problem by using the alternating optimization
technique for decoupling the communication and computation
designs. The main contributions of this paper are summarized
as follows.

• We develop a novel hybrid massive MIMO and IRS-
aided task offloading framework, where multiple TNs
offload their computational tasks to MRN and FAN via an
IRS. We formulate an energy minimization problem by
jointly optimizing the IRS phase shift and the allocation
of tasks, computational resource, and power. In particular,
we consider the practical case with imperfect channel
state information (CSI) and obtain the robust power
allocation results.

• We partition the original optimization problem into three
subproblems, namely, task and computational resource
allocation subproblem, IRS phase shift optimization
subproblem, and MRN power allocation subproblem.
To tackle the non-convexity regarding the phase-shift
vectors, we transform the phase shift optimization prob-
lem into a semidefinite programming problem (SDP),
which can be solved by the sequential rank-one constraint
relaxation (SROCR) algorithm and the semidefinite relax-
ation (SDR) algorithm. We formulate the power alloca-
tion subproblem as a non-convex optimization problem,
and propose a differential convex (DC) optimization
framework for the power allocation optimization. Based
on the task, computational resource, IRS phase shifts, and
power allocations, we propose an alternating optimiza-
tion algorithm for finding the jointly optimized results.
Furthermore, we prove the convergence of the proposed
iterative algorithm.

• We elaborate on the impact of various parameters such
as the number of IRS elements and the number of MRN
antennas on the received signal-to-interference-plus-noise
ratio (SINR). Our results demonstrate that the proposed
algorithm achieves significant performance improvements
over the benchmarks in terms of the total energy con-
sumption.

C. Organization and Notations

The rest of the paper is organized as follows. Section II
describes the system model and problem formulation.
In Section III, we formulate an IRS phase shift optimization
problem. In Section IV, we optimize the task offloading,
computational resource allocation, IRS phase shift, and power
allocation by proposing an alternating optimization algorithm

Fig. 1. Illustration of a massive MIMO and IRS-aided FC network, where
K task nodes offload their tasks to a MRN and a FAN with the aid of IRS.

for massive MIMO and IRS-aided FC networks. In Section V,
we present the simulation results. Finally, the paper is con-
cluded in Section VI.

Matrices and vectors are denoted by capital and lower-case
boldface letters, respectively. CM×N and RM×N denote the
sets of all M × N complex-valued matrix and real-valued
matrix, respectively. (·)H, (·)†, Tr(·) and E(·) denote the
conjugate transpose, pseudo-inverse, trace and the expecta-
tion, respectively. i.i.d. stands for independent and identically
distributed. a ∼ CN (0, Γ) denotes a circularly symmetric
complex Gaussian variable with zero-mean and covariance Γ.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the network model of
the massive MIMO and IRS-aided FC networks, and then
formulate the total energy consumption minimization problem.

A. Network Model

As shown in Fig. 1, we consider an IRS-aided FC network
that operates in a time-division duplex scenario and comprises
K task nodes, a decode-and-forward (DF) MRN with M
antennas (M � K), an IRS with finite N reflecting elements,
and an FAN with L antennas. The computing node (CN) and
the FAN are assumed to be co-located and connected using
a high-throughput low-latency optical fiber. Hence, the data
communication between the FAN and CN is assumed to be
delay-free. Similarly, the computational tasks are offloaded to
the CN constituted by nearby MRN, and the CN and the MRN
are also co-located and connected using high-throughput low-
latency optical fiber. Then, the latency imposed by the data
communication between the MRN and the CN is also deemed
to be negligible. In this paper, we assume that the FAN to the
TNs are assumed to be blocked by obstacles. Then, each TN
can either offload its task to the MRN for computation via the
IRS or to the intended FAN for computation via the IRS and
MRN. Furthermore, we assume that the TNs and FAN are far
from each other and there is no direct link between them.

The task offloading process consists of two hops, i.e., TNs
task transmission hop and MRN task relaying hop. During the
first hop, the TNs transmit their tasks to both MRN and IRS,
where the latter reflects the incident tasks toward MRN (i.e.,
TN → IRS phase, IRS → MRN phase, and TN → MRN
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phase). We assume that the power of signals that are reflected
by the IRS more than once is very small and can be
ignored [12]. Let matrix Θ = diag(η1ejθ1, . . . , ηNejθN) con-
trol the reflection coefficients of the IRS elements, where
ηn ∈ [0, 1] and θn ∈ [0, 2π) are the reflection amplitude
and phase-shift for the nth reflecting element, respectively.
During the second hop, the MRN transmits the remaining
tasks to both IRS and FAN, and the IRS reflects the signals
towards FAN (i.e., MRN → IRS phase, IRS → FAN phase,
and MRN → FAN phase). Similarly, let diagonal matrix
Φ = diag(ζ1ejφ1 , . . . , ζKejφN) control the IRS operation
during the second hop, where ζn and φn are the reflection
amplitude and phase-shift for the nth reflecting element,
respectively. It is assumed that the IRS phase shift setting is
calculated at the MRN in accordance with both the channel
and computing dynamics. Then, the phase shifts are sent to
the IRS controller along the dedicated channel. In practice,
it is costly to implement independent control of the reflection
amplitude and phase shift simultaneously [12], [15]. As such,
we assume the reflection amplitudes ηn, ζn = 1, ∀n for
simplicity.

B. Channel Model

Let HR = [hT
R,1, . . . ,h

T
R,K ] ∈ CM×K denote the M × K

channel coefficient matrix from K TNs to the MRN, where
the kth element hR,k denotes the channel coefficient vector
between the kth TN and MRN, k = 1, 2, . . . , K . Addition-
ally, let HS = [hT

S,1, . . . ,h
T
S,K ] ∈ CN×K and HI denote

the K × N channel coefficient matrix from K TNs to the
IRS and the M × N channel coefficient matrix from the
IRS to the MRN, respectively, where the kth element hS,k

denotes the channel coefficient vector between the IRS and
the kth TN, k = 1, 2, . . . , K . Similarly, during the second
hop task offloading, HD, HRS and HSD denote the channel
coefficient matrices of the links from the MRN to the FAN,
from the MRN to the IRS and from the IRS to the FAN,
respectively.

In order to optimize the transmit power allocation vector
p = [p1, . . . , pK ] at the MRN and IRS phase shifts, CSI is
needed at the MRN, which is assumed to be perfectly available
in most prior works. Perfect CSI acquisition, however, is a
critical challenge due to the hardware constraint of passive
RIS elements. Consequently, we assume that the CSI in each
hop is imperfectly known at the MRN. Let ĤR denote the
estimated channel coefficient matrix of the link from TNs to
the MRN. In this context, the TNs to MRN channel can be
modeled as [37]

HR =
√

1 − τ2
RĤR + τRΩR, (1)

where ΩR ∈ C
K×M has i.i.d entries with zero mean and

unit variance independent of the estimated channel matrix ĤR,
and parameter τR ∈ [0, 1] indicates the estimation accuracy or
quality of the channel matrix HR.

As for the task computation, the FAN can execute either
all tasks after receiving all of them or some tasks while still
receiving more tasks. Given the overlapped arrival order of
tasks at the FAN, the overlapping nature of the computing

task makes the analysis intractable. As a result, we consider
that the FAN only starts to execute the task received from
the TNs after receiving all tasks. In the first hop, all TNs
simultaneously transmit their symbols to the IRS and MRN in
a single time slot, which is given by

x =
√

Pts, (2)

where Pt is the transmit power of each TN,1 and
s = [s1, · · · , sK ]T is the transmit symbol vector with
E(ss†) = IK , and sk is the symbol delivered from the kth
TN. The signal yR ∈ CM×1 received at the MRN is

yR = (HR + HSΘHI)x + nR, (3)

where nR ∈ CM×1 is the zero-mean additive white Gaussian
noise (AWGN) at the MRN with a variance of E(nRnH

R) =
σ2

rIM . Given the knowledge of perfect receiver CSI (CSIR)
with training and imperfect transmitter CSI (CSIT), the MRN
precodes its received signal yR and obtains the filtered signal
vector xR ∈ CM×1 as

xR = ŴyR, (4)

where Ŵ ∈ CM×M is the decoding matrix. For simplicity,
we define the effective channel gain of MRN as follows:

G = HR + HSΘHI . (5)

There are many ways of designing the linear receiver.
Since receiver design is not the focus of this paper, we use
the zero-forcing (ZF) receiver [40] in its simplicity and the
assumption of ZF receiver eases the subsequent theoretical
derivations to offer clear insights. Then, the MRN performs
ZF precoding, the decoding matrix of the MRN can be
written as

Ŵ = Ĝ†, (6)

where Ĝ = ĤR + ĤSΘĤI and Ĝ† = (ĜHĜ)−1ĜH. Then,
we have

G =
√

1 − τ2
RĤR + τRΩR

+ (
√

1 − τ2
SĤS + τSΩS)Θ(

√
1 − τ2

I ĤI + τIΩI)

=
√

1 − τ2
R

√
1 − τ2

S

√
1 − τ2

I Ĝ + τRΩR + τSτIΩSΘΩI

+ τI

√
1 − τ2

SĤSΘΩI + τS

√
1 − τ2

I ΩSΘĤI (7)

1We mainly focus on the optimization of power allocation for the MRN,
and the assumption of fixed TN transmission power eases the subsequent
theoretical derivations to offer clear insights. The authors in [38] also consider
the same transmit power for each user. It is noted that for non-massive MIMO
relay some existing work suggests a joint relay and user equipment (UE)
power allocation for energy efficiency (EE) optimization [39]. The joint power
allocation among MRN and TNs may further improve the EE performance
of the massive MIMO relay systems as well, but due to limited space, this
interesting work is left as a future study.
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1) Received SINR at MRN: Given (1) and (6), the signal
vector received at the MRN can be rewritten as

xR = (ĜHĜ)−1ĜHGx + (ĜHĜ)−1ĜHnR

= (ĜHĜ)−1ĜH

(√
1−τ2

R

√
1 − τ2

S

√
1 − τ2

I Ĝ + τRΩR

+ τSτIΩSΘΩI + τI

√
1 − τ2

SĤSΘΩI

+ τS

√
1 − τ2

I ΩSΘĤI

)
x + (ĜHĜ)−1ĜHnR

=
√

1 − τ2
R

√
1 − τ2

S

√
1 − τ2

I x + (ĜHĜ)−1ĜH (τRΩR

+ τSτIΩSΘΩI + τI

√
1 − τ2

SĤSΘΩI

+ τS

√
1 − τ2

I ΩSΘĤI

)
x + (ĜHĜ)−1ĜHnR. (8)

According to (8), the signal received for the kth TN is

xR,k =
√

Pt(1−τ2
R)(1−τ2

S)(1 − τ2
I )sk + ωkx + gknR, (9)

where ωk and gk are the kth rows of

(ĜHĜ)−1ĜH

(
τRΩR + τSτIΩSΘΩI +τI

√
1−τ2

SĤSΘΩI

+ τS

√
1 − τ2

I ΩSΘĤI

)
(10)

and (ĜHĜ)−1ĜH, respectively. The received SINR of the kth
data stream at the MRN is given by

γR,k =
(1 − τ2

R)(1 − τ2
S)(1 − τ2

I )Pt

Pt(ωkωH
k ) + σ2

r (gkgH
k )

. (11)

2) Received SINR at FAN: During the second hop, the MRN
transmits the decoded signal to the IRS and the FAN, where
IRS reflects the incident signal towards FAN to be added
constructively with the direct link from MRN. Therefore, after
successfully decoding xk at the MRN, the received signal at
FAN can be given by

yD = (HD + HRSΦHSD)ps + nD, (12)

where nD ∈ CK×1 is the zero-mean AWGN at the FAN with
a variance of E(nDnH

D) = σ2
rIK . Similarly, we define the

effective channel gain of MRN as follows:

GD = HD + HRSΦHSD. (13)

The decoding matrix of the FAN can be written as

ŴD = Ĝ†
D, (14)

where ĜD = ĤD+ĤRSΦĤSD and Ĝ†
D = (ĜH

DĜD)−1ĜH
D.

Given (12), (13) and (14), the signal received at the FAN
can be derived as

xD

= (ĜH
DĜD)−1ĜH

DGDps + (ĜH
DĜD)−1ĜH

DnD

= (ĜH
DĜD)−1ĜH

D

(√
1−τ2

D

√
1−τ2

RS

√
1−τ2

SDĜ+τDΩD

+ τRSτSDΩRSΦΩSD + τSD

√
1 − τ2

RSĤRSΦΩSD

+ τRS

√
1−τ2

SDΩRSΦĤSD

)
ps + (ĜH

DĜD)−1ĜH
DnD

=
√

1−τ2
D

√
1−τ2

RS

√
1−τ2

SDps+(ĜH
DĜD)−1ĜH

D (τDΩD

+ τRSτSDΩRSΦΩSD + τSD

√
1 − τ2

RSĤRSΦΩSD

+ τRS

√
1−τ2

SDΩRSΦĤSD

)
ps + (ĜH

DĜD)−1ĜH
DnD.

(15)

According to (15), the signal received at the FAN for the
kth TN is given by

xD,k =
√

pk(1−τ2
D)(1−τ2

RS)(1 − τ2
SD)sk + υkpx + �knD,

(16)

where υk and �k are the kth rows of

(ĜH
DĜD)−1ĜH

D (τDΩD + τRSτSDΩRSΦΩSD

+ τSD

√
1−τ2

RSĤRSΦΩSD+τRS

√
1−τ2

SDΩRSΦĤSD

)
(17)

and (ĜH
DĜD)−1ĜH

D , respectively. Accordingly, the SINR of
the kth data stream received at the FAN can be given as

γD,k =
(1 − τ2

D)(1 − τ2
RS)(1 − τ2

SD)pk

pk(υkυH
k ) + σ2

D(�k�H
k )

. (18)

C. Computation Model

Due to the conflict between the huge processing of compli-
cated service and the limited amount of computing resources at
MRN, a critical use case regarding the FC is the task offloading
as this can save energy and/or speed up the process of compu-
tation. In general, a crucial part regarding task offloading is to
decide how much and what should be offloaded [41]. In this
subsection, we discuss both the MRN and the FAN computing
approaches. We consider that TN k has bk bits to be computed
in a time slot of duration T . We denote the ratio of the task
bits offloaded to the total task bits by ρk, i.e., (1− ρk)bk bits
are offloaded to MRN for local computing and ρkbk bits are
offloaded to FAN for remote computation.

For MRN computing, the computational power consumption
for TN k can be modeled as [42]

PL
k = �f3

k , (19)

where fk and � are the allocated CPU cycle frequency for TN
k and power consumption coefficient at the MRN, respectively,
which can be adjusted via the dynamic voltage and frequency
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scaling (DVFS) technique [41]. According to the allocated task
bits for MRN computing, the computing time for TN k at the
MRN is given by

tLk =
ε(1 − ρk)bk

fk
, (20)

where ε (ε > 0) denotes the number of CPU cycles needed for
computing each single data bit. Thus, the energy consumption
of MRN computing for TN k is given by

EL
k = PL

k tLk = �ε(1 − ρk)bkf2
k . (21)

Similarly, the energy consumption of remote FAN comput-
ing for TN k is given by

ER
k = PR

k tRk = �Rερkbkf2
R,k, (22)

where fR,k and �R are the allocated CPU cycle frequency
for TN k and power consumption coefficient at the FAN,
respectively.

The total energy consumption Etotal consists of the total
computational energy consumptions and the total task transmit
energy consumptions for the tasks. The total computational
energy consumptions consist of the computational energy
consumptions at the MRN and FAN, and the total task
transmit energy consumptions consist of the transmit energy
consumptions at the TNs and MRN, and is given by

Etotal =
K∑

k=1

(
EL

k + ER
k + Eoff

k

)
, (23)

where Eoff
k is task transmit energy consumption for TN k.

D. Problem Formulation

In this subsection, we formulate a joint IRS phase-shift
matrix optimization and task-, power-, and computational-
resource allocation problem for our proposed FC systems
with an objective of minimizing the total energy consumption,
taking into account both the communication and computational
constraints. Let Pr in (24c) denote the maximum transmit
power of each data stream at the MRN. To minimize Etotal

while ensuring that each TN’s tasks are successfully executed
within a single time slot T , the energy-efficient task offloading
optimization problem is formulated as

min
ρ,p,Θ,Φ

Etotal (24a)

s.t. 0 ≤ ρk ≤ 1, ∀k, (24b)

0 ≤ pk ≤ Pr, ∀k, (24c)

0 ≤ θn ≤ 2π, 0 ≤ φn ≤ 2π, ∀n, (24d)

γR,k, γD,k ≥ γ0, ∀k, (24e)
K∑

k=1

fk ≤ FRN , (24f)

K∑
k=1

fR,k ≤ FFN , (24g)

ε(1 − ρk)bk

fk
≤ T, ∀k, (24h)

ερkbk

fR,k
≤ T − T0, ∀k, (24i)

where (24b) specifies the task offloading ratio; (24c) gives
the range of the power allocation variables at the MRN;
(24d) are the phase-shifts for the nth reflecting element
at the IRS for the first hop transmission and second hop
transmission, respectively; (24e) are the quality-of-service
(QoS) constraints to ensure that both of the SINR γD,k

and γR,k are higher than γ0; (24f) and (24g) are imposed
to ensure that the sum of computation resources allocated
to all offloading TNs at the MRN and the FAN cannot
exceed the total amount of computation resources FRN and
FFN (total computational capabilities), respectively; (24h)
and (24i) indicate that the delays for MRN computing and
FAN computing are bounded by T and T0, where T0 rep-
resents the task transmission delay constraint from MRN
to FAN.

Remark 1: As is shown in Problem (24), we have a total
of four blocks of optimization variables, namely, the task
offloading ratio, power allocation at the MRN, and IRS phase
shifts of two hops task transmission. The optimization of
the task offloading ratio is related to the computing set-
ting, while the optimization of the power allocation at the
MRN and the phase-shift matrices affects the communication
design. However, Problem (24) is difficult to solve due to
two aspects. The first one is the coupling effect between the
power allocation vector p and the IRS phase-shift vectors θ
and φ. The second one is that the objective function (OF)
is non-convex with respect to the phase shifts. Thus, obtain
a globally optimal solution directly is an open challenge.
In this case, a locally optimal solution is provided in this
paper, and we have transformations and simplifications of the
original Problem (24). Specifically, upon using the popular
alternating optimization technique for decoupling the com-
munications and computing designs, the optimization Prob-
lem (24) can be transformed to a phase shift optimization
problem, a power allocation problem, and a task offloading
problem, respectively. Subsequently, the optimal solutions can
be provided for the power allocation p and for task offloading
ratio ρ, after they are decoupled from IRS phase shifts using
the alternating optimization technique. In fact, alternating
optimization technique is a widely applicable and empirically
efficient approach for handling optimization problems involv-
ing coupled optimization variables. It has been successfully
applied to several wireless communication design problems
such as hybrid precoding [43], resource allocation [44], and
IRS-enabled wireless communication [12], [30]. On the other
hand, we transform the phase shift optimization problem into
an SDP to tackle the non-convexity regarding phase shift
vectors θ and φ, which can be solved by the sequential
rank-one constraint relaxation (SROCR) algorithm and SDR
algorithm.

III. IRS PHASE SHIFT OPTIMIZATION

This section investigates the total energy consumption of
the massive MIMO-aided FC systems. First, we derive the
received SINR for determining the offloading rate. Second,
the task offloading time is calculated. Finally, the total energy
consumption is analyzed.
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A. Asymptotic SINR at MRN and FAN

In the following theorem, we characterize the asymptotic
property of the SINR in (11) under the massive MIMO setting,
i.e., M → ∞.

Theorem 1: As the number of antennas at the FAN tends
to infinity, i.e., M → ∞, the effective SINR in (11) can be
asymptotically expressed as

γR,k,∞

=
(1 + τ2

R)(1 − τ2
I )(1 − τ2

S) + N(1 + τ2
S)(1 + τ2

I )(1−τ2
R)

τ2
S(1 + τ2

I )
∑

n(exp(jθn))2
.

(25)
Proof: Please refer to Appendix A.

Similarly, we characterize the asymptotic property of the
SINR in (18) under the massive MIMO setting in the following
theorem.

Theorem 2: As the number of antennas at the MRN tends
to infinity, i.e., M → ∞, the effective SINR in (18) can be
asymptotically expressed as (26), shown at the bottom of the
page.

Proof: Please refer to Appendix B.

B. Offloading Time and Energy Consumption

Given the effective SINRs in (11) and (18) of the kth data
stream at the MRN and the FAN, the task offloading rate from
the kth TN to the FAN is given by

Rk =
B

2
log2(1 + min{γR,k, γD,k}), (27)

where B/2 is due to half-duplex working mode at the MRN.
The task offloading time for the tasks allocation to MRN from
TN k to the MRN is given by

DR,k =
(1 − ρk)bk

B log2(1 + γR,k)
, ∀k. (28)

For TN k, the task offloading time for the tasks allocated
to FAN from the MRN to the FAN is given by

DF,k =
ρkbk

B log2(1 + γD,k)
, ∀k, (29)

Then, based on (27), for the tasks allocated to the FAN, the
offloading time from TN k to the FAN is given by

DD,k =
2ρkbk

B log2(1 + min{γR,k, γD,k}) . (30)

Next we give the total transmit energy consumption, which
is given by the sum of that of the TNs and the MRN.
According to the task offloading times in (28), (29) and (30),

the corresponding offloading energy consumption is given by

Eoff
k

= Pt(DR,k + DD,k) + pkDF,k

=

⎧⎪⎪⎨
⎪⎪⎩

Pt(1 + ρk)bk

B log2(1 + γR,k)
+

pkρkbk

B log2(1 + γD,k)
, γR,k≤γD,k,

Pt(1 − ρk)bk

B log2(1 + γR,k)
+

2Ptρkbk + pkρkbk

B log2(1 + γD,k)
, γR,k >γD,k

(31)

Given the energy consumptions of the MRN computing,
the FAN computing and the task transmission in (21), (22)
and (31), the total energy consumption of the massive MIMO
and IRS-enabled FC system is calculated as

Etotal =
K∑

k=1

(
EL

k + ER
k + Eoff

k

)

=
K∑

k=1

(
�ε(1 − ρk)bkf2

k + �Rερkbkf2
R,k + Eoff

k

)
. (32)

C. IRS Phase Shift Optimization

1) Optimizing Phase Shifts {θn}: Based on (11), (31)
and (32), with given fixed power allocations {pk} and task
offloading ratios {ρk}, Problem (24) is formulated as

min
Θ

K∑
k=1

2(Pt + pk)ρkbk

B log2(1 + γR,k)
(33a)

s.t. 0 ≤ θn ≤ 2π, ∀n. (33b)

Let v = [v1, · · · , vN ]H , where vn = exp(jθn), ∀n. Denote
by



=
(1 − τ2

S)(1 − τ2
I )(1 − τ2

R)τ2
Sτ2

I

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)

+
N(1 − τ2

S)(1 + τ2
S)(1 − τ2

I )(1 − τ2
R)τ2

I

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)

+
Mτ2

S(1 − τ2
S)(1 + τ2

I )(1 − τ2
R)(1 − τ2

I )
M(1+τ2

R)(1−τ2
I )(1−τ2

S)+MN(1+τ2
S)(1+τ2

I )(1−τ2
R)

.

(34)

Then, based on the expression (11) of the received SINR
γR,k at the MRN, we obtain that the optimization variables
{θn} are only related to ωkωH

k . According to the proof of
Theorem 1, we have

ωkωH
k = Tr(V) + |hH

k hk|. (35)

γD,k,M→∞ = γD,k,∞

=
pk(1 + τ2

D)(1 − τ2
SD)(1 − τ2

RS) + pkN (1 + τ2
RS)(1 + τ2

SD)(1 − τ2
D)

τ2
RS(1 + τ2

SD)
∑

n(exp(jφn))2
∑K

k=1 pk

. (26)
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Then, the phase shifts optimization problem is equivalently
transformed into

min
V

(ωkωH
k ) = Tr(V) + |hH

k hk| (36a)

s.t. Vn,n = 1, ∀n, (36b)

V ≥ 0, (36c)

rank(V) = 1. (36d)

where V = vvH and hk is the kth row of
(ĜHĜ)−1ĜHτRΩR. By dropping the rank-one constraint,
Problem (36) is relaxed into a convex SDR problem, which can
be efficiently solved by using the SDP solver in CVX [45].
It is shown that the arithmetic operation complexity of the
SDP is at least O(N3) to obtain an approximate solution [46].
The optimal solution V∗ of the SDR problem may not be
rank one. If rank(V∗) = 1, then V∗ is the optimal solution
of Problem (36). Otherwise, a rank-one approximate solution
needs to be extracted from V∗ by standard rank reduction
techniques, such as Gaussian randomization procedure [46].
According to [46], the Gaussian randomization procedure
provides quasi-optimal bit-error-rate performance, and ran-
domization provides an effective approximation for SDR for a
sufficient (but not excessive) number of randomizations [46].
It has been shown that such an SDR approach followed by a
sufficiently large number of randomizations guarantees at least
a π

4 -approximation of the optimal objective value of problems
(36) and (39) [47].

On the other hand, Problem (36) can also be solved
by sequential rank-one constraint relaxation (SROCR) algo-
rithm [48]. Instead of dropping the rank-one constraint,
SROCR algorithm can relax the rank-one constraint gradually
such that it is easier to find a feasible solution. SROCR
algorithm has been evaluated via numerical results in [48],
which achieves a better performance with lower or comparable
complexity compared with SDR.

2) Optimizing Phase Shifts {φn}: Based on (18), (31) and
(32), the second hop phase shift optimization problem is
formulated as

min
Φ

K∑
k=1

2pkνkbk

B log2(1 + γD,k)
(37a)

s.t. 0 ≤ φn ≤ 2π, ∀n. (37b)

Similarly, let u = [u1, · · · , uN ]H , where
un = exp(jφn), ∀n.

With given power allocations {pk}, task offloading ratios
{vk}, (18) and the proof of Theorem 2, the phase shifts

optimization problem is formulated as

min
U

(υkυH
k ) = χTr(U) + |fH

k fk| (39a)

s.t. Un,n = 1, ∀n, (39b)

U ≥ 0, (39c)

rank(U) = 1. (39d)

where χ is shown in (38) at the bottom of the page, U = uuH

and fk is the kth row of τ2
D(ĜH

DĜD)−1ĜH
DΩD. Problem

(39) can also be solved by SROCR-based algorithm as well
as relaxed into the convex SDR problem, which can be
efficiently solved by using the convex optimization software
as CVX [45].

IV. JOINT COMMUNICATION, PHASE SHIFT AND

COMPUTATIONAL RESOURCE OPTIMIZATION

In this section, we jointly optimize the task-, computation
resource- and transmit power allocations to minimize the total
energy consumption at the TNs and MRN. First, we solve
the subproblem of task- and computational-resource allocation.
Second, we solve the subproblem of power allocation at
the MRN. Finally, based on the obtained results, we jointly
optimize the communication, phase shift and computational
resource allocation problem by conceiving an alternating opti-
mization algorithm.

A. Task- and Computational-Resource Allocation

In this subsection, we solve the task- and computational-
resource allocation subproblem under a fixed MRN power
allocation. In order to solve this problem, we need to transform
the non-convex optimization problem of (24) into a tractable
convex optimization one.

At first, it is obvious that the OF of Problem (24) monotoni-
cally increases with fk and fR,k, ∀k. On the other hand, based
on (24h) and (24i), we have the results of fk ≥ ε(1−ρk)bk

T and
fR,k ≥ ερkbk

T−T0
. Consequently, we can obtain the optimal CPU-

cycle frequencies of allocated to TN k at MRN and FAN as

f�
k =

ε(1 − ρk)bk

T
,

f�
R,k =

ερkbk

T − T0
. (40)

Next, by substituting (40) into (24), Problem (24) is equiv-
alently transformed into

min
ρ,p

K∑
k=1

�ε3(1 − ρk)3b3
k

T 2
+

�Rε3ρ3
kb3

k

(T − T0)2
+ Eoff

k (41a)

χ =
(1 − τ2

RS)(1 − τ2
SD)(1 − τ2

D)τ2
RSτ2

SD

M(1 + τ2
D)(1 − τ2

SD)(1 − τ2
RS) + MN(1 + τ2

RS)(1 + τ2
SD)(1 − τ2

RS)

+
N(1 − τ2

RS)(1 + τ2
RS)(1 − τ2

SD)(1 − τ2
D)τ2

SD

M(1 + τ2
D)(1 − τ2

SD)(1 − τ2
RS) + MN(1 + τ2

RS)(1 + τ2
SD)(1 − τ2

RS)

+
Mτ2

RS(1 − τ2
RS)(1 + τ2

SD)(1 − τ2
RS)(1 − τ2

SD)
M(1 + τ2

D)(1 − τ2
SD)(1 − τ2

RS) + MN(1 + τ2
RS)(1 + τ2

SD)(1 − τ2
D)

. (38)
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s.t. 0 ≤ ρk ≤ 1, ∀k, (41b)

0 ≤ pk ≤ Pr, ∀k, (41c)

0 ≤ Pt ≤ Ptmax , (41d)

γR,k, γD,k ≥ γ0, ∀k. (41e)

It is should be noted that the transformed problem (41) is
still non-convex. As a result, we further divide it into two
tractable sub-problems of task allocation and MRN power
allocation, and solve them alternately.

The task allocation subproblem with respect to the task
offloading ratio is formulated as follows

min
ρ

ϕ(ρ)=
K∑

k=1

�ε3(1 − ρk)3b3
k

T 2
+

�Rε3ρ3
kb3

k

(T − T0)2
+ Eoff

k (42a)

s.t. 0 ≤ ρk ≤ 1, ∀k. (42b)

As a result, we have to solve a convex problem. Towards
this end, we have the following main result.

Proposition 1: The optimal task allocation ratio for
each task node k of Problem (42) is ρ∗k = 1 −
Ψ−

√
Λck/b3k+ΛΨ−Ψck/b3k

Ψ−Λ , where Ψ = 3�Rε3

(T−T 2
0 )

, Λ = 3�ε3

T 2 and

ck = 2pkbk

B log2(1+γD,k) .
Proof: Please refer to Appendix C.

B. MRN Power Allocation Based on DC Programming

In this subsection, we propose a DC optimization method
for the MRN power allocation. By fixing the computational
task offloading ratio vector ρ, we only have to solve the
MRN power allocation subproblem. Thus, problem (41) can
be transformed into

min
p

K∑
k=1

2Ptbk log2(1 + γD,k) + 2pkρkbk log2(1 + γR,k)
B log2(1 + γR,k) log2(1 + γD,k)

(43a)

s.t. (24c), (24e), (43b)

γD,k ≥ γR,k, (43c)

where (43c) is from (31).
To begin with the problem optimization, we need to rewrite

the OF of Problem (43) in the form of a single ratio as

K∑
k=1

2Ptbk log2(1+γD,k) + 2pkρkbk log2(1+γR,k)
B log2(1 + γR,k) log2(1 + γD,k)

=
A(p)
B(p)

,

(44)

where A(p) and B(p) are shown at bottom of the page,
respectively.

Lemma 1: The sum-of-ratios problem (43) is equivalent to

min
p

O(p) = 2Υ
√

A(p) − Υ2B(p) (46a)

s.t. (24c), (24e), (46b)

γD,k ≥ γR,k. (46c)

where Υ refers to a collection of variables {Υ1, · · · , ΥK}.
The proof is provided in [49] and thus omitted for brevity.

Due to the non-convex OF and constraints, Problem (46) is
still intractable. Next we use the asymptotical form of SINR
in Theorem 2 to make the problem more tractable.

C. DC Programming With the Fixed Task Offloading Ratio
and IRS Phase Shift

In this subsection, the optimal solution p∗ of problem (43)
can be obtained by DC programming which is described
in [50]. The DC programming is also used to solve the
problems as the sum throughput maximization or the SINR
max-min problem in [51], [52].

Lemma 2: Denote φ(p) = 2Υ
√

A(p) and ϕ(p) = Υ2B(p),
respectively. Then, both φ(p) and ϕ(p) are convex functions
with respect to p based on Theorem 2.

Proof: Please refer to Appendix D.
Proposition 2: The optimization problem (43) is equiv-

alent to min
p

(φ(p) − ϕ(p)), which is a canonical DC

programming.
Thanks to the appropriate DC decomposition as

(44), the DC programming can be exploited. Then,
min
p

(φ(p) − ϕ(p)) can be solved iteratively with the

following convex programming. {p(k+1)} at the kth iteration
is generated as the optimal solution of the following convex
problem:

min
p

φ(p) − ϕ(p(k)) − 〈�ϕ(p(k)), p − pk〉 (47a)

s.t. (24c), (24e), (47b)

where k is the iteration index of the DC programming. The
gradient of ϕ(p) at each p is given by

�ϕ(p) =
(

∂ϕ

∂p1
,

∂ϕ

∂p2
, · · · ,

∂ϕ

∂pK

)
, (48)

where ∂ϕ
∂pj

, ∀j = 1, 2, · · · , K is determined by

∂ϕ

∂pj
=

G ln 2
1 + γD,j

∏
k �=j

[
B

2
log2(1+γR,k) log2(1 + γD,k)

]
, (49)

where G = (1+τ2
D)(1−τ2

SD)(1−τ2
RS)+N(1+τ2

RS)(1+τ2
SD)(1−τ2

D)

τ2
RS(1+τ2

SD)
�

n(exp(jφn))2P
.

A(p) =
K∑

k=1

⎧⎨
⎩[2Ptbk log2(1 + γD,k,∞) + 2pkρkbk log2(1 + γR,∞)]

∏
l �=k

[log2(1 + γD,l,∞)]

⎫⎬
⎭

B(p) =
K∏

k=1

[B log2(1 + γR,∞) log2(1 + γD,k,∞)] . (45)
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Since the OF in (43) is convex, we can solve Problem (43)
optimally by using standard convex optimization algorithms
in [45]. To this end, p(k+1) is the optimal solution of (47) at
the kth iteration, as (47) is a convex optimization problem.
Then, we have the following main results.

Remark 2: Since ϕ(p) is slowly sensitive to the variable
p, ϕ(p) is well approximated by its first order approximation
ϕ(p(k)) + 〈�ϕ(p(k)), p − pk〉 at a fairly large neighborhood
of p(k). As a result, the OF φ(p) − ϕ(p) of problem (46)
is well approximated by the convex objective (47). In other
words, the non-convex optimization problem (46) can be well
approximated by the convex optimization problem (47).

Remark 3: Since ϕ(p) is convex, its gradient �ϕ(p(k)) is
also its super-gradient [53]. Then, we have

ϕ(p) ≥ ϕ(p(k))+〉 � ϕ(p(k)), p − p(k)〉.
Therefore, program (47) provides a well approximated
upper bound minimization for the non-convex program (46).
To this end, upper bound minimization makes sense for
intractable minimization. Since p(k) is also feasible to (47),
we have φ(p(k+1)) − ϕ(p(k+1)) ≤ φ(p(k)) − [ϕ(p(k))+〉 �
ϕ(p(k)), p(k+1) − p(k)〉] ≤ φ(p(k)) − ϕ(p(k)), i.e., the next
solution p(k+1) is always better than previous solution p(k).

Proposition 3: The sequence {p(k)} of improved solutions
always converges by Cauchy theorem, as the constraint set is
compact. If |p(k) − p(k−1)| ≤ ε or |O(p(k)) − O(p(k−1))| ≤ ε
with given threshold ε > 0, the iterative process terminates
after finite iterations.

The DC algorithm is a descent method with global con-
vergence (i.e., from an arbitrary starting point), which does
not need linesearch. The convergence of DC algorithm has
been explored in [51]. The framework of the DC optimization
for problem (47) is summarized in Algorithm 1, where i
is the iteration index and Iτ is the maximum number of i.
The complexity of Algorithm 1 mainly depends on iteratively
solving Problem (47) [51]. It should be noted that the com-
putational complexity of Problem (47) is O(K3). Therefore,
the computational complexity of Algorithm 1 is O(IiteK

3),
where Iite denotes the number of iterations for Algorithm 1.

Algorithm 1 The Framework of the DC Optimization for
Problem (47)
Input: i, Iτ ,
Output: p∗

1: Initialize starting value p(0) which is feasible to problem (47),
set k = 1, and calculate p(1), O(p(0)), and O(p(1)).

2: while (|O(p(k−1)) − O(p(k))| > ε) and (i < Iτ ) do
3: k = k + 1;
4: For p(k−1), solve (47) to obtain p(k) by convex optimization.
5: Calculate p(k);
6: end while
7: return p∗ = p(k).

D. Joint Power and Phase Shift Optimization

With the results from the two subproblems in place, the
joint power and phase shift optimization is formulated in
Algorithm 2.

Fig. 2. Simulation setup for a massive MIMO and IRS-aided FC system,
which consists of 15 TNs.

As pointed out in previous subsection, the subproblem of
power allocation is given by solving a series of convex opti-
mization problems at a polynomial complexity. Furthermore,
as the subproblem of phase shift optimization is transformed
into the SDP problem, it can be solved at a polynomial
complexity. In all, our proposed alternating optimization algo-
rithm only requires a polynomially computational complexity
dominated by the problem dimension.

Algorithm 2 Joint Power-, Computational-Resource and Phase
Shift Optimization Algorithm

1: Initialize z = 0, ε = 1, and feasible points p(0) and ρ(0).
2: while ε > 0.001 do
3: z = z + 1;
4: Calculate Θ(z) and Φ(z) via optimized Problems (36) and (39),

respectively, with p(z−1) and ρ(z−1);
5: Solve problem (42), and obtain ρ(z).
6: Calculate p(z) via Algorithm 1 with p(z−1), Θ(z), Φ(z) and

ρ(z);

7: Calculate ε = maxk |E
(z)
total−E

(z−1)
total

E
(z−1)
total

|;
8: end while

Proposition 4: Algorithm 2 is guaranteed to converge
within finite iterations.

Proof: Please refer to Appendix E.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, our simulation results characterizing the
proposed task offloading strategy are presented in comparison
to several baseline schemes.

A. System Parameters

Unless specified otherwise, the simulation parameters are
set as follows. There are 15 TNs for task offloading, which
are uniformly scattered within a 100 m × 100 m square
area in the half left-hand side. The MRN, IRS and FAN are
located at (100, 0), (100,100) and (200,0) respectively, in the
half right-hand side. The schematic system model for the
simulated massive MIMO and IRS-aided FC network is shown
in Fig. 2. For the communications channel, we consider both
the small scale fading and the large scale path loss. Without
loss of generality, the small scale fading is i.i.d. and obeys the
complex Gaussian distribution associated with zero mean and
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Fig. 3. Total energy consumption of massive MIMO and IRS-aided fog
computing systems versus the transmit power.

unit variance, while the path loss in dB is given by

PL = PL0 − 10α log10(
d

d0
), (50)

where PL0 is the path loss at the reference distance d0; d and
α represent the distance of the communications link and its
path loss exponent, respectively. The transmission bandwidth
of the system is B = 20 MHz. The variance of the AWGN
is set to be 10−9 W. For each CN, the CPU’s computational
capacity is randomly selected from the set {0.1, 0.2, · · · , 1.0}
GHz. For the computing task, we consider a robot mapping
application similar to that in [22], [54], where the task size of
any TN k for the computation offloading is ak = 500 KB,
∀k ∈ S, the SINR threshold is 1.5 dB, and the required
number of CPU cycles per bit follows the uniform distribution
in [500, 1500] cycles/bit. Other system parameters are set as
follows: PL0 = −30dB, d0 = 50m, and M = 100 (if not
specified otherwise).

B. Performance Evaluation

Fig. 3 shows the total energy consumption of the mas-
sive MIMO and IRS-aided FC systems versus the transmit
power of TNs. Specifically, we compare the performance
of our proposed algorithm, simulated optimal solution, our
proposed algorithm with IRS only, and our proposed algorithm
with random phase under different conditions. The simulated
optimal solution is obtained by averaging values from 2000
simulations, which is from the actual SINR at MRN and
FAN, not the asymptotic SINR at MRN and FAN from
Theorem 1 and 2. The benchmark of random phase of IRS
has been proposed in [12], [30]. In random phase scheme,
task offloading ratio and power allocation can be optimized
relying on Proposition 1 and Algorithm 1, respectively, while
skipping the step of designing the IRS phase shift, which is
randomly set obeying the uniform distribution in the range
of [0, 2π). This figure shows the energy consumptions of our
proposed algorithm and simulated optimal solution. It can be
observed that the variations of analytical and simulation results
agree reasonably well. We can observe from Fig. 3 that the
total energy consumption increases with the transmit power of
TNs, as higher offloading energy consumptions are required.
As expected, our proposed algorithm always achieves better
performance than that of the random phase strategy and the

Fig. 4. Total energy consumption of massive MIMO and IRS-aided fog
computing systems versus the number of task nodes.

proposed algorithm with IRS only for different transmit power
consumptions. It is worth noting that the proposed algorithm
with IRS only performs better than that of the random phase
strategy when the transmit power is small, as the MRN has
larger energy consumption if the transmit SNR is smaller. This
result makes the total energy consumption of the proposed
algorithm with IRS only smaller than that of random phase
with both IRS and MRN. In particular, the energy consumption
of the proposed algorithm with MRN only is larger than
that of the proposed algorithm with IRS. This is because
by applying the proposed optimization framework with IRS,
the SINRs of the TNs can be improved by providing them
with additional array aperture gain and the reflection-aided
beamforming gain, which leads to an improvement of the
system performance.

Fig. 4 shows that the total energy consumption of
the massive MIMO and IRS-aided FC systems versus
the number of TNs. It is obvious that if the number of
TNs is larger, then the energy consumption is higher.
As expected, the proposed algorithm with MRN and IRS
offers indeed the best performance than those of the other
strategies, and the variations of the proposed algorithm with
MRN and IRS and the simulation results agree reasonably
well. Furthermore, the energy consumption of the proposed
algorithm with MRN only is larger than that of the proposed
algorithm with IRS. Based on (32), we can get the result that
the total power consumption is larger when MRN forwards the
task. It can also be observed from the figure that the energy
consumption of the random phase with IRS and MRN is larger
than that of the proposed algorithm with IRS only, implying
that it is more beneficial for improving the system performance
by deploying an IRS in the MRN-aided FC systems.

In Fig. 5, we plot the total energy consumption versus the
number of IRS elements. It can be observed that the perfor-
mance of the proposed algorithm with IRS only approaches
converges to that of the proposed algorithm with IRS and
MRN when the number of IRS elements increases and saves
substantial energy over the random phase strategy. This sug-
gests that there exists some critical value of the number of IRS
elements, under which placing MRN yields no total energy
consumption reduction for the proposed algorithm compared
to the IRS only strategy. As shown in Fig. 5, we can observe
that the SROCR algorithm performs better than SDR. This is
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Fig. 5. Total energy consumption of massive MIMO and IRS-aided fog
computing systems versus the number of IRS elements.

expected since SROCR algorithm gradually relaxes the rank-
one constraint, then it is easier to find a feasible solution. How-
ever, SDR approach only provides an approximate solution.
Additionally, it is obvious that the total energy consumption
of the full local MRN computing strategy does not vary with
the number of IRS elements. Furthermore, the total energy
consumption of the proposed algorithm is lower than that of
the full offloading with FAN computing. Another interesting
observation is that the total energy consumption of the full
offloading with FAN computing strategy is lower than that of
the full local MRN computing strategy. These further indicate
that the computation energy consumption dominates the total
energy consumption in the massive MIMO and IRS-aided fog
computing system.

Fig. 6 shows the total energy consumption of the massive
MIMO and IRS-aided FC system versus the transmit power
Pt. The proposed algorithm with MRN and IRS shows a
significant gain, under the same transmit power consumption,
compared to the random phase strategy comprises MRN and
IRS. Additionally, we observe that the total energy con-
sumptions of proposed algorithm with MRN and IRS are
decreased when the number of MRN antennas is increased,
mainly due to less transmit energy consumption. Furthermore,
it can be observed from Fig. 6 that the gap of the energy
consumption is decreasing when increasing the number of
MRN antennas. This coincides with the analytic results of
Theorems 1 and 2: For a large M regime, the SINR converges
to a value that is independent of the number of antennas.
Therefore, we can choose the most energy efficient offloading
strategy for our massive MIMO and IRS-aided fog computing
system according to the asymptotic form of the effective
SINR.

VI. CONCLUSION

In this paper, we proposed a massive MIMO and IRS-
enabled task offloading framework, where multiple TNs
offload their computational tasks to the MRN and FAN via
IRS. We formulated an optimization problem for minimizing
the total energy consumption of task offloading, considering
imperfect CSI. In order to tackle this challenging problem,
we solved the IRS phase shifts, task offloading and power allo-
cation problem in an alternating manner. We first determined
the IRS phases shifts for a given power allocation, followed by

Fig. 6. Total energy consumption of massive MIMO and IRS-enabled fog
computing systems versus the transmit power Pt.

presenting a DC optimization framework for determining the
power allocation that minimizes the total energy consumption.
Based on the IRS phase shifts, task-, computational-resource,
and power-allocations, we proposed an efficient alternating
optimization algorithm. The simulation results showed that the
proposed scheme achieves much better performance than the
benchmarks, and the most energy efficient offloading strategy
for our proposed massive MIMO and IRS-aided fog computing
system can be chosen according to the asymptotic form of the
effective SINR.

APPENDIX

A. Proof of Theorem 1

Based on [55], we have

lim
N→∞

1
N

hH
S,ihS,j =

{
0, if i �= j,

1, if i = j.
(51)

Then, we derive limN→∞ 1
N ĥH

S,kĥS,k = 1+τ2
S

1−τ2
S

with (51).

Similarly, we have limM→∞ 1
M ĥH

R,kĥR,k = 1+τ2
R

1−τ2
R

.

For the second term on the right hand side (RHS) in (8),
we expand the trace of (10) and obtain its power as

τ2
RE

[
(ĜHĜ)−1ĜHΩR

]
k,k

+ τ2
Sτ2

I E
[
(ĜHĜ)−1ĜHΩSΘΩI

]
k,k

+ τ2
I (1 − τ2

S)E
[
(ĜHĜ)−1ĜHĤSΘΩI

]
k,k

+ τ2
S(1 − τ2

I )E
[
(ĜHĜ)−1ĜHΩSΘĤI

]
k,k

=
(1 − τ2

S)(1 − τ2
I )(1 − τ2

R)τ2
R

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)

+
(1 − τ2

S)(1 − τ2
I )(1 − τ2

R)τ2
Sτ2

I

∑
n(exp(jθn))2

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)

+
N(1 − τ2

S)(1 + τ2
S)(1 − τ2

I )(1 − τ2
R)τ2

I

∑
n(exp(jθn))2

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)

+
Mτ2

S(1 − τ2
S)(1 + τ2

I )(1 − τ2
R)(1−τ2

I )
∑

n(exp(jθn))2

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2
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.

(52)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:46:21 UTC from IEEE Xplore.  Restrictions apply. 



3660 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 6, JUNE 2022

For the third term on the RHS in (8), we expand the trace
of (ĜHĜ)−1ĜHnR and obtain its power as follows:

E
[
(ĜHĜ)−1ĜHnRnH

RĜ(ĜĜH)−1
]

k,k

=
(1 − τ2

S)(1 − τ2
I )(1 − τ2

R)σ2
R

M(1+τ2
R)(1−τ2

I )(1−τ2
S)+MN(1+τ2

S)(1+τ2
I )(1−τ2

R)
.

(53)

We can obtain the SINR of the kth data stream as (54)
according to (11), shown at the bottom of the page. In the
large M regime, we obtain the asymptotic form of the SINR
for the kth data stream as

γR,k,M→∞
= γR,k,∞

=
(1 + τ2

R)(1 − τ2
I )(1 − τ2

S) + N(1 + τ2
S)(1 + τ2

I )(1−τ2
R)

τ2
S(1 + τ2

I )
∑

n(exp(jθn))2
.

(55)

B. Proof of Theorem 2

Based on (51), we arrive at limM→∞ 1
M ĥH

D,kĥD,k =
1+τ2

D

1−τ2
D

and limN→∞ 1
N ĥH

SD,kĥSD,k = 1+τ2
SD

1−τ2
SD

. For the

second term on the RHS in (8), we expand the trace of (17)
and obtain its power as (56), shown at the bottom of
the page.

For the third term on the RHS in (15), we expand the trace
of (ĜH

DĜD)−1ĜH
DnD and obtain its power as follows in (57),

shown at the bottom of the page.
We can obtain the SINR of the kth data stream

as (58) according to (18), shown at the bottom of
the page. In the large M regime, we obtain the asymptotic
form of the SINR for the kth data stream as (59), shown at
the bottom of the page.

C. Proof of Proposition 1

When γR,k ≤ γD,k, by taking the derivative of the objective
function with respect to νk, we have

∂ϕ(ρ)
∂ρk

=
−3�ε3(1 − ρk)2b3

k

T 2
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3�Rε3ρ2
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(ĜH
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D)−1

]
k,k

=
(1 − τ2

RS)(1 − τ2
SD)(1 − τ2

D)σ2
D

M(1 + τ2
D)(1 − τ2

SD)(1 − τ2
RS) + MN(1 + τ2

RS)(1 + τ2
SD)(1 − τ2

D)
. (57)

γD,k =
pkM(1 + τ2

D)(1 − τ2
SD)(1 − τ2

RS) + pkMN(1 + τ2
RS)(1 + τ2

SD)(1 − τ2
D)

(τ2
D+τ2

RSτ2
SD

∑
n(exp(jφn))2+N(1+τ2

RS)τ2
SD

∑
n(exp(jφn))2+Mτ2

RS(1+τ2
SD)

∑
n(exp(jφn))2)

∑K
k=1 pk+σ2

D

(58)

γD,k,M→∞ = γD,k,∞

=
pk(1 + τ2

D)(1 − τ2
SD)(1 − τ2

RS) + pkN(1 + τ2
RS)(1 + τ2

SD)(1 − τ2
D)

τ2
RS(1 + τ2

SD)
∑

n(exp(jφn))2
∑K

k=1 pk

. (59)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 16,2022 at 01:46:21 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TASK OFFLOADING IN HYBRID IRS AND MASSIVE MIMO RELAY NETWORKS 3661

On the other hand, when γR,k > γD,k, we have

∂ϕ(ρ)
∂ρk

=
−3�ε3(1 − ρk)2b3

k

T 2
+

3�Rε3ρ2
kb3

k

(T − T0)2

+
2(Pt + pk)bk

B log2(1 + γD,k)
− 2Ptbk

B log2(1 + γR,k)
= 0. (61)

Denote by Ψ = 3�Rε3
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0 )

, Λ = 3�ε3
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According to (62), we arrive at the optimal solution

ρ∗k =
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D. Proof of Lemma 2

According to (26), γD,k,∞(p) is linear (hence convex),
A(p) is convex. Since the product of increasing functions is
still an increasing function, B(p) is an increasing function.
log2(1+γD,k,∞) are convex positive functions on a convex set,

then the their geometric mean
[∏K

k=1 log2(1 + γD,k,∞)
]1/K

is a convex function on the convex set [53]. Since 0 ≤ pk, ∀k,
B(p) is convex. Hence, A(p) and B(p) are convex functions.

When Υ is fixed, due to the convexity of A(p), the
convexity of B(p), and that the square-root function is convex
and increasing [53]. Therefore, both φ(p) and ϕ(p) are convex
functions.

E. Proof of Proposition 4

Based on Algorithm 2, we have the inequalities for the zth
iteration as follows

Etotal

(
ρ(z−1),p(z−1),Θ(z−1),Φ(z−1)

)
, (64a)

≥ Etotal

(
ρ(z),p(z−1),Θ(z−1),Φ(z−1)

)
, (64b)

≥ Etotal

(
ρ(z),p(z),Θ(z−1),Φ(z−1)

)
, (64c)

≥ Etotal

(
ρ(z),p(z),Θ(z),Φ(z)

)
, (64d)

where (64b) is due to the convexity of problem (42) and
solution ρ(z) represents its optimal solution; (64c) and (64d)
are valid according to Proposition 2 and the optimizing phase
shifts, respectively. Note that Etotal(ρ,p,Θ,Φ) is decreased
at each iteration based on (64a) and (64c). Furthermore, it is
obvious that the OF is lower-bounded by a finite value due
to constraints. Thus, given a threshold, Algorithm 2 converges
within a finite number of iterations.
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